Automatisierte Logik und Programmierung

Einheit 13

Entscheidungsprozeduren

1

- 1. Einsatzbereiche
- 2. Arith: elementare Arithmetik
- 3. SupInf: Lineare Ungleichungen über \mathbb{Z}
- 4. Eq: Typfreie Gleichheiten
- 5. Grenzen der Anwendbarkeit

Entscheidungsprozeduren – Algorithmische Inferenz

• Sinnvoll für "uninteressante" Beweisziele

- d.h. Problem ist Variation bekannter mathematischer Erkenntnisse
 - + Beweisdetails / Extraktterm ohne Bedeutung (nur Wahrheit gefragt)
 - + Formaler Beweis mit Taktiken zu aufwendig

• Möglich für algorithmisch entscheidbare Ziele

- d.h. es gibt eine maschinennahe Charakterisierung für Gültigkeit
 - + Effizientes Entscheidungsverfahren programmierbar
 - + Schneller Test, ob Verfahren überhaupt anwendbar ist

• Erforderlich: externe Verifikation der Prozedur

- Korrektheit und Vollständigkeit der Entscheidungsalgorithmen
- Konsistenz mit dem Rest der Theorie (Typkonzept!)
- In Nuprl bisher nur für Arithmetik und Gleichheit
- Prozeduren für Listen, Kongruenzabschluß etc. noch nicht integriert

Arithmetische Entscheidungsprozeduren

Notwendig für praktische Beweisführung

- Arithmetisches Schließen taucht fast überall auf
- Arithmetische Schlüsse liefern keine neuen Erkenntnisse
- Arithmetische Aussagen tauchen in vielen Erscheinungsformen auf x+1< y, $0< t\vdash (x+1)*t< y*t$ entspricht x< y, $0< t\vdash x*t< y*t$ und x< y, $0\le t\vdash x*(t+1)< y*(t+1)$ und $x+1\le y$, $0< t\vdash x*t< y*t$
- Formale Beweise simpler arithmetischer Aussagen sind nicht leicht "Wenn drei ganze Zahlen sich jeweils um maximal 1 unterscheiden, dann sind zwei von ihnen gleich"

• Formale Arithmetik ist unentscheidbar

- Theorie ist gleichmächtig mit Theorie der berechenbaren Funktionen
- Allgemeine Arithmetik ist nicht einmal vollständig axiomatisierbar

• Entscheidung nur für eingeschränkte Arithmetik

- Arith: Induktionsfreie Arithmetik
- SupInf: Ganzzahlige lineare Ungleichungssysteme

DIE ENTSCHEIDUNGSPROZEDUR Arith

Entscheide Probleme der induktionsfreien Arithmetik

- Anfangssequenz: $\Gamma \vdash C_1 \lor \ldots \lor C_m$
 - $-C_i$: aussagenlogische Kombination arithmetischer Relationen über $\mathbb Z$
 - − arithmetische Relation: Ungleichung (<, =) mit Termen über +, −, *
 Andersartige Terme zulässig, werden aber nicht analysiert
 - "Klausel" C_i muß quantorenfrei sein

• Beweismethode:

- Transformiere Sequenz in gerichteten Graph mit gewichteten Kanten
- Teste ob positive Zyklen im Graph vorkommen

• Implementierung in Nuprl als Inferenzregel

- Regelobjekt für arith verweist auf Systemprozedur der Lisp-Ebene
- Eingebettet in die Taktik Auto

Arith: Arbeitsweise am Beispiel

$$x+y>z$$
, $2*x\geq z$, $x+y+2*x\geq z+z+1 \vdash 3*x+y\geq 2*z-1$

1. Erzeuge Formeln für Widerspruchsbeweis:

$$x+y>z$$
, $2*x\geq z$, $x+y+2*x\geq z+z+1$, $\neg(3*x+y\geq 2*z-1)$ \vdash ff

2. Transformiere Komparanden in Standardpolynome

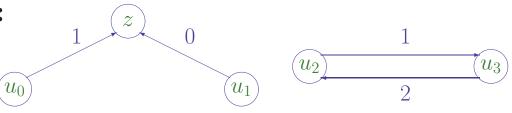
$$x+y>z$$
, $2*x\geq z$, $3*x+y\geq 1+2*z$, $\neg(3*x+y\geq (-1)+2*z)$ \vdash ff

