Automatisierte Logik und Programmierung

Einheit 10

Fortgeschrittene Konzepte der CTT

- 1. Teilmengen- und Quotiententypen
- 2. Rekursive Datentypen
- 3. Durchschnitt, Vereinigung, starke Abhängigkeit

• Steigerung der praktischen Ausdruckskraft

- Mengentheories Standardkonzept mit klarer intuitiver Bedeutung
- Liefert natürliche Repräsentation von Untertypen (\mathbb{N}, T List⁺, ...)

• Steigerung der praktischen Ausdruckskraft

- Mengentheories Standardkonzept mit klarer intuitiver Bedeutung
- Liefert natürliche Repräsentation von Untertypen $(\mathbb{N}, T \ \mathsf{List}^+, \dots)$

- Elemente sind die Elemente aus S, welche die Eigenschaft P besitzen
- Beweisterm für Eigenschaft P darf kein Bestandteil des Elements sein

• Steigerung der praktischen Ausdruckskraft

- Mengentheories Standardkonzept mit klarer intuitiver Bedeutung
- Liefert natürliche Repräsentation von Untertypen $(\mathbb{N}, T \ \mathsf{List}^+, \dots)$

- Elemente sind die Elemente aus S, welche die Eigenschaft P besitzen
- Beweisterm für Eigenschaft P darf kein Bestandteil des Elements sein
- ullet Formale Ähnlichkeit zu $x : S \times P[x]$

• Steigerung der praktischen Ausdruckskraft

- Mengentheories Standardkonzept mit klarer intuitiver Bedeutung
- Liefert natürliche Repräsentation von Untertypen $(\mathbb{N}, T \ \mathsf{List}^+, \dots)$

- Elemente sind die Elemente aus S, welche die Eigenschaft P besitzen
- Beweisterm für Eigenschaft P darf kein Bestandteil des Elements sein
- ullet Formale Ähnlichkeit zu $x : S \times P[x]$
 - Elemente sind Paare $\langle s, pf \rangle$ mit $s \in \{x : S \mid P[x]\}$

• Steigerung der praktischen Ausdruckskraft

- Mengentheories Standardkonzept mit klarer intuitiver Bedeutung
- Liefert natürliche Repräsentation von Untertypen (\mathbb{N}, T List⁺, ...)

- Elemente sind die Elemente aus S, welche die Eigenschaft P besitzen
- Beweisterm für Eigenschaft P darf kein Bestandteil des Elements sein
- ullet Formale Ähnlichkeit zu $x : S \times P[x]$
 - Elemente sind Paare $\langle s, pf \rangle$ mit $s \in \{x : S \mid P[x]\}$
 - Beweiskomponente $pf \in P[s]$ bleibt Bestandteil des Elements

• Steigerung der praktischen Ausdruckskraft

- Mengentheories Standardkonzept mit klarer intuitiver Bedeutung
- Liefert natürliche Repräsentation von Untertypen (\mathbb{N}, T List⁺, ...)

• Konstruktive Interpretation schwierig

- Elemente sind die Elemente aus S, welche die Eigenschaft P besitzen
- Beweisterm für Eigenschaft P darf kein Bestandteil des Elements sein

ullet Formale Ähnlichkeit zu $x : S \times P[x]$

- Elemente sind Paare $\langle s, pf \rangle$ mit $s \in \{x : S \mid P[x]\}$
- Beweiskomponente $pf \in P[s]$ bleibt Bestandteil des Elements
- Entfernung des Beweisterms aus generierten Algorithmen mühsam

• Steigerung der praktischen Ausdruckskraft

- Mengentheories Standardkonzept mit klarer intuitiver Bedeutung
- Liefert natürliche Repräsentation von Untertypen $(\mathbb{N}, T \ \mathsf{List}^+, \dots)$

• Konstruktive Interpretation schwierig

- Elemente sind die Elemente aus S, welche die Eigenschaft P besitzen
- Beweisterm für Eigenschaft P darf kein Bestandteil des Elements sein

ullet Formale Ähnlichkeit zu $x\!:\!S\! imes\!P[x]$

- Elemente sind Paare $\langle s, pf \rangle$ mit $s \in \{x : S \mid P[x]\}$
- Beweiskomponente $pf \in P[s]$ bleibt Bestandteil des Elements
- Entfernung des Beweisterms aus generierten Algorithmen mühsam
- Evidenz für P[s] ist bei Teilmengen nur implizit vorhanden

• Steigerung der praktischen Ausdruckskraft

- Mengentheories Standardkonzept mit klarer intuitiver Bedeutung
- Liefert natürliche Repräsentation von Untertypen (\mathbb{N}, T List⁺, ...)

• Konstruktive Interpretation schwierig

- Elemente sind die Elemente aus S, welche die Eigenschaft P besitzen
- Beweisterm für Eigenschaft P darf kein Bestandteil des Elements sein

ullet Formale Ähnlichkeit zu $x\!:\!S\! imes\!P[x]$

- Elemente sind Paare $\langle s, pf \rangle$ mit $s \in \{x : S \mid P[x]\}$
- Beweiskomponente $pf \in P[s]$ bleibt Bestandteil des Elements
- Entfernung des Beweisterms aus generierten Algorithmen mühsam
- Evidenz für P[s] ist bei Teilmengen nur implizit vorhanden
- $-x:S\times P[x]$ ist ungeeignet als Beschreibung von Teilmengen

• Steigerung der praktischen Ausdruckskraft

- Mengentheories Standardkonzept mit klarer intuitiver Bedeutung
- Liefert natürliche Repräsentation von Untertypen (\mathbb{N}, T List⁺, ...)

• Konstruktive Interpretation schwierig

- Elemente sind die Elemente aus S, welche die Eigenschaft P besitzen
- Beweisterm für Eigenschaft P darf kein Bestandteil des Elements sein

ullet Formale Ähnlichkeit zu $x:S \times P[x]$

- Elemente sind Paare $\langle s, pf \rangle$ mit $s \in \{x : S \mid P[x]\}$
- Beweiskomponente $pf \in P[s]$ bleibt Bestandteil des Elements
- Entfernung des Beweisterms aus generierten Algorithmen mühsam
- Evidenz für P[s] ist bei Teilmengen nur implizit vorhanden
- $-x:S\times P[x]$ ist ungeeignet als Beschreibung von Teilmengen

Teilmengentyp muß explizit repräsentiert werden

Syntax:

Kanonisch: $\{x:S \mid T[x]\}$ set $\{\}(S; x.T[x])$

 $\{S \mid T\}$ $set{}\{S; T$

Nichtkanonisch: —

Syntax:

Kanonisch: $\{x:S \mid T[x]\}$ set $\{\}(S; x.T[x])$

 $\{S \mid T\}$ $set{}\{{}\}(S; .T)$

Nichtkanonisch: —

Auswertung: —

Syntax:

Kanonisch:
$$\{x:S \mid T[x]\}$$
 set $\{\}(S; x.T[x])$

$${S \mid T}$$
 set ${S(S; .T)}$

Nichtkanonisch: —

Auswertung: —

Semantik:

$$\{x_1: S_1 \mid T_1\} = \{x_2: S_2 \mid T_2\} \equiv S_1 = S_2$$
 und es gibt Terme p_1, p_2 und eine Variable

x, die weder in T_1 noch in T_2 vorkommt, so daß

$$p_1 \in \forall x : S_1 . T_1[x/x_1] \Rightarrow T_2[x/x_2]$$

und
$$p_2 \in \forall x : S_1 . T_2[x/x_2] \Rightarrow T_1[x/x_1]$$

$$T = \{S_2 \mid T_2\} \qquad \equiv T = \{x_2 : S_2 \mid T_2\} \text{ für ein beliebiges } x_2 \in \mathcal{V}$$

$$\{S_1 \mid T_1\} = T$$
 $\equiv \{x_1: S_1 \mid T_1\} = T$ für ein beliebiges $x_1 \in \mathcal{V}$

$$s=t\in\{x\!:\!S\mid T\}$$
 $\equiv\{x\!:\!S\mid T\}$ Typ und $s=t\in S$ und es gibt einen Term p mit der Eigenschaft $p\in T[s/x]$

Syntax:

Kanonisch:
$$\{x:S \mid T[x]\}$$
 set $\{\}(S; x.T[x])$

$${S \mid T}$$
 set ${S(S; .T)}$

Nichtkanonisch: —

Auswertung: —

Semantik:

Verletzt Prinzip der getrennten Definition von Typen

$$\{x_1: S_1 \mid T_1\} = \{x_2: S_2 \mid T_2\} \equiv S_1 = S_2$$
 und es gibt Terme p_1, p_2 und eine Variable

x, die weder in T_1 noch in T_2 vorkommt, so daß

$$p_1 \in \forall x : S_1 . T_1[x/x_1] \Rightarrow T_2[x/x_2]$$

und
$$p_2 \in \forall x : S_1 . T_2[x/x_2] \Rightarrow T_1[x/x_1]$$

$$T = \{S_2 \mid T_2\} \qquad \equiv T = \{x_2 : S_2 \mid T_2\} \text{ für ein beliebiges } x_2 \in \mathcal{V}$$

$$\{S_1 \mid T_1\} = T \qquad \equiv \{x_1: S_1 \mid T_1\} = T \text{ für ein beliebiges } x_1 \in \mathcal{V}$$

$$s = t \in \{x : S \mid T\}$$
 $\equiv \{x : S \mid T\}$ Typ und $s = t \in S$ und es gibt einen Term p mit der Eigenschaft $p \in T[s/x]$

Syntax:

Kanonisch: $\{x:S \mid T[x]\}$ set $\{\}(S; x.T[x])$

 $\{S \mid T\}$ $set{}\{(S; .T)$

Nichtkanonisch:

Auswertung: —

Semantik:

Verletzt Prinzip der getrennten Definition von Typen

 $\{x_1: S_1 \mid T_1\} = \{x_2: S_2 \mid T_2\} \equiv S_1 = S_2$ und es gibt Terme p_1, p_2 und eine Variable x, die weder in T_1 noch in T_2 vorkommt, so daß

$$p_1 \in \forall x : S_1 . T_1[x/x_1] \Rightarrow T_2[x/x_2]$$

und
$$p_2 \in \forall x : S_1 . T_2[x/x_2] \Rightarrow T_1[x/x_1]$$

$$T = \{S_2 \mid T_2\} \qquad \equiv T = \{x_2 : S_2 \mid T_2\} \text{ für ein beliebiges } x_2 \in \mathcal{V}$$

$$\{S_1 \mid T_1\} = T \qquad \equiv \{x_1: S_1 \mid T_1\} = T \text{ für ein beliebiges } x_1 \in \mathcal{V}$$

$$s = t \in \{x : S \mid T\}$$
 $\equiv \{x : S \mid T\}$ Typ und $s = t \in S$ und es gibt einen Term p mit der Eigenschaft $p \in T[s/x]$

Details im Appendix A.3.12 des Nuprl Manuals

- Verwaltung von implizitem Wissen erforderlich
 - $-\{x:T\mid P\}$ hat mehr Information als T und weniger als $x:T\times P$

- Verwaltung von implizitem Wissen erforderlich
 - $-\{x:T\mid P\}$ hat mehr Information als T und weniger als $x:T\times P$
 - · Nullstellenbestimmung ist verschieden aufwendig für Elemente von

$$\mathbb{Z} \rightarrow \mathbb{Z}$$
, $f: \mathbb{Z} \rightarrow \mathbb{Z} \times (\exists y: \mathbb{Z}. f(y) = 0)$ und $\{f: \mathbb{Z} \rightarrow \mathbb{Z} \mid \exists y: \mathbb{Z}. f(y) = 0\}$

• Verwaltung von implizitem Wissen erforderlich

- $-\{x:T\mid P\}$ hat mehr Information als T und weniger als $x:T\times P$
 - · Nullstellenbestimmung ist verschieden aufwendig für Elemente von $\mathbb{Z} \to \mathbb{Z}$, $\mathbf{f} : \mathbb{Z} \to \mathbb{Z} \times (\exists y : \mathbb{Z} . \mathbf{f}(y) = 0)$ und $\{\mathbf{f} : \mathbb{Z} \to \mathbb{Z} \mid \exists y : \mathbb{Z} . \mathbf{f}(y) = 0\}$
- Für $s \in \{x: T \mid P\}$ wissen wir, daß P[s] gilt, aber wir wissen nicht, wie ein Beweisterm für P[s] konkret aussieht

• Verwaltung von implizitem Wissen erforderlich

- $-\{x:T\mid P\}$ hat mehr Information als T und weniger als $x:T\times P$
 - · Nullstellenbestimmung ist verschieden aufwendig für Elemente von $\mathbb{Z} \to \mathbb{Z}$, $f: \mathbb{Z} \to \mathbb{Z} \times (\exists y: \mathbb{Z}. f(y) = 0)$ und $\{f: \mathbb{Z} \to \mathbb{Z} \mid \exists y: \mathbb{Z}. f(y) = 0\}$
- Für $s \in \{x:T \mid P\}$ wissen wir, daß P[s] gilt, aber wir wissen nicht, wie ein Beweisterm für P[s] konkret aussieht
- Das Wissen P[s] muß in Beweisen verwendbar sein, aber die Evidenz für P[s] kann nicht algorithmisch verwendet werden

• Verwaltung von implizitem Wissen erforderlich

- $-\{x:T\mid P\}$ hat mehr Information als T und weniger als $x:T\times P$
 - · Nullstellenbestimmung ist verschieden aufwendig für Elemente von $\mathbb{Z} \to \mathbb{Z}$, $f: \mathbb{Z} \to \mathbb{Z} \times (\exists y: \mathbb{Z}. f(y) = 0)$ und $\{f: \mathbb{Z} \to \mathbb{Z} \mid \exists y: \mathbb{Z}. f(y) = 0\}$
- Für $s \in \{x:T \mid P\}$ wissen wir, daß P[s] gilt, aber wir wissen nicht, wie ein Beweisterm für P[s] konkret aussieht
- Das Wissen P[s] muß in Beweisen verwendbar sein, aber die Evidenz für P[s] kann nicht algorithmisch verwendet werden
- Ein Beweisterm für P[s] darf nicht im Extraktterm vorkommen

• Verwaltung von implizitem Wissen erforderlich

- $-\{x:T\mid P\}$ hat mehr Information als T und weniger als $x:T\times P$
 - · Nullstellenbestimmung ist verschieden aufwendig für Elemente von $\mathbb{Z} \to \mathbb{Z}$, $\mathbf{f} : \mathbb{Z} \to \mathbb{Z} \times (\exists y : \mathbb{Z} . \mathbf{f}(y) = 0)$ und $\{\mathbf{f} : \mathbb{Z} \to \mathbb{Z} \mid \exists y : \mathbb{Z} . \mathbf{f}(y) = 0\}$
- Für $s \in \{x:T \mid P\}$ wissen wir, daß P[s] gilt, aber wir wissen nicht, wie ein Beweisterm für P[s] konkret aussieht
- Das Wissen P[s] muß in Beweisen verwendbar sein, aber die Evidenz für P[s] kann nicht algorithmisch verwendet werden
- Ein Beweisterm für P[s] darf nicht im Extraktterm vorkommen

• Unterstütze versteckte Hypothesen

• Verwaltung von implizitem Wissen erforderlich

- $-\{x:T\mid P\}$ hat mehr Information als T und weniger als $x:T\times P$
 - · Nullstellenbestimmung ist verschieden aufwendig für Elemente von $\mathbb{Z} \to \mathbb{Z}$, $\mathbf{f} : \mathbb{Z} \to \mathbb{Z} \times (\exists y : \mathbb{Z} . \mathbf{f}(y) = 0)$ und $\{\mathbf{f} : \mathbb{Z} \to \mathbb{Z} \mid \exists y : \mathbb{Z} . \mathbf{f}(y) = 0\}$
- Für $s \in \{x:T \mid P\}$ wissen wir, daß P[s] gilt, aber wir wissen nicht, wie ein Beweisterm für P[s] konkret aussieht
- Das Wissen P[s] muß in Beweisen verwendbar sein, aber die Evidenz für P[s] kann nicht algorithmisch verwendet werden
- Ein Beweisterm für P[s] darf nicht im Extraktterm vorkommen

• Unterstütze versteckte Hypothesen

– Erzeugung durch Dekomposition der Annahme $z: \{x: S \mid T\}$

$$\begin{split} \Gamma, \, z \colon & \{x \colon S \mid T \,\}, \, \Delta \vdash C \text{ [ext } (\lambda y \cdot t) \, z \text{]} \\ & \text{BY setElimination } i \ y \ v \\ & \Gamma, \, z \colon & \{x \colon S \mid T \,\}, \, y \colon S, \, [\![v]\!] \colon & T[y/x], \, \Delta[y/z] \vdash C[y/z] \text{ [ext } t \text{]} \end{split}$$

• Verwaltung von implizitem Wissen erforderlich

- $-\{x:T\mid P\}$ hat mehr Information als T und weniger als $x:T\times P$
 - · Nullstellenbestimmung ist verschieden aufwendig für Elemente von $\mathbb{Z} \to \mathbb{Z}$, $f: \mathbb{Z} \to \mathbb{Z} \times (\exists y: \mathbb{Z}. f(y) = 0)$ und $\{f: \mathbb{Z} \to \mathbb{Z} \mid \exists y: \mathbb{Z}. f(y) = 0\}$
- Für $s \in \{x:T \mid P\}$ wissen wir, daß P[s] gilt, aber wir wissen nicht, wie ein Beweisterm für P[s] konkret aussieht
- Das Wissen P[s] muß in Beweisen verwendbar sein, aber die Evidenz für P[s] kann nicht algorithmisch verwendet werden
- Ein Beweisterm für P[s] darf nicht im Extraktterm vorkommen

• Unterstütze versteckte Hypothesen

– Erzeugung durch Dekomposition der Annahme $z: \{x: S \mid T\}$

$$\begin{split} \Gamma, \, z \colon & \{x \colon \! S \mid T \,\}, \, \Delta \vdash C \text{ [ext } (\lambda y \cdot t) \, z \!] \\ & \text{BY setElimination } i \ y \ v \\ & \Gamma, \, z \colon \! \{x \colon \! S \mid T \,\}, \, y \colon \! S, \, [\![v]\!] \colon \! T[y/x], \, \Delta[y/z] \vdash C[y/z] \text{ [ext } t \!] \end{split}$$

- Freigabe in Teilzielen mit Extraktterm Ax (Gleichheiten, Kleiner-Relation)

Wichtige benutzerdefinierte Mengentypen

• Zahlenmengen und -intervalle:

Theory int_1

Wichtige benutzerdefinierte Mengentypen

• Zahlenmengen und -intervalle:

Theory int_1

\mathbb{N}	$\equiv \{i: \mathbb{Z} \mid 0 \leq i\}$	nat
\mathbb{N}^+	$\equiv \{i: \mathbb{Z} \mid 0 \leq i\}$	nat_plus
$\{i\dots\}$	$\equiv \{j : \mathbb{Z} \mid i \leq j\}$	int_upper
$\{\ldots i\}$	$\equiv \{j : \mathbb{Z} \mid j \leq i\}$	int_lower
$\{i \ldots j\}$	$\equiv \{\mathbf{k} : \mathbb{Z} \mid i \leq \mathbf{k} \leq j\}$	int_iseg
$\{i \ldots j^-\}$	$\equiv \{\mathbf{k} : \mathbb{Z} \mid i \leq \mathbf{k} \leq j\}$	int_seg

• Listen

$$T \text{ list}^+ \equiv \{1:T \text{ list}|0<||1||\}$$
 listp

• Modifikation der Gleichheit auf Typen

• Modifikation der Gleichheit auf Typen

- Rationale Zahlen: Paare ganzer Zahlen mit $\langle z_1, n_1 \rangle = \langle z_2, n_2 \rangle$, falls $z_1 * n_2 = z_2 * n_1$

• Modifikation der Gleichheit auf Typen

- Rationale Zahlen: Paare ganzer Zahlen mit $\langle z_1, n_1 \rangle = \langle z_2, n_2 \rangle$, falls $z_1 * n_2 = z_2 * n_1$
- Reelle Zahlen: konvergierende rationale Folgen mit gleichem Grenzwert