3. Transformiere Komparanden in monadische lineare Polynome

4. Normiere zu Ungleichungen der Gestalt $t_1 \ge t_2$

$$u_0 \ge z+1$$
, $u_1 \ge z$, $u_2 \ge 1+u_3$, $u_3 \ge u_2+2$ \vdash ff

5. Erzeuge Ordnungsgraphen:



Ordnungsgraph hat positiven Zyklus ... Sequenz ist gültig

Arith: Theoretisches Fundament

• Theorie A der elementar-arithmetischen Aussagen

- Quantorenfreie Logik und vordefinierte Symbole +, −, *, < und =</p>
- Alle Variablen sind (implizit) all-quantifiziert
- Semantik basiert auf Standardaxiomen von +, −, ∗, < und =
- Keine Induktion, eingeschränkte Substitution

• A ist als entscheidbar bekannt

- Mathematischer Beweis liefert ineffizientes Entscheidungsverfahren

• Beweismethode darf klassisch vorgehen

- Aussagenlogische Normalisierung der Beweissequenz
- Normalisierung aller Ungleichungen in ≤-Relationen
- Erzeugung eines Ordnungsgraphen für die ≤-Relationen
- Positive Zyklen im Graphen zeigen daß Sequenz nicht widerlegbar ist

DIE FORMALE THEORIE A

• Syntax: elementar-arithmetische Formeln

- Terme aufgebaut aus ganzzahligen Konstanten, Variablen und +, -, *
 Andersartige Terme gelten als unspezifierte Konstanten
- Atomare Formeln: $t_1 \rho t_2$, wobei t_i Terme, $\rho \in \{<, \le, >, \ge, =, \ne\}$
- Formeln aufgebaut aus atomaren Formen mit \neg , \land , \lor und \Rightarrow
- Freie Variablen sind implizit all-quantifiziert

• Semantik charakterisiert durch Axiome

(Skript §4.3)

- 1. Gleichheitsaxiome mit eingeschränkter Substitutivität
- 2. Ringaxiome der ganzen Zahlen
- 3. Axiome der diskreten linearen Ordnung
- 4. Definitionsaxiome für Ordnungsrelationen und Ungleichheiten
- 5. Monotonieaxiome
- 6. Axiome der Konstantenarithmetik

Grundlagen einer effizienten Entscheidung

• Entscheidbarkeit ermöglicht Widerspruchsbeweise

 $-\Gamma \vdash C_1 \lor ... \lor C_n$ ist gültig in A, g.d.w. Γ , $\neg C_1$, ..., $\neg C_n \vdash \mathsf{ff}$ gültig

• Entscheidbarkeit erlaubt konjunktiven Normalformen

- Zu jeder Formel F in A gibt es eine äquivalente Formel G in KNF

• Konstantenfreie Terme sind ersetzbar durch Variablen

- Eine Menge von instantiierten \mathcal{A} -Formeln $F_i[e_1..e_k/u_1..u_k]$ ist genau dann widersprüchlich, wenn $\{F_1, ... F_n\}$ widersprüchlich ist $(e_i \text{ konstantenfrei})$ \Leftarrow : trivial, \Rightarrow : Der Widerspruchsbeweis läßt sich (mühsam) übertragen

• Ordnungsgraphen codieren lineare Ungleichungen

- $-\Gamma = v_1 \ge u_1 + c_1, \ldots, v_n \ge u_n + c_n$ ist genau dann widersprüchlich, wenn der Ordnungsgraph \mathcal{G} von Γ einen positiven Zyklus besitzt.
- Der Ordnungsgraph von Γ besteht aus den Knoten $\{u_1,..u_n,v_1,..v_n\}$ und den Kanten $\{v_1 \xrightarrow{c_1} u_1,...,v_n \xrightarrow{c_n} u_n\}$. Ein positiver Zyklus ist eine Serie von Kanten $[k_1 \xrightarrow{g_1} k_2, k_2 \xrightarrow{g_2} k_3,..., k_m \xrightarrow{g_m} k_1]$ mit Gewicht $\sum_{i=1}^m g_i > 0$.