• Modifikation der Gleichheit auf Typen

- Rationale Zahlen: Paare ganzer Zahlen mit $\langle z_1, n_1 \rangle = \langle z_2, n_2 \rangle$, falls $z_1 * n_2 = z_2 * n_1$
- Reelle Zahlen: konvergierende rationale Folgen mit gleichem Grenzwert
- Restklassenräume: $\mathbb{Z} \mod k$

- Modifikation der Gleichheit auf Typen
 - Rationale Zahlen: Paare ganzer Zahlen mit $\langle z_1, n_1 \rangle = \langle z_2, n_2 \rangle$, falls $z_1 * n_2 = z_2 * n_1$
 - Reelle Zahlen: konvergierende rationale Folgen mit gleichem Grenzwert
 - Restklassenräume: $\mathbb{Z} \mod k$
- Faktorisierung modulo einer Äquivalenz

• Modifikation der Gleichheit auf Typen

- Rationale Zahlen: Paare ganzer Zahlen mit $\langle z_1, n_1 \rangle = \langle z_2, n_2 \rangle$, falls $z_1 * n_2 = z_2 * n_1$
- Reelle Zahlen: konvergierende rationale Folgen mit gleichem Grenzwert
- Restklassenräume: $\mathbb{Z} \mod k$

• Faktorisierung modulo einer Äquivalenz

- Elemente s,t werden aus Typ T ausgewählt
- Gleichheit von s und t wird über Äquivalenzrelation E neu definiert

• Modifikation der Gleichheit auf Typen

- Rationale Zahlen: Paare ganzer Zahlen mit $\langle z_1, n_1 \rangle = \langle z_2, n_2 \rangle$, falls $z_1 * n_2 = z_2 * n_1$
- Reelle Zahlen: konvergierende rationale Folgen mit gleichem Grenzwert
- Restklassenräume: $\mathbb{Z} \mod k$

• Faktorisierung modulo einer Äquivalenz

- Elemente s,t werden aus Typ T ausgewählt
- Gleichheit von s und t wird über Äquivalenzrelation E neu definiert
- Benutzerdefinierte Gleichheit wird in das Typsystem eingebettet

• Modifikation der Gleichheit auf Typen

- Rationale Zahlen: Paare ganzer Zahlen mit $\langle z_1, n_1 \rangle = \langle z_2, n_2 \rangle$, falls $z_1 * n_2 = z_2 * n_1$
- Reelle Zahlen: konvergierende rationale Folgen mit gleichem Grenzwert
- Restklassenräume: $\mathbb{Z} \mod k$

• Faktorisierung modulo einer Äquivalenz

- Elemente s,t werden aus Typ T ausgewählt
- Gleichheit von s und t wird über Äquivalenzrelation E neu definiert
- Benutzerdefinierte Gleichheit wird in das Typsystem eingebettet
- Substitutions- und Gleichheitsregeln werden direkt anwendbar

• Modifikation der Gleichheit auf Typen

- Rationale Zahlen: Paare ganzer Zahlen mit $\langle z_1, n_1 \rangle = \langle z_2, n_2 \rangle$, falls $z_1 * n_2 = z_2 * n_1$
- Reelle Zahlen: konvergierende rationale Folgen mit gleichem Grenzwert
- Restklassenräume: $\mathbb{Z} \mod k$

• Faktorisierung modulo einer Äquivalenz

- Elemente s,t werden aus Typ T ausgewählt
- Gleichheit von s und t wird über Äquivalenzrelation E neu definiert
- Benutzerdefinierte Gleichheit wird in das Typsystem eingebettet
- Substitutions- und Gleichheitsregeln werden direkt anwendbar

Quotiententypen wichtig für formale Mathematik

QUOTIENTENTYPEN, FORMAL

Syntax:

Kanonisch: x, y: T//E quotient{}(T; x, y. E)

Nichtkanonisch: —

QUOTIENTENTYPEN, FORMAL

Syntax:

Kanonisch: x, y: T//E quotient{}(T; x, y. E)

Nichtkanonisch: —

Auswertung: —

QUOTIENTENTYPEN, FORMAL

Syntax:

Kanonisch: x, y: T//E quotient{}(T; x, y. E)

Nichtkanonisch: —

Auswertung: —

Semantik:

$$x_1, y_1: T_1//E_1$$
 $T_1 = T_2$ und $T_2 = T_2$ $T_3 = T_3$ $T_4 = T_4$ $T_5 = T_5$ $T_5 = T_5$ $T_7 = T_5$ T_7

 $T_1 = T_2$ und es gibt (verschiedene) Variablen x, y, z, die weder in E_1 noch in E_2 vorkommen, und Terme p_1, p_2, r, s und t mit der Eigenschaft

$$p_1 \in \forall x : T_1 . \forall y : T_1 . E_1[x, y/x_1, y_1] \Rightarrow E_2[x, y/x_2, y_2]$$

und $p_2 \in \forall x : T_1 . \forall y : T_1 . E_2[x, y/x_2, y_2] \Rightarrow E_1[x, y/x_1, y_1]$
und $r \in \forall x : T_1 . E_1[x, x/x_1, y_1]$
und $s \in \forall x : T_1 . \forall y : T_1 . E_1[x, y/x_1, y_1] \Rightarrow E_1[y, x/x_1, y_1]$
und $t \in \forall x : T_1 . \forall y : T_1 . \forall z : T_1$.

$$E_1[x,y/x_1,y_1]\Rightarrow E_1[y,z/x_1,y_1]\Rightarrow E_1[x,z/x_1,y_1]$$
 $s=t\in x$, $y:T/\!/\!E$ $\equiv x$, $y:T/\!/\!E$ Typ und $s\in T$ und $t\in T$ und es gibt einen Term p mit der Eigenschaft $p\in E[s,t/x,y]$

QUOTIENTENTYPEN, FORMAL

Syntax:

Kanonisch: x, y: T//E quotient{}(T; x, y. E)

Nichtkanonisch: —

Auswertung: —

Semantik:

 $x_1, y_1: T_1/\!/E_1$ $T_1=T_2$ und es gibt (verschiedene) Variablen x, y, z, die $x_1, y_2: T_2/\!/E_2$ $t=t_1=t_2$ und es gibt (verschiedene) Variablen $t=t_2$ weder in $t=t_3$ noch in $t=t_4$ vorkommen, und Terme $t=t_4$ und $t=t_4$ mit der Eigenschaft

 $p_1 \in \forall x : T_1 . \forall y : T_1 . E_1[x, y/x_1, y_1] \Rightarrow E_2[x, y/x_2, y_2]$

und $p_2 \in \forall x : T_1 . \forall y : T_1 . E_2[x, y/x_2, y_2] \Rightarrow E_1[x, y/x_1, y_1]$

und $r \in \forall x : T_1 . E_1[x, x/x_1, y_1]$

und $s \in \forall x : T_1 . \forall y : T_1 . E_1[x, y/x_1, y_1] \Rightarrow E_1[y, x/x_1, y_1]$

und $t \in \forall x: T_1. \forall y: T_1. \forall z: T_1.$

 $E_1[x, y/x_1, y_1] \Rightarrow E_1[y, z/x_1, y_1] \Rightarrow E_1[x, z/x_1, y_1]$

 $s=t\in x$, $y:T/\!/\!E\equiv x$, $y:T/\!/\!E$ Typ und $s\in T$ und $t\in T$ und es gibt einen Term p mit der Eigenschaft $p\in E[s,t/x,y]$

Inferenzregeln und Taktiken im Appendix A.3.14 des Nuprl Manuals

Wichtige benutzerdefinierte Quotiententypen

• Rationale Zahlen

Wichtige benutzerdefinierte Quotiententypen

• Rationale Zahlen

• Restklassenräume

$$x_1$$
= $x_2 \mod k \equiv k \text{ divides } x_1$ - x_2 eqmod $\mathbb{Z} \mod k \equiv x$, $y: \mathbb{Z}/\!/_{x=y \mod k}$ int_mod

Quotiententypen: Einfluss auf das Inferenzsystem

ullet Gleichheit $E[s,t\,/\,x,y]$ ist implizites Wissen

Quotiententypen: Einfluss auf das Inferenzsystem

- ullet Gleichheit $E[s,t\,/\,x,y]$ ist implizites Wissen
 - Wir wissen E[s, t/x, y] wenn $s = t \in x, y : T/\!/\!E$

QUOTIENTENTYPEN: EINFLUSS AUF DAS INFERENZSYSTEM

- ullet Gleichheit $E[s,t\,/\,x,y]$ ist implizites Wissen
 - Wir wissen E[s,t/x,y] wenn $s=t\in x$, $y:T/\!/E$
 - Beweisterm für E[s, t/x, y] darf nicht algorithmisch verwendet werden

QUOTIENTENTYPEN: EINFLUSS AUF DAS INFERENZSYSTEM

ullet Gleichheit $E[s,t\,/\,x,y]$ ist implizites Wissen

- Wir wissen E[s, t/x, y] wenn $s = t \in x, y : T//E$
- Beweisterm für E[s, t/x, y] darf nicht algorithmisch verwendet werden
- Dekomposition obiger Gleichheit muß versteckte Hypothesen erzeugen

```
\begin{array}{l} \Gamma,\,v{:}\,s=t\,\in\,x\,\text{,}y:T/\!/\!E\,,\,\Delta\vdash C\,\,\text{ext}\,\,u_{\!\!\!|}\\ \text{BY quotient\_equalityElimination}\,\,i\,\,j\,\,v'\\ \Gamma,\,v{:}\,s=t\,\in\,x\,\text{,}y:T/\!/\!E\,,\,[\![v']\!]{:}E[s,t/x,y],\,\Delta\vdash C\,\,\text{ext}\,\,u_{\!\!\!|}\\ \Gamma,\,v{:}\,s=t\,\in\,x\,\text{,}y:T/\!/\!E\,,\,\Delta\vdash E[s,t/x,y]\,\in\,\mathbb{U}_{\!\!\!|j|}\,\,\text{Ax} \end{array}
```