Arith: Verarbeitung einer Sequenz $\Gamma \vdash C_1 \lor ... \lor C_m$

1. Transformiere Sequenz in Liste atomarer arithmetischer Formeln

- Umwandlung in Widerspruchsbeweis Γ , $\neg C_1$, ..., $\neg C_m$ \vdash ff
- Zerlege Konjunktionen in den C_i in atomare Formeln (wie mit and E)
- Entferne Formeln, die keine arithmetischen Ungleichungen sind
- Ersetze nichtarithmetische Ausdrücke in Termen durch Variablen

2. Eliminiere Ungleichungen der Form $x\neq y$

- Transformiere $x\neq y$ in die (nichtatomare) Formel $x\geq y+1 \lor y\geq x+1$
- Erzeuge DNF (wie mit orE) und betrachte jede Konjunktion separat

3. Transformiere Terme in monadische lineare Polynome u_i + c_i

- Normalisiere Komparanden jeder Ungleichung zu Standardpolynomen
- Ersetze nicht-konstante Anteile der Polynome durch neue Variablen u_i

4. Konvertiere jede Formel in eine Ungleichung der Gestalt $t_1 \ge t_2$

 t_1 Variable oder 0; t_2 monadisches lineares Polynom

5. Suche positive Zyklen im Ordnungsgraphen der Formelmenge

– Im Erfolgsfall generiere Wohlgeformtheitsziele für alle "Variablen"

Arith: STÄRKEN UND SCHWÄCHEN

• Konsistenz mit CTT leicht nachzuweisen

- Aussagen, die gültig in A sind, sind auch gültig in CTT
- Terme in elementar arithmetischen Formeln müssen Typ \mathbb{Z} haben
- Formulierbar als CTT-'Regel', die Wohlgeformtheitsziele erzeugt

• Effizient ausführbar

- Es gibt Standardalgorithmen für Zyklensuche in gewichteten Graphen
- Exponentielle worst-case Komplexität (in \neq) praktisch unbedeutend

• Beschränkt auf triviale Monotonieschlüsse

- Normierung der Terme enthält Anwendung des Monotonieaxioms $x \ge y \land z \ge w \implies x+z \ge y+w$ mit Integerkonstanten z und w
- Nichtriviale Monotonien müssen separat behandelt werden (Monotonie von +/- mit Variablen oder Monotonien mit *)

• Zu schwach für lineare Ungleichungssysteme

- Monadische Polynome zerstören Bezüge zwischen Ungleichungen

monotonicity: Behandlung von Monotonien

• Arithmetische Komposition von Ungleichungen

- Erzeuge neue Hypothesen durch Anwendung von Monotonieaxiomen
- -z.B. Addition von x+y>z und $2*x\ge z$ ergibt x+y+ $2*x\ge z+z+1$ Multiplikation von x+y>z, $2*x\ge 0$ ergibt $2*x^2+2*x*y\ge 2*x*z$
- monotonicity-Regel operiert auf Hypothesen
 - -z.B. monotonicity i+j addient Hypothesen i und j
- Effizient durch Verwendung von Monotonietabellen
 - Tabellen beschreiben Kombination verschiedenartiger Ungleichungen

Addition						
	z>w	$z \ge w$	z=w	$z\neq w$		
x>y	$x+z\ge y+w+2$	$x+z\ge y+w+1$	$x+z\ge y+w+1$			
			$x+w \ge y+z+1$			
$x \ge y$	$x+z\ge y+w+1$	$x+z \ge y+w$	$x+z \ge y+w$			
			$x+w \ge y+z$			
x=y	$x+z\ge y+w+1$	$x+z \ge y+w$	$x+z=\lambda+M$	$x+z\neq y+w$		
	$y+z\ge x+w+1$	$y+z \ge x+w$	$x+M=\lambda+x$	$x+w\neq y+z$		
$x\neq y$			$x+z\neq y+w$			
			$x+w\neq y+z$			

monotonicity: Monotonietabellen

Subtraktion						
	z>w	z≥w	z=w	z≠w		
x>y	$x-w \ge y-z+2$	$x-w \ge y-z+1$	$x-w \ge y-z+1$			
			$x-z \ge y-w+1$			
x≥y	$x-w \ge y-z+1$	$x-w \ge y-z$	$x-M \ge \lambda - Z$			
			x-z>y-w			
x=y	$x-w \ge y-z+1$	$x-w \ge y-z$	x-m=x-z	$x-w\neq y-z$		
	$y-w \ge x-z+1$	$\lambda-M > X-Z$	y-M=x-z	$x-z\neq y-w$		
$x\neq y$			$x-w\neq y-z$			
			$x-z\neq y-w$			
Multiplikation						
	y≥z	y>z	$\lambda = z$	y≠z		
x>0	x*y>x*z	x*y>x*z	x*x=x*z	x*y\neq x*z		
$x \ge 0$	xy*>x*z	x*y≥x*z	x* y= x * z			
x=0	x* y= x * z	x*x=x*z	x*x=x*z	x*X=X*Z		
	x*y=0	x*y=0	x*y=0	x*A=0		
$x \le 0$	x*y≤x*z	x*y≤x*z	x*x=x*z			
x<0	x*y≤x*z	x*y <x*z< th=""><th>x*x=x*z</th><th>x*y\neq x*z</th></x*z<>	x*x=x*z	x*y\neq x*z		
$x\neq 0$		x*y=x*z	x* y= x * z	x*y\neq x*z		
Faktorisierung						
	x*y>x*z	x*y≥x*z	x*y=x*z	x*y\neq x*z		
x>0	y>z	y≥z	y=z	y≠z		
x<0	y <z< th=""><th>y≤z</th><th>y=z</th><th>y≠z</th></z<>	y≤z	y=z	y≠z		
$x\neq 0$	y≠z		y=z	y≠z		

DIE ENTSCHEIDUNGSPROZEDUR SupInf

ullet Entscheide lineare Ungleichungen über $\mathbb Z$

- Sinnvoll in Anwendungen für die Arith zu schwach ist

• Anpassung von Bledsoe's Sup-Inf Methode (1975)

- Extrahiere aus Sequenz eine Menge linearer Ungleichungen $0 \le e_i$, deren Unerfüllbarkeit die Gültigkeit der Sequenz impliziert
- Bestimme obere und untere Grenzen für die Variablen der e_i
- Wenn alle Variablen in \mathbb{Z} erfüllbar sind, liefere Gegenbeispiel

• Logische Theorie: Arithmetische Formeln

- Kombination von Ungleichungen über arithmetischen Typen

• Implementierung in Nuprl als ML Strategie:

- Bledsoe's Methode ist nur für rationale Zahlen korrekt und vollständig
- SupInf ist korrekt, unvollständig für \mathbb{Z} , aber hilfreich in der Praxis
- Eingebettet in die Taktik Auto'

DIE SUP-INF BASISMETHODE

Analysiere lineare Ungleichungsmengen über Q

• Betrachte Formeln der Form $0 \le e_1 \land ... \land 0 \le e_n$

- $-e_i$ lineare Ausdrücke über rationalen Variablen $x_1,...,x_m$
- Suche Belegung der x_i , welche die Konjunktion erfüllen

ullet Bestimme obere/untere Grenzen für Werte der x_i

- Aufwendiges Verfahren verbessert obere und untere Schranken iterativ
- Resultierende Schranken sind nachweislich optimal (Shostak 1977) Methode liefert Suprema und Infima für Belegungen der x_i
- Erfüllende Belegung existiert g.d.w. Infima jeweils kleiner als Suprema