Quotiententypen: Einfluss auf das Inferenzsystem

ullet Gleichheit $E[s,t\,/\,x,y]$ ist implizites Wissen

- Wir wissen E[s, t/x, y] wenn $s = t \in x, y : T/\!/\!E$
- Beweisterm für E[s,t/x,y] darf nicht algorithmisch verwendet werden
- Dekomposition obiger Gleichheit muß versteckte Hypothesen erzeugen

```
\begin{array}{l} \Gamma,\,v{:}\,s=t\,\in\,x\,\text{,}\,y:T/\!/\!E\,,\,\Delta\vdash C\,\,\text{[ext}\,\,u{]}\\ \text{BY quotient\_equalityElimination}\,\,i\,\,j\,\,v'\\ \Gamma,\,v{:}\,s=t\,\in\,x\,\text{,}\,y:T/\!/\!E\,,\,\,\|v'\|{:}E[s,t/x,y],\,\Delta\vdash C\,\,\text{[ext}\,\,u{]}\\ \Gamma,\,v{:}\,s=t\,\in\,x\,\text{,}\,y:T/\!/\!E\,,\,\Delta\vdash E[s,t/x,y]\,\in\,\mathbb{U}_{j}\,\,\text{[Ax]} \end{array}
```

- Freigabe versteckter Hypothesen wie zuvor

- ullet Überstrukturierung auf x, $y:T/\!\!/\!E$ möglich
 - $-x_1 <_q x_2$ muß wohlgeformt sein

- ullet Überstrukturierung auf x, $y:T/\!\!/\!E$ möglich
 - $-x_1 <_q x_2$ muß wohlgeformt sein
 - Gilt $x_1 <_q x_2 = x_1' <_q x_2'$, wenn $x_1 = x_1' \in \mathbb{Q}$ und $x_2 = x_2' \in \mathbb{Q}$?

- ullet Überstrukturierung auf x, $y:T/\!/\!E$ möglich
 - $-x_1 <_q x_2$ muß wohlgeformt sein
 - Gilt $x_1 <_q x_2 = x_1' <_q x_2'$, wenn $x_1 = x_1' \in \mathbb{Q}$ und $x_2 = x_2' \in \mathbb{Q}$?
 - $z_1*n_2< z_2*n_1=z_1'*n_2'< z_2'*n_1' \text{ verlangt } z_1*n_2=z_1'*n_2'\in \mathbb{Z}$ und $z_2*n_1=z_2'*n_1'\in \mathbb{Z}$

ullet Überstrukturierung auf x, $y:T/\!\!/\!E$ möglich

- $-x_1 <_q x_2$ muß wohlgeformt sein
- Gilt $x_1 <_q x_2 = x_1' <_q x_2'$, wenn $x_1 = x_1' \in \mathbb{Q}$ und $x_2 = x_2' \in \mathbb{Q}$?
 - $z_1 * n_2 < z_2 * n_1 = z_1' * n_2' < z_2' * n_1' \text{ verlangt } z_1 * n_2 = z_1' * n_2' \in \mathbb{Z}$ und $z_2 * n_1 = z_2' * n_1' \in \mathbb{Z}$
 - · Nicht gültig für $x_1 = \langle 2, 1 \rangle$, $x_1' = \langle 4, 2 \rangle$, $x_2 = x_2' = \langle 3, 1 \rangle$

ullet Überstrukturierung auf x, $y:T/\!/\!E$ möglich

- $-x_1 <_q x_2$ muß wohlgeformt sein
- Gilt $x_1 <_q x_2 = x_1' <_q x_2'$, wenn $x_1 = x_1' \in \mathbb{Q}$ und $x_2 = x_2' \in \mathbb{Q}$?
 - $z_1*n_2< z_2*n_1=z_1'*n_2'< z_2'*n_1' \text{ verlangt } z_1*n_2=z_1'*n_2'\in \mathbb{Z}$ und $z_2*n_1=z_2'*n_1'\in \mathbb{Z}$
 - · Nicht gültig für $x_1 = \langle 2, 1 \rangle$, $x_1' = \langle 4, 2 \rangle$, $x_2 = x_2' = \langle 3, 1 \rangle$
- Definition von \leq_q enthält zu viel Struktur, wo nur "Wahrheit" nötig ist
- Unabhängigkeit vom Repräsentanten nicht mehr gegeben

ullet Überstrukturierung auf x, $y:T/\!\!/\!E$ möglich

- $-x_1 <_q x_2$ muß wohlgeformt sein
- Gilt $x_1 <_q x_2 = x_1' <_q x_2'$, wenn $x_1 = x_1' \in \mathbb{Q}$ und $x_2 = x_2' \in \mathbb{Q}$?
 - $z_1*n_2< z_2*n_1=z_1'*n_2'< z_2'*n_1' \text{ verlangt } z_1*n_2=z_1'*n_2'\in \mathbb{Z}$ und $z_2*n_1=z_2'*n_1'\in \mathbb{Z}$
 - · Nicht gültig für $x_1 = \langle 2, 1 \rangle$, $x_1' = \langle 4, 2 \rangle$, $x_2 = x_2' = \langle 3, 1 \rangle$
- Definition von \leq_q enthält zu viel Struktur, wo nur "Wahrheit" nötig ist
- Unabhängigkeit vom Repräsentanten nicht mehr gegeben

• Type-Squashing für benutzerdefinierte Prädikate

$$- \downarrow \mathbf{P} \equiv \{ 0 \in \mathbb{Z} \mid P \}$$

ullet Überstrukturierung auf x, $y:T/\!\!/\!E$ möglich

- $-x_1 <_q x_2$ muß wohlgeformt sein
- Gilt $x_1 <_q x_2 = x_1' <_q x_2'$, wenn $x_1 = x_1' \in \mathbb{Q}$ und $x_2 = x_2' \in \mathbb{Q}$?
 - $z_1*n_2< z_2*n_1=z_1'*n_2'< z_2'*n_1' \text{ verlangt } z_1*n_2=z_1'*n_2'\in \mathbb{Z}$ und $z_2*n_1=z_2'*n_1'\in \mathbb{Z}$
 - · Nicht gültig für $x_1 = \langle 2, 1 \rangle$, $x_1' = \langle 4, 2 \rangle$, $x_2 = x_2' = \langle 3, 1 \rangle$
- Definition von \leq_q enthält zu viel Struktur, wo nur "Wahrheit" nötig ist
- Unabhängigkeit vom Repräsentanten nicht mehr gegeben

• Type-Squashing für benutzerdefinierte Prädikate

- $\downarrow \mathbf{P} \equiv \{ 0 \in \mathbb{Z} \mid P \}$
- Reduziert Struktur des Prädikats (Typs) P auf "Wahrheitstyp"
- Entfernt Überstrukturierung aus Definition von Prädikaten

DEFINITION REELLER ZAHLEN MIT QUOTIENTENTYPEN

$$x_1 \leq_q x_2 \equiv \text{ } |\text{let } \langle z_1, n_1 \rangle = x_1 \text{ in let } \langle z_2, n_2 \rangle = x_2 \text{ in } z_1 * n_2 < z_2 * n_1 \qquad \text{ rat_le}$$

$$x_1 \leq_q x_2 \equiv x_1 < x_2 \vee x_1 = x_2 \in \mathbb{Q} \qquad \text{ rat_le}$$

$$z/n \equiv \langle z, n \rangle \qquad \text{ rat_frac}$$

$$|x| \equiv \text{ let } \langle z, n \rangle = x \text{ in if } z < 0 \text{ then } \langle -z, n \rangle \text{ else } \langle z, n \rangle \qquad \text{ rat_abs}$$

$$\mathbb{R}_{pre} \equiv \{f : \mathbb{N}^+ \to \mathbb{Q} \mid \forall \mathbb{m}, \mathbb{n} : \mathbb{N}^+ . \mid f(\mathbb{n}) - f(\mathbb{m}) \mid \leq 1/\mathbb{m} + 1/\mathbb{n} \} \qquad \text{ real_pre}$$

$$x_1 =_r x_2 \equiv \forall \mathbb{n} : \mathbb{N}^+ . \mid x_1(\mathbb{n}) - x_2(\mathbb{n}) \mid \leq 2/\mathbb{n} \qquad \text{ real_equal}$$

$$\mathbb{R} \equiv x, y : \mathbb{R}_{pre} / / x =_r y \qquad \text{ real}$$

$$x_1 + x_2 \equiv \lambda \mathbb{n} . x_1(\mathbb{n}) + x_2(\mathbb{n}) \qquad \text{ real_add}$$

$$x_1 - x_2 \equiv \lambda \mathbb{n} . x_1(\mathbb{n}) - x_2(\mathbb{n}) \qquad \text{ real_add}$$

$$x_1 - x_2 \equiv \lambda \mathbb{n} . x_1(\mathbb{n}) - x_2(\mathbb{n}) \qquad \text{ real_abs}$$

Elegante Beweise erfordern viele Spezialtaktiken

- Größere Freiheit in der Formulierung
 - Zahlen unterstützen induktive Beweise und primitive Rekursion

• Größere Freiheit in der Formulierung

- Zahlen unterstützen induktive Beweise und primitive Rekursion
- Unnatürliche Simulation rekursiver Datentypen (Bäume, Graphen,..)