• Keine "echte" Entscheidung über Z

- Korrekt: Unerfüllbarkeit über ℚ bedeutet Unerfüllbarkeit über ℤ
- Unvollständig: Erfüllende Belegung über ℚ liefert evtl. keine über ℤ Reparatur möglich mit Integer Linear Programming (NP-vollständig)

SupInf: Arbeitsweise am Beispiel

- **1. Anfangssequenz:** x+z<5, $3*z\ge y+8$, $x<y \vdash 2+z>2*y \lor x>z-5$
- 2. Extrahiere arithmetische Formel für Widerspruchsbeweis

$$x+z<5 \land 3*z\geq y+8 \land x< y \land \neg(2+z>2*y) \land \neg(x>z-5) \vdash ff$$

3. Transformiere Formel in disjunktive Normalform über \leq

$$x+z+1 \le 5$$
 \wedge $y+8 \le 3*z$ \wedge $x+1 \le y$ \wedge $2+z \le 2*y$ \wedge $x \le z-5$

4. Normalisiere Ungleichungen in die Form $0 \le p_i$

$$0 \! \leq \! 4 \! - \! x \! - \! z \quad \wedge \quad 0 \! \leq \! 3 \! * \! z \! - \! y \! - \! 8 \quad \wedge \quad 0 \! \leq \! y \! - \! x \! - \! 1 \quad \wedge \quad 0 \! \leq \! 2 \! * \! y \! - \! z \! - \! 2 \quad \wedge \quad 0 \! \leq \! z \! - \! x \! - \! 5$$

5. Wende iterativ die Sup-Inf Basismethode an

$$SUP(x)=-3$$
 $INF(x)=-\infty$, $SUP(y)=1$ $INF(y)=14/5$

- **6.** SUP(y) < INF(y) ... Sequenz ist gültig
 - Arithmetische Formel kann nicht erfüllt werden

SupInf: WIDERLEGUNGSBEISPIEL

1. Anfangssequenz:

$$x < 3 * y + 2$$
, $x = 1 \vdash x = y$

2. Extrahiere arithmetische Formel für Widerspruchsbeweis

$$x < 3 * y + 2 \land x = 1 \land x \neq y \vdash ff$$

3. Setze Gleichheiten in andere Ungleichungen ein

$$1 < 3 * y + 2 \land 1 \neq y \vdash ff$$

4. Transformiere Formel in disjunktive Normalform über \leq

$$(2 \le 3 * y + 2 \land 2 \le y) \lor (2 \le 3 * y + 2 \land y \le 0)$$

5. Normalisiere Ungleichungen in die Form $0 \le p_i$

$$(0 \le 3 * y \land 0 \le y-2) \lor (0 \le 3 * y \land 0 \le -y)$$

- 6. WendeSup-Inf Basismethode auf jedes Disjunkt an
 - 1. $SUP(y) = \infty$ INF(x) = 2 2. SUP(y) = 0 INF(y) = 0
- 7. $\{z : \mathbb{Z} \mid SUP(y) \ge z \ge INF(y)\}$ ist nicht leer ... Sequenz ungültig
 - Es gibt ein ganzzahliges Gegenbeispiel

SupInf: FORMALE GRUNDKONZEPTE

Arithmetische Typen

```
-\mathbb{Z} (int), \mathbb{Z}^{-0} (int_nzero)
-\mathbb{N} (nat), \mathbb{N}^+ (nat_plus)
-\{i...\} (int_upper)
-\{i\ldots j^-\} (int_seg), \{i\ldots j\} (int_iseg)
```