• Größere Freiheit in der Formulierung

- Zahlen unterstützen induktive Beweise und primitive Rekursion
- Unnatürliche Simulation rekursiver Datentypen (Bäume, Graphen,..)
- Y-Kombinator unterstützt freie, schwer zu kontrollierende Rekursion

• Größere Freiheit in der Formulierung

- Zahlen unterstützen induktive Beweise und primitive Rekursion
- Unnatürliche Simulation rekursiver Datentypen (Bäume, Graphen,..)
- Y-Kombinator unterstützt freie, schwer zu kontrollierende Rekursion
- → Direkte Einbettung rekursiver Definition für bekannte Konstrukte

• Größere Freiheit in der Formulierung

- Zahlen unterstützen induktive Beweise und primitive Rekursion
- Unnatürliche Simulation rekursiver Datentypen (Bäume, Graphen,..)
- Y-Kombinator unterstützt freie, schwer zu kontrollierende Rekursion
- → Direkte Einbettung rekursiver Definition für bekannte Konstrukte

• Induktive Typkonstruktoren

- Wohlfundierte, rekursiv definierte Datentypen und ihre Elemente

• Größere Freiheit in der Formulierung

- Zahlen unterstützen induktive Beweise und primitive Rekursion
- Unnatürliche Simulation rekursiver Datentypen (Bäume, Graphen,..)
- Y-Kombinator unterstützt freie, schwer zu kontrollierende Rekursion
- → Direkte Einbettung rekursiver Definition für bekannte Konstrukte

• Induktive Typkonstruktoren

- Wohlfundierte, rekursiv definierte Datentypen und ihre Elemente

• Partiell Rekursive Funktionen

- Totale rekursive Funktionen auf eingeschränktem Definitionsbereich
- (Fast exakter) Definitionsbereich aus Algorithmus ableitbar

• Größere Freiheit in der Formulierung

- Zahlen unterstützen induktive Beweise und primitive Rekursion
- Unnatürliche Simulation rekursiver Datentypen (Bäume, Graphen,..)
- Y-Kombinator unterstützt freie, schwer zu kontrollierende Rekursion
- → Direkte Einbettung rekursiver Definition für bekannte Konstrukte

• Induktive Typkonstruktoren

- Wohlfundierte, rekursiv definierte Datentypen und ihre Elemente

• Partiell Rekursive Funktionen

- Totale rekursive Funktionen auf eingeschränktem Definitionsbereich
- (Fast exakter) Definitionsbereich aus Algorithmus ableitbar

• Lässige Typkonstruktoren

– Schließen über unendliche Objekte

Repräsentation rekursiv definierter Strukturen

• Rekursive Typdefinition mit Gleichung X = T[X]

- Rekursive Typdefinition mit Gleichung X = T[X]
 - -z.B. rectype bintree = $\mathbb{Z} + \mathbb{Z} \times \text{bintree} \times \text{bintree}$

- Rekursive Typdefinition mit Gleichung X = T[X]
 - -z.B. rectype bintree = $\mathbb{Z} + \mathbb{Z} \times \text{bintree} \times \text{bintree}$
 - Kanonische Elemente definiert durch Aufrollen der Gleichung

- Rekursive Typdefinition mit Gleichung X = T[X]
 - -z.B. rectype bintree = $\mathbb{Z} + \mathbb{Z} \times \text{bintree} \times \text{bintree}$
 - Kanonische Elemente definiert durch Aufrollen der Gleichung
 - Verarbeitung durch induktiven Operator $let^* f(x) = t$ in f(e)liefert terminierende freie rekursive Funktionsdefinitionen

```
let* sum(b-tree) =
                                                                    case b-tree of inl(leaf) \mapsto leaf
                                                                                                                                                                                                                                                                                                                                | inr(triple) \mapsto | inr(triple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       in let \langle left, right \rangle = pair
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               in num+sum(left)+sum(right)
in sum(t)
```

- Rekursive Typdefinition mit Gleichung X = T[X]
 - -z.B. rectype bintree = $\mathbb{Z} + \mathbb{Z} \times \text{bintree} \times \text{bintree}$
 - Kanonische Elemente definiert durch Aufrollen der Gleichung
 - Verarbeitung durch induktiven Operator let* f(x) = t in f(e)liefert terminierende freie rekursive Funktionsdefinitionen

```
let* sum(b-tree) =
                                                                    case b-tree of inl(leaf) \mapsto leaf
                                                                                                                                                                                                                                                                                                                              | inr(triple) \mapsto | inr(triple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    in let (left,right) = pair
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            in num+sum(left)+sum(right)
in sum(t)
```

- Parametrisierte simultane Rekursion möglich
 - rectype $X_1(x_1) = T_{X_1}$ and ... and $X_n(x_n) = T_{X_n}$ select $X_i(a_i)$
 - Allgemeinste Form einer rekursiven Typdefinition

Syntax:

Kanonisch: rectype $X = T_X$ $rec{}{}(X.T_X)$

Nichtkanonisch: $let^* f(x) = t$ in f(e) $\mathsf{rec_ind}\{\}(e; f, x.t)$

Syntax:

Kanonisch: rectype $X = T_X$ $rec{}{X.T_X}$

Nichtkanonisch: $let^* f(x) = t$ in f(e) $\mathsf{rec_ind}\{\}(e; f, x.t)$

Auswertung:

 $let^* f(x) = t \text{ in } f(e) \xrightarrow{\beta} t[\lambda y.let^* f(x) = t \text{ in } f(y), e / f, x]$

Terminierung von $let^* f(x) = t$ in f(e) verlangt $e \in rectype X = T[X]$

Syntax:

Kanonisch: rectype $X = T_X$ $rec{}\{(X.T_X)$

Nichtkanonisch: $let^* f(x) = t$ in f(e) $rec_ind{}\{(e; f, x.t)$

Auswertung:

$$let^* f(x) = t \text{ in } f(e) \xrightarrow{\beta} t[\lambda y.let^* f(x) = t \text{ in } f(y), e / f, x]$$

Terminierung von $let^* f(x) = t$ in f(e) verlangt $e \in rectype X = T[X]$

Semantik:

rectype
$$X_1 = T_{X1}$$

= rectype
$$X_2 = T_{X2}$$
 $\equiv T_{X1}[X/X_1] = T_{X2}[X/X_2]$ für alle Typen X

$$s=t\in \mathsf{rectype}\ X=T_X \equiv \mathsf{rectype}\ X=T_X \operatorname{Typ}$$
 und $s=t\in T_X[\mathsf{rectype}\ X=T_X\,/\,X]$

Syntax:

Kanonisch: rectype $X = T_X$ $rec{}{X.T_X}$

Nichtkanonisch: $let^* f(x) = t$ in f(e) $rec_ind{}\{ (e; f, x.t)$

Auswertung:

 $\det^* f(x) = t \text{ in } f(e) \xrightarrow{\beta} t[\lambda y. \det^* f(x) = t \text{ in } f(y), e / f, x]$

Terminierung von $let^* f(x) = t$ in f(e) verlangt $e \in rectype X = T[X]$

Semantik:

rectype $X_1 = T_{X_1}$

= rectype
$$X_2 = T_{X2}$$
 $\equiv T_{X1}[X/X_1] = T_{X2}[X/X_2]$ für alle Typen X

$$s=t\in \mathsf{rectype}\ X=T_X \equiv \mathsf{rectype}\ X=T_X \ \mathsf{Typ}$$
 und $s=t\in T_X[\mathsf{rectype}\ X=T_X\,/\,X]$

Inferenzregeln und Taktiken im Appendix A.3.11 des Nuprl Manuals

Rahmenbedingungen für rectype $X = T_X$

Induktive Definitionen müssen wohlfundiert sein

Rahmenbedingungen für rectype $X = T_X$

Induktive Definitionen müssen wohlfundiert sein

ullet Semantik ist kleinster Fixpunkt von T[X]

Induktive Definitionen müssen wohlfundiert sein

- ullet Semantik ist kleinster Fixpunkt von T[X]
 - Existenz des Fixpunkts muß gesichert sein

Induktive Definitionen müssen wohlfundiert sein

- Semantik ist kleinster Fixpunkt von T[X]
 - Existenz des Fixpunkts muß gesichert sein
 - $\cdot T[X]$ muß Basisfall für Induktionsanfang enthalten
 - \cdot Rekursiver Aufruf von Xmuß "natürliche" Elemente ermöglichen

Induktive Definitionen müssen wohlfundiert sein

• Semantik ist kleinster Fixpunkt von T[X]

- Existenz des Fixpunkts muß gesichert sein
 - $\cdot T[X]$ muß Basisfall für Induktionsanfang enthalten
 - \cdot Rekursiver Aufruf von X muß "natürliche" Elemente ermöglichen
- Typen wie rectype $X = X \rightarrow \mathbb{Z}$ müssen ausgeschlossen werden

Induktive Definitionen müssen wohlfundiert sein

ullet Semantik ist kleinster Fixpunkt von T[X]

- Existenz des Fixpunkts muß gesichert sein
 - $\cdot T[X]$ muß Basisfall für Induktionsanfang enthalten
 - \cdot Rekursiver Aufruf von X muß "natürliche" Elemente ermöglichen
- Typen wie rectype $X = X \rightarrow \mathbb{Z}$ müssen ausgeschlossen werden
 - · rectype $X = X \rightarrow \mathbb{Z}$ hat $\lambda x \cdot x$ als kanonisches Element
 - $\cdot \lambda x$. x x wäre sogar Extrakt-Term von \vdash rectype $X = X \rightarrow \mathbb{Z}$

Induktive Definitionen müssen wohlfundiert sein

ullet Semantik ist kleinster Fixpunkt von T[X]

- Existenz des Fixpunkts muß gesichert sein
 - $\cdot T[X]$ muß Basisfall für Induktionsanfang enthalten
 - \cdot Rekursiver Aufruf von Xmuß "natürliche" Elemente ermöglichen
- Typen wie rectype $X = X \rightarrow \mathbb{Z}$ müssen ausgeschlossen werden
 - · rectype $X = X \rightarrow \mathbb{Z}$ hat $\lambda x \cdot x$ als kanonisches Element
 - $\cdot \lambda x$. x x wäre sogar Extrakt-Term von \vdash rectype $X = X \rightarrow \mathbb{Z}$
- Syntaktische Einschränkungen erforderlich

Induktive Definitionen müssen wohlfundiert sein

ullet Semantik ist kleinster Fixpunkt von T[X]

- Existenz des Fixpunkts muß gesichert sein
 - $\cdot T[X]$ muß Basisfall für Induktionsanfang enthalten
 - \cdot Rekursiver Aufruf von X muß "natürliche" Elemente ermöglichen
- Typen wie rectype $X = X \rightarrow \mathbb{Z}$ müssen ausgeschlossen werden
 - · rectype $X = X \rightarrow \mathbb{Z}$ hat $\lambda x \cdot x$ als kanonisches Element
 - $\cdot \lambda x$. x x wäre sogar Extrakt-Term von \vdash rectype $X = X \rightarrow \mathbb{Z}$