Arithmetische Literale

- $-a=b \in T$ oder $a\neq b \in T$, wobei T arithmetischer Typ
- Arithmetische Ungleichungen mit <, \leq , > und \geq
- Negationen arithmetischer Literale

Arithmetische Formeln

– (Verschachtelte) Konjunktionen und Disjunktionen arithmetischer Literale

SupInf: ALLGEMEINE ARBEITSWEISE

Anfangssequenz: Γ , r_1 , ..., $r_n \vdash r_0$ (r_i arithmetische Formel)

- **1.** Extrahiere arithmetische Formel $F = r_1 \wedge ... \wedge r_n \wedge \neg r_0$
 - Aus Unerfüllbarkeit von F folgt Gültigkeit der Anfangssequenz
- 2. Transformiere F in disjunktive Normalform über \leq
 - -x < y bzw. y > x wird umgewandelt in $x+1 \le y$,
 - $-x \neq y \text{ wird } x+1 \leq y \vee y+1 \leq x$
 - -x=y wird, wenn möglich, durch Substitution aufgelöst
- 3. Normalisiere Ungleichungen in die Form $0 \le p_i$
 - $-p_i$ sind Standardrepräsentationen von Polynomen
- 4. Ersetze nichtlineare Teilausdrücke durch Variablen
- 5. Wende Sup-Inf Basismethode auf jedes Disjunkt an
 - Wenn jedes Disjunkt unerfüllbar ist, erzeuge Wohlgeformtheitsziele
 - Andernfalls liefert supinf_info erfüllende Belegung als Gegenbeispiel

SupInf': ERWEITERUNGEN ZU SupInf

Ergänze arithmetische Kontextinformation

• Extrahiere Ungleichungen aus Typinformation

- Z.B. aus Deklaration $x:\mathbb{N}$ extrahiere $0 \le x$
- Bestimme Typ der in den Ungleichungen vorkommenden Ausdrücke get_type: (unvollständiger) Typ-Inferenz-Algorithmus in ML
- − Ergänze Prädikat des entsprechenden Teiltyps von Z

• Ergänze arithmetische Lemmata

- -Z.B. bei Vorkommen von $|1_1@1_2|$ ergänze $|1_1@1_2|$ = $|1_1|+|1_2|$
- Erlaubte Lemmata müssen global als solche deklariert sein

• Prozedur ist experimentell

Viele Verbesserungen möglich

GLEICHHEITSSCHLIESSEN

Folgt eine Gleichheit aus anderen Gleichheiten?

Wichtig für praktische Beweisführung

- -z.B.: f(f(a,b),b) = a folgt aus f(a,b) = ag(a) = a folgt aus g(g(g(a))) = a und g(g(g(g(g(a))))) = a
- Intuitiver Beweis (gezieltes Einsetzen) einfach
- Regelbasierte Beweise aufwendig

• Elementare Gleichheit ist entscheidbar

- Einfache Theorie: Gleichheiten mit uninterpretierten Symbolen
- Semantik: Reflexivität, Symmetrie, Transitivität, Substitution

• Effiziente Verfahren verfügbar

- Berechnung der transitiven Hülle einer Äquivalenzrelation
- Technisch: Kongruenzabschluß des Relationsgraphen

DIE ENTSCHEIDUNGSPROZEDUR Eq

Entscheide quantorenfreie Gleichheiten

- Anfangssequenz: Γ , E_1 , ..., $E_n \vdash E_0$
 - $-E_i$ Gleichheit über einem Typ T

• Logische Theorie: Gleichheitsrelationen

- Gleichheiten mit uninterpretierten Funktionssymbolen und Variablen
- Reflexivität, Symmetrie, Transitivität für Elemente und Typen