• Syntaktische Einschränkungen erforderlich

- Allgemeine Wohlfundiertheit rekursiver Typen ist unentscheidbar
 - · Entspricht dem Halteproblem rekursiver Programme

Induktive Definitionen müssen wohlfundiert sein

ullet Semantik ist kleinster Fixpunkt von T[X]

- Existenz des Fixpunkts muß gesichert sein
 - $\cdot T[X]$ muß Basisfall für Induktionsanfang enthalten
 - \cdot Rekursiver Aufruf von X muß "natürliche" Elemente ermöglichen
- Typen wie rectype $X = X \rightarrow \mathbb{Z}$ müssen ausgeschlossen werden
 - · rectype $X = X \rightarrow \mathbb{Z}$ hat $\lambda x \cdot x$ als kanonisches Element
 - $\cdot \lambda x$. x x wäre sogar Extrakt-Term von \vdash rectype $X = X \rightarrow \mathbb{Z}$

• Syntaktische Einschränkungen erforderlich

- Allgemeine Wohlfundiertheit rekursiver Typen ist unentscheidbar
 - · Entspricht dem Halteproblem rekursiver Programme
- Kriterium: T[X] darf X nur positiv enthalten
 - \cdot Innerhalb von Funktionenräumen darf X nur "rechts" vorkommen

ullet Definition von Funktionen durch f(x) = t[f,x]

ullet Definition von Funktionen durch f(x) = t[f, x]

 $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0 then y else min_f(y+1) in min_f(0)$ $\lambda x. let^* sqr(y) = if x < (y+1)^2 then y else sqr(y+1) in sqr(0)$

- Definition von Funktionen durch f(x) = t[f, x]
 - $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0 then y else min_f(y+1) in min_f(0)$ $\lambda x. let^* sqr(y) = if x < (y+1)^2 then y else sqr(y+1) in sqr(0)$
 - Semantik: Kleinster Fixpunkt von t[f, x]

- Definition von Funktionen durch f(x) = t[f, x]
 - $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0 then y else min_f(y+1) in min_f(0)$ λx . let* sqr(y) = if x<(y+1)² then y else sqr(y+1) in sqr(0)
 - Semantik: Kleinster Fixpunkt von t[f, x]
- Analog zu let* f(x) = t in f(e) aber

- Definition von Funktionen durch f(x) = t[f, x]
 - $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0 then y else min_f(y+1) in min_f(0)$ $\lambda x. let^* sqr(y) = if x < (y+1)^2 then y else sqr(y+1) in sqr(0)$
 - Semantik: Kleinster Fixpunkt von t[f, x]
- Analog zu $let^* f(x) = t$ in f(e) aber
 - Keine Koppelung an bekannte rekursiver Struktur erforderlich
 - Kein Extraktterm einer Eliminationsregel

- Definition von Funktionen durch f(x) = t[f, x]
 - $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0 then y else min_f(y+1) in min_f(0)$ λx . let* sqr(y) = if x<(y+1)² then y else sqr(y+1) in sqr(0)
 - Semantik: Kleinster Fixpunkt von t[f, x]
- Analog zu let* f(x) = t in f(e) aber
 - Keine Koppelung an bekannte rekursiver Struktur erforderlich
 - Kein Extraktterm einer Eliminationsregel
 - Flexiblerer Einsatz in Programmierung ("reale" Programme)

- Definition von Funktionen durch f(x) = t[f, x]
 - $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0 then y else min_f(y+1) in min_f(0)$ $\lambda x. let^* sqr(y) = if x < (y+1)^2 then y else sqr(y+1) in sqr(0)$
 - Semantik: Kleinster Fixpunkt von t[f, x]
- Analog zu $let^* f(x) = t$ in f(e) aber
 - Keine Koppelung an bekannte rekursiver Struktur erforderlich
 - Kein Extraktterm einer Eliminationsregel
 - Flexiblerer Einsatz in Programmierung ("reale" Programme)
 - Benötigt Bestimmung der induktiven Struktur des Definitionsbereichs

- Definition von Funktionen durch f(x) = t[f, x]
 - $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0 then y else min_f(y+1) in min_f(0)$ λx . let* sqr(y) = if x<(y+1)² then y else sqr(y+1) in sqr(0)
 - Semantik: Kleinster Fixpunkt von t[f,x]
- Analog zu let* f(x) = t in f(e) aber
 - Keine Koppelung an bekannte rekursiver Struktur erforderlich
 - Kein Extraktterm einer Eliminationsregel
 - Flexiblerer Einsatz in Programmierung ("reale" Programme)
 - Benötigt Bestimmung der induktiven Struktur des Definitionsbereichs
- Explizite Verankerung in CTT bis Nuprl-3

• Definition von Funktionen durch f(x) = t[f, x]

- $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0$ then y else $min_f(y+1)$ in $min_f(0)$ λx . let* sqr(y) = if x<(y+1)² then y else sqr(y+1) in sqr(0)
- Semantik: Kleinster Fixpunkt von t[f,x]

• Analog zu let* f(x) = t in f(e) aber

- Keine Koppelung an bekannte rekursiver Struktur erforderlich
- Kein Extraktterm einer Eliminationsregel
- Flexiblerer Einsatz in Programmierung ("reale" Programme)
- Benötigt Bestimmung der induktiven Struktur des Definitionsbereichs

• Explizite Verankerung in CTT bis Nuprl-3

- Datentyp der partiell-rekursiven Funktionen
- Automatische Bestimmung einer Approximation des Definitionsbereichs

- Definition von Funktionen durch f(x) = t[f, x]
 - $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0$ then y else $min_f(y+1)$ in $min_f(0)$ $\lambda x. let^* sqr(y) = if x < (y+1)^2 then y else sqr(y+1) in sqr(0)$
 - Semantik: Kleinster Fixpunkt von t[f,x]
- Analog zu let* f(x) = t in f(e) aber
 - Keine Koppelung an bekannte rekursiver Struktur erforderlich
 - Kein Extraktterm einer Eliminationsregel
 - Flexiblerer Einsatz in Programmierung ("reale" Programme)
 - Benötigt Bestimmung der induktiven Struktur des Definitionsbereichs
- Explizite Verankerung in CTT bis Nuprl-3
 - Datentyp der partiell-rekursiven Funktionen
 - Automatische Bestimmung einer Approximation des Definitionsbereichs
 - Logisch komplex und beschränkt auf Funktionen erster Stufe

- Definition von Funktionen durch f(x) = t[f, x]
 - $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0 then y else min_f(y+1) in min_f(0)$ λx . let* sqr(y) = if x<(y+1)² then y else sqr(y+1) in sqr(0)
 - Semantik: Kleinster Fixpunkt von t[f,x]
- Analog zu let* f(x) = t in f(e) aber
 - Keine Koppelung an bekannte rekursiver Struktur erforderlich
 - Kein Extraktterm einer Eliminationsregel
 - Flexiblerer Einsatz in Programmierung ("reale" Programme)
 - Benötigt Bestimmung der induktiven Struktur des Definitionsbereichs
- Explizite Verankerung in CTT bis Nuprl-3
 - Datentyp der partiell-rekursiven Funktionen
 - Automatische Bestimmung einer Approximation des Definitionsbereichs
 - Logisch komplex und beschränkt auf Funktionen erster Stufe
- Heute ersetzt durch Y-Kombinator
 - Formale Notation letrec f(x) = t ist Abkürzung für $\mathbf{Y}(\lambda f.\lambda x.t)$

• Definition von Funktionen durch f(x) = t[f, x]

- $-z.B. \lambda f. let^* min_f(y) = if f(y) = 0$ then y else $min_f(y+1)$ in $min_f(0)$ $\lambda x. let^* sqr(y) = if x < (y+1)^2 then y else sqr(y+1) in sqr(0)$
- Semantik: Kleinster Fixpunkt von t[f,x]

• Analog zu let* f(x) = t in f(e) aber

- Keine Koppelung an bekannte rekursiver Struktur erforderlich
- Kein Extraktterm einer Eliminationsregel
- Flexiblerer Einsatz in Programmierung ("reale" Programme)
- Benötigt Bestimmung der induktiven Struktur des Definitionsbereichs

• Explizite Verankerung in CTT bis Nuprl-3

- Datentyp der partiell-rekursiven Funktionen
- Automatische Bestimmung einer Approximation des Definitionsbereichs
- Logisch komplex und beschränkt auf Funktionen erster Stufe

• Heute ersetzt durch Y-Kombinator

- Formale Notation letrec f(x) = t ist Abkürzung für $\mathbf{Y}(\lambda f.\lambda x.t)$
- Terminierungsbeweis durch Benutzer erforderlich

• Repräsentation unendlicher Datenstrukturen

• Repräsentation unendlicher Datenstrukturen

- Rekursive Definition durch die Gleichung X = T[X]

z.B. inftree =
$$\mathbb{Z} \times \text{inftree} \times \text{inftree}$$

stream = Atom \times stream

• Repräsentation unendlicher Datenstrukturen

- Rekursive Definition durch die Gleichung X = T[X]

```
z.B. inftree = \mathbb{Z} \times \text{inftree} \times \text{inftree}
      stream = Atom \times stream
```

• Formal ähnlich zum induktiven Datentyp

- Kanonische Elemente definiert durch Aufrollen der Gleichung

• Repräsentation unendlicher Datenstrukturen

- Rekursive Definition durch die Gleichung X = T[X]

```
z.B. inftree = \mathbb{Z} \times \text{inftree} \times \text{inftree}
      stream = Atom \times stream
```

• Formal ähnlich zum induktiven Datentyp

- Kanonische Elemente definiert durch Aufrollen der Gleichung
- Andere Semantik für inftype $X = T_X$: größter Fixpunkt von T[X],

• Repräsentation unendlicher Datenstrukturen

- Rekursive Definition durch die Gleichung X = T[X]

```
z.B. inftree = \mathbb{Z} \times \text{inftree} \times \text{inftree}
      stream = Atom \times stream
```

• Formal ähnlich zum induktiven Datentyp

- Kanonische Elemente definiert durch Aufrollen der Gleichung
- Andere Semantik für inftype $X = T_X$: größter Fixpunkt von T[X],
- Kein Basisfall für Induktionsanfang erforderlich

• Repräsentation unendlicher Datenstrukturen

- Rekursive Definition durch die Gleichung X = T[X]

```
z.B. inftree = \mathbb{Z} \times \text{inftree} \times \text{inftree}
      stream = Atom \times stream
```

• Formal ähnlich zum induktiven Datentyp

- Kanonische Elemente definiert durch Aufrollen der Gleichung
- Andere Semantik für inftype $X = T_X$: größter Fixpunkt von T[X],
- Kein Basisfall für Induktionsanfang erforderlich
- Verarbeitung durch induktiven Operator $\det^{\infty} f(x) = t$ in f(e)

• Repräsentation unendlicher Datenstrukturen

- Rekursive Definition durch die Gleichung X = T[X]z.B. inftree = $\mathbb{Z} \times \text{inftree} \times \text{inftree}$ $stream = Atom \times stream$

• Formal ähnlich zum induktiven Datentyp

- Kanonische Elemente definiert durch Aufrollen der Gleichung
- Andere Semantik für inftype $X = T_X$: größter Fixpunkt von T[X],
- Kein Basisfall für Induktionsanfang erforderlich
- Verarbeitung durch induktiven Operator $\det^{\infty} f(x) = t$ in f(e)

• Parametrisierte simultane Rekursion möglich

• Repräsentation unendlicher Datenstrukturen

- Rekursive Definition durch die Gleichung X = T[X]z.B. inftree = $\mathbb{Z} \times \text{inftree} \times \text{inftree}$ $stream = Atom \times stream$

• Formal ähnlich zum induktiven Datentyp

- Kanonische Elemente definiert durch Aufrollen der Gleichung
- Andere Semantik für inftype $X = T_X$: größter Fixpunkt von T[X],
- Kein Basisfall für Induktionsanfang erforderlich
- Verarbeitung durch induktiven Operator $\det^{\infty} f(x) = t$ in f(e)

• Parametrisierte simultane Rekursion möglich

Kein fester Bestandteil der CTT

• Durchschnitt $\cap x: S.T[x]$

- Verallgemeinerung des einfachen Durchschnitts $S \cap T$
 - · Durchschnitt einer Familie von Datentypen
 - · Elemente müssen für alle $x \in S$ zum Typ T[x] gehören

• Durchschnitt $\cap x: S.T[x]$

- Verallgemeinerung des einfachen Durchschnitts $S \cap T$
 - · Durchschnitt einer Familie von Datentypen
 - · Elemente müssen für alle $x \in S$ zum Typ T[x] gehören
- Strukturell ähnlich zu $x:S \rightarrow T[x]$ (aber andere Semantik)

• Durchschnitt $\cap x: S.T[x]$

- Verallgemeinerung des einfachen Durchschnitts $S \cap T$
 - · Durchschnitt einer Familie von Datentypen
 - · Elemente müssen für alle $x \in S$ zum Typ T[x] gehören
- Strukturell ähnlich zu $x:S \rightarrow T[x]$ (aber andere Semantik)
- Gut für Formalisierung von Record-Strukturen in Programmiersprachen

• Durchschnitt $\cap x: S.T[x]$

- Verallgemeinerung des einfachen Durchschnitts $S \cap T$
 - · Durchschnitt einer Familie von Datentypen
 - · Elemente müssen für alle $x \in S$ zum Typ T[x] gehören
- Strukturell ähnlich zu $x:S \rightarrow T[x]$ (aber andere Semantik)
- Gut für Formalisierung von Record-Strukturen in Programmiersprachen
- Ermöglicht Definition eines Typs aller Terme
 - \cdot Top $\equiv \cap x$: Void. Void

ullet Durchschnitt $\cap x : S . T[x]$

- Verallgemeinerung des einfachen Durchschnitts $S \cap T$
 - · Durchschnitt einer Familie von Datentypen
 - · Elemente müssen für alle $x \in S$ zum Typ T[x] gehören
- Strukturell ähnlich zu $x:S \rightarrow T[x]$ (aber andere Semantik)
- Gut für Formalisierung von Record-Strukturen in Programmiersprachen
- Ermöglicht Definition eines Typs aller Terme
 - $\cdot \text{Top} \equiv \cap x : \text{Void} . \text{Void}$
- Ermöglicht Definition von guarded types $\cap x : S . T$ (T nicht abhängig von x)
 - \cdot Codiert Aussage: "T ist ein Typ, wenn S Elemente hat"
 - · Nützlich für Wohlgeformtheitsbeweise zu mengentheoretischen Aussagen

• Durchschnitt $\cap x: S.T[x]$

- Verallgemeinerung des einfachen Durchschnitts $S \cap T$
 - · Durchschnitt einer Familie von Datentypen
 - · Elemente müssen für alle $x \in S$ zum Typ T[x] gehören
- Strukturell ähnlich zu $x:S \rightarrow T[x]$ (aber andere Semantik)
- Gut für Formalisierung von Record-Strukturen in Programmiersprachen
- Ermöglicht Definition eines Typs aller Terme
 - \cdot Top $\equiv \cap x$: Void. Void
- Ermöglicht Definition von guarded types $\cap x:S.T$ (T nicht abhängig von x)
 - \cdot Codiert Aussage: "T ist ein Typ, wenn S Elemente hat"
 - · Nützlich für Wohlgeformtheitsbeweise zu mengentheoretischen Aussagen
- ullet Abhängiger Durchschnitt $x\!:\!S\!\cap\!T[x]$ Bisher nur in MetaPRL
 - Element s muß zu S und gleichzeitig zu T[s] gehören (Selbstreferenz!)

• Durchschnitt $\cap x: S.T[x]$

Appendix A.3.13 des Nuprl Manuals

- Verallgemeinerung des einfachen Durchschnitts $S \cap T$
 - · Durchschnitt einer Familie von Datentypen
 - · Elemente müssen für alle $x \in S$ zum Typ T[x] gehören
- Strukturell ähnlich zu $x:S \rightarrow T[x]$ (aber andere Semantik)
- Gut für Formalisierung von Record-Strukturen in Programmiersprachen
- Ermöglicht Definition eines Typs aller Terme
 - \cdot Top $\equiv \cap x$: Void. Void
- Ermöglicht Definition von guarded types $\cap x: S.T$ (T nicht abhängig von x)
 - \cdot Codiert Aussage: "T ist ein Typ, wenn S Elemente hat"
 - · Nützlich für Wohlgeformtheitsbeweise zu mengentheoretischen Aussagen

ullet Abhängiger Durchschnitt $x\!:\!S\!\cap\!T[x]$ Bisher nur in MetaPRL

- Element s muß zu S und gleichzeitig zu T[s] gehören (Selbstreferenz!)
- Gut für Formalisierung von Abstrakten Datentypen, Record-Strukturen mit internen Abhängigkeiten, Objekten

• Vereinigung $\cup x:S.T[x]$

Bisher nur in MetaPRL

- Vereinigung einer Familie von Datentypen
- Elemente müssen zu einem T[x] mit $x \in S$ gehören
- Elementgleichheit schwierig bei Überlappungen der Typen

• Vereinigung $\cup x:S.T[x]$

Bisher nur in MetaPRL

- Vereinigung einer Familie von Datentypen
- Elemente müssen zu einem T[x] mit $x \in S$ gehören
- Elementgleichheit schwierig bei Überlappungen der Typen

Squiggle-Equality s~t

- Einfacherer, syntaktischer Gleichheitstyp, ohne Abhängigkeit vom Typ
 - \cdot s \dot{s} t gilt, wenn s und t zum gleichen Term reduzierbar sind oder in \mathbb{Z} oder Atom semantisch gleich sind
- Substitutionregel gilt auch für Terme die squiggle-gleich sind

Neuere Typkonstrukte der CTT (II)

• Vereinigung $\cup x : S . T[x]$

Bisher nur in MetaPRL

- Vereinigung einer Familie von Datentypen
- Elemente müssen zu einem T[x] mit $x \in S$ gehören
- Elementgleichheit schwierig bei Überlappungen der Typen

ullet Squiggle-Equality s~t

- Einfacherer, syntaktischer Gleichheitstyp, ohne Abhängigkeit vom Typ
 - · s t gilt, wenn s und t zum gleichen Term reduzierbar sind oder in $\mathbb Z$ oder Atom semantisch gleich sind
- Substitutionregel gilt auch für Terme die squiggle-gleich sind

ullet Stark abhängige Funktionen $\{f \mid x : S \rightarrow T[f, x]\}$

- Selbstreferenz: Bildbereich hängt ab von Eingabe und Funktion f selbst
- Mächtiger als abhängiger Durchschnitt, aber Beweise werden aufwendig

Neuere Typkonstrukte der CTT

• Vereinigung $\cup x:S.T[x]$

Bisher nur in MetaPRL

- Vereinigung einer Familie von Datentypen
- Elemente müssen zu einem T[x] mit $x \in S$ gehören
- Elementgleichheit schwierig bei Überlappungen der Typen

Squiggle-Equality s~t

- Einfacherer, syntaktischer Gleichheitstyp, ohne Abhängigkeit vom Typ
 - \cdot s \dot{s} t gilt, wenn s und t zum gleichen Term reduzierbar sind oder in \mathbb{Z} oder Atom semantisch gleich sind
- Substitutionregel gilt auch für Terme die squiggle-gleich sind

• Stark abhängige Funktionen $\{f \mid x: S \rightarrow T[f, x]\}$

- Selbstreferenz: Bildbereich hängt ab von Eingabe und Funktion f selbst
- Mächtiger als abhängiger Durchschnitt, aber Beweise werden aufwendig

• Aktuell in Entwicklung

- Logic of Events: Schließen über Kommunikation und verteilte Prozesse
- Reflektion: Schließen über Beweisverfahren und das Meta-Level der CTT

• Direkte Berechnung

- Reduktion an beliebiger Stelle in Sequenz
- Rückwärtsreduktion (vom Kontraktum zum Redex) möglich

• Direkte Berechnung

- Reduktion an beliebiger Stelle in Sequenz
- Rückwärtsreduktion (vom Kontraktum zum Redex) möglich

• Falten und Auffalten von Definitionen

- Einsetzen der Definition für eine benutzerdefiniere Abstraktion
- Zugriff über den Namen des Definitionsobjektes in der Library

• Direkte Berechnung

- Reduktion an beliebiger Stelle in Sequenz
- Rückwärtsreduktion (vom Kontraktum zum Redex) möglich

• Falten und Auffalten von Definitionen

- Einsetzen der Definition für eine benutzerdefiniere Abstraktion
- Zugriff über den Namen des Definitionsobjektes in der Library

• Anwendung von Lemmata

- Einsetzen der Konklusion oder des Extraktterms
- Zugriff über den Namen des Lemmas in der Library

• Direkte Berechnung

- Reduktion an beliebiger Stelle in Sequenz
- Rückwärtsreduktion (vom Kontraktum zum Redex) möglich

• Falten und Auffalten von Definitionen

- Einsetzen der Definition für eine benutzerdefiniere Abstraktion
- Zugriff über den Namen des Definitionsobjektes in der Library

• Anwendung von Lemmata

- Einsetzen der Konklusion oder des Extraktterms
- Zugriff über den Namen des Lemmas in der Library

Entscheidungsprozeduren

- Bisher nur für Arithmetik und Gleichheit

• Direkte Berechnung

- Reduktion an beliebiger Stelle in Sequenz
- Rückwärtsreduktion (vom Kontraktum zum Redex) möglich

• Falten und Auffalten von Definitionen

- Einsetzen der Definition für eine benutzerdefiniere Abstraktion
- Zugriff über den Namen des Definitionsobjektes in der Library

• Anwendung von Lemmata

- Einsetzen der Konklusion oder des Extraktterms
- Zugriff über den Namen des Lemmas in der Library

• Entscheidungsprozeduren

- Bisher nur für Arithmetik und Gleichheit

• Umbenennung und Ausdünnen

- Ubersichtlichkeit in der Beweisführung

• Direkte Berechnung

- Reduktion an beliebiger Stelle in Sequenz
- Rückwärtsreduktion (vom Kontraktum zum Redex) möglich

• Falten und Auffalten von Definitionen

- Einsetzen der Definition für eine benutzerdefiniere Abstraktion
- Zugriff über den Namen des Definitionsobjektes in der Library

• Anwendung von Lemmata

- Einsetzen der Konklusion oder des Extraktterms
- Zugriff über den Namen des Lemmas in der Library

• Entscheidungsprozeduren

- Bisher nur für Arithmetik und Gleichheit

• Umbenennung und Ausdünnen

- Übersichtlichkeit in der Beweisführung

Siehe Appendix A.3.15 / A.3.16 des Nuprl Manuals

ÜBERSICHT: STANDARDTYPEN DER CTT

Function Space	$S \rightarrow T, x: S \rightarrow T$	$\lambda x.t, ft$
Product Space	$S \times T$, $x: S \times T$	$\langle s,t \rangle$, let $\langle x,y \rangle = e$ in u
Disjoint Union	S+T	$inl(s), inr(t), case\ e\ of\ inl(x) \mapsto u\ l\ inr(y) \mapsto v$
Universes	\mathbb{U}_{j}	— types of level j —
Equality	$s = t \in T$	Ax
Empty Type	Void	any(x), — no members —
Atoms	Atom	" $token$ ", if $a=b$ then s else t
Numbers	\mathbb{Z}	0,1,-1,2,-2, $s+t$, $s-t$, $s*t$, $s \div t$, s rem t ,
		if $a=b$ then s else t , if $i < j$ then s else t
		$ind(u; x, f_x.s; base; y, f_y.t)$
	<i>i</i> < <i>j</i>	Ax
Lists	$S { t list}$	[], t :: $list$, list_ind(L ; $base$; x , l , f_l . t)
Inductive Types	$rectype\ X = T[X]$	
Subset	$\{x:S \mid P[x]\},$	— some members of S —
Intersection	$\cap x: S.T[x],$	— members that occur in all $T[x]$ —
	$x:S\cap T[x]$	— members x that occur S and $T[x]$ —
Union	$\cup x : S . T[x]$	— members that occur in some $T[x]$, tricky equality—
Quotient	x , $y:S/\!/\!E[x,y]$	— members of S , new equality —
Very Dep. Functions $\{f \mid x: S \rightarrow T[f, x]\}$		
Squiggle Equality	s t	— a "simpler" equality

- Extrem ausdrucksstarkes Inferenzsystem
 - Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie

- Extrem ausdrucksstarkes Inferenzsystem
 - Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie
 - Formalisierung "natürlicher" Gesetze der zentralen Konzepte

- Extrem ausdrucksstarkes Inferenzsystem
 - Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie
 - Formalisierung "natürlicher" Gesetze der zentralen Konzepte
 - Direkte Darstellung anstatt Simulation

Inferenzkalkül für Mathematik & Programmierung

• Extrem ausdrucksstarkes Inferenzsystem

- Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie
- Formalisierung "natürlicher" Gesetze der zentralen Konzepte
- Direkte Darstellung anstatt Simulation
- Umfangreiche Theorie bestehend aus
 - · Mathematischen Grundkonzepten
 - · Grundkonstrukten der Programmierung, einschließlich Rekursion
 - · Prädikatenlogik (höherer Stufe)

Inferenzkalkül für Mathematik & Programmierung

• Extrem ausdrucksstarkes Inferenzsystem

- Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie
- Formalisierung "natürlicher" Gesetze der zentralen Konzepte
- Direkte Darstellung anstatt Simulation
- Umfangreiche Theorie bestehend aus
 - · Mathematischen Grundkonzepten
 - · Grundkonstrukten der Programmierung, einschließlich Rekursion
 - · Prädikatenlogik (höherer Stufe)

• Praktische Probleme

- Beweise erfordern viel Schreibarbeit

Inferenzkalkül für Mathematik & Programmierung

• Extrem ausdrucksstarkes Inferenzsystem

- Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie
- Formalisierung "natürlicher" Gesetze der zentralen Konzepte
- Direkte Darstellung anstatt Simulation
- Umfangreiche Theorie bestehend aus
 - · Mathematischen Grundkonzepten
 - · Grundkonstrukten der Programmierung, einschließlich Rekursion
 - · Prädikatenlogik (höherer Stufe)

• Praktische Probleme

- Beweise erfordern viel Schreibarbeit $\rightarrow Interaktive\ Beweissysteme$

Inferenzkalkül für Mathematik & Programmierung

• Extrem ausdrucksstarkes Inferenzsystem

- Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie
- Formalisierung "natürlicher" Gesetze der zentralen Konzepte
- Direkte Darstellung anstatt Simulation
- Umfangreiche Theorie bestehend aus
 - · Mathematischen Grundkonzepten
 - · Grundkonstrukten der Programmierung, einschließlich Rekursion
 - · Prädikatenlogik (höherer Stufe)

• Praktische Probleme

- Beweise erfordern viel Schreibarbeit $\rightarrow Interaktive\ Beweissysteme$
- Beweise sind unübersichtlich (viele Regelanwendungen)

Inferenzkalkül für Mathematik & Programmierung

• Extrem ausdrucksstarkes Inferenzsystem

- Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie
- Formalisierung "natürlicher" Gesetze der zentralen Konzepte
- Direkte Darstellung anstatt Simulation
- Umfangreiche Theorie bestehend aus
 - · Mathematischen Grundkonzepten
 - · Grundkonstrukten der Programmierung, einschließlich Rekursion
 - · Prädikatenlogik (höherer Stufe)

• Praktische Probleme

- Beweise erfordern viel Schreibarbeit $\rightarrow Interaktive Beweissysteme$
- Beweise sind unübersichtlich (viele Regelanwendungen)
- Beweise sind schwer zu finden (viele Regeln und Parameter)

Inferenzkalkül für Mathematik & Programmierung

• Extrem ausdrucksstarkes Inferenzsystem

- Vereinheitlicht und erweitert Logik, λ -Kalkül und einfache Typentheorie
- Formalisierung "natürlicher" Gesetze der zentralen Konzepte
- Direkte Darstellung anstatt Simulation
- Umfangreiche Theorie bestehend aus
 - · Mathematischen Grundkonzepten
 - · Grundkonstrukten der Programmierung, einschließlich Rekursion
 - · Prädikatenlogik (höherer Stufe)

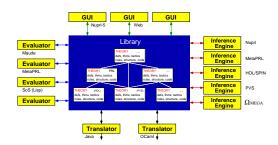
• Praktische Probleme

- Beweise erfordern viel Schreibarbeit $\rightarrow Interaktive Beweissysteme$
- Beweise sind unübersichtlich (viele Regelanwendungen)
- Beweise sind schwer zu finden (viele Regeln und Parameter)
 - → Automatisierung der Beweisführung

Konstruiere semiautomatische Beweissysteme

Konstruiere semiautomatische Beweissysteme

- Aufbau von Beweissystemen
 - Implementierung interaktiver Beweisassistenten
 - Das NuPRL Logical Programming Environment



Konstruiere semiautomatische Beweissysteme

• Aufbau von Beweissystemen

- Implementierung interaktiver Beweisassistenten
- Das NuPRL Logical Programming Environment

GUI Nupri-5 Web Web Library Fiction MetaPRL Evaluator NetaPRL Evaluator NetaPRL Evaluator SoS (Lisp) SoS (Lisp) Translator Translator Translator Translator Translator Translator Translator Translator Translator

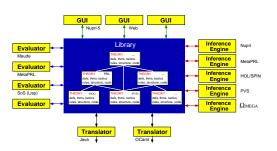
• Beweisautomatisierung

- Taktisches Beweisen
- Entscheidungsprozeduren
- Integration externer Systeme

Konstruiere semiautomatische Beweissysteme

• Aufbau von Beweissystemen

- Implementierung interaktiver Beweisassistenten
- Das NuPRL Logical Programming Environment



Beweisautomatisierung

- Taktisches Beweisen
- Entscheidungsprozeduren
- Integration externer Systeme

• Anwendungen & Demonstrationen

- Entwicklung formaler Theorien
- Programmsynthese

•