• Beweismethode: begrenzter Kongruenzabschluß

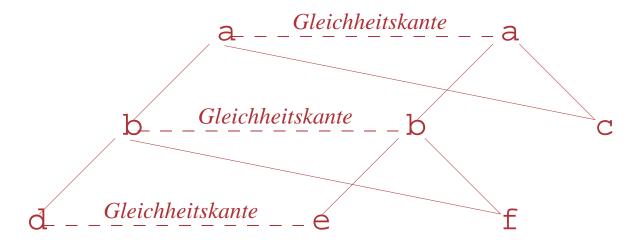
- Bilde transitive Hülle der Gleichungen in den Hypothesen
- Substitution reduziert auf taktische Dekomposition
- Teste ob Konklusion in transitiver Hülle enthalten ist

Implementierung in Nuprl als Inferenzregel

- Regel equality verweist auf Systemprozedur der Lisp-Ebene
- Eingebettet in die Taktik Auto

Gleicheitsschließen durch Kongruenzabschluss

Zeige:
$$a(b(d,f),c) = a(b(e,f),c)$$
 folgt aus d=e



- 1. Verschmelze identische Knoten
- 2. Verbinde gleiche Knoten durch Gleichheitskante
- 3. Verbinde Wurzeln von Teilbäumen, die in allen Knoten gleich sind

Eq: GRAPHENTHEORETISCHE KONZEPTE

ullet Notationen für gerichteter Graphen G=(V,E)

- -l(v): Markierung des Knoten v in G
- $-\delta(v)$: Anzahl der von v ausgehenden Kanten
- -v[i]: i-ter Nachfolgerknoten von v
- -u Vorgänger von v, wenn v = u[i] für ein i

ullet Begriffe für Äquivalenzrelationen R auf V

-u und v kongruent unter R ($u \sim_R v$):

```
l(u) = l(v), \ \delta(u) = \delta(v) \ \text{ und für alle } i \ (u[i], v[i]) \in R
```

- R abgeschlossen unter Kongruenzen: $u \sim_R v \Rightarrow (u, v) \in R$
- Kongruenzabschluß R^* : eindeutige minimale Erweiterung von R, die abgeschlossen unter Kongruenzen und Äquivalenzrelation ist
- $\hat{=}$ Menge aller Äquivalenzen, die logisch aus R folgen

GLEICHHEITSSCHLIESSEN ALS KONGRUENZABSCHLUSS

Folgt
$$s = t$$
 aus $s_1 = t_1, \dots, s_n = t_n$?

- ullet Konstruiere Graph G von $s, s_1, ..., s_n, \ t, t_1, ..., t_n$
 - -G besteht aus Termbäumen von $s, s_1, ..., s_n, t, t_1, ..., t_n$
 - Identische Teilausdrücke werden durch denselben Teilbaum dargestellt
- Bestimme Kongruenzabschluß aller $s_i=t_i$ iterativ
 - Start: R ist Identitätsrelation auf den Knoten von G $(R^* = R)$
 - Im Schritt i bestimme Kongruenzabschluß von $R^* \cup \{(\tau(s_i), \tau(t_i))\}$ $(\tau(u)$: Wurzelknoten des Termbaums von u)
 - Repräsentiere R^* als Menge von Äquivalenzklassen $\{[u]_R \mid u \in V\}$ $([u]_R \equiv \{x \in V \mid (x, u) \in R\})$
- ullet Teste Äquivalenz von s und t
 - -s = t gilt genau dann, wenn $(\tau(s), \tau(t)) \in \mathbb{R}^*$

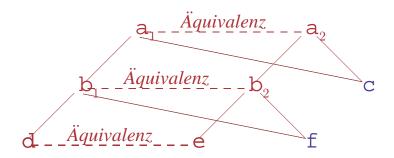
Verfahren für CTT wegen Typbedingungen nur beschränkt einsetzbar

Berechne Kongruenzabschluss von $R \cup \{(u,v)\}$

- Algorithmus MERGE(R,u,v)
 - Eingabe: gerichteter Graph $G = (V, E), u, v \in V$ Äquivalenzrelation R (abgeschlossen unter Kongruenzen)
- ullet Falls $u\sim_R v$, dann halte mit Ergebnis R
 - Es gilt $(R \cup \{(u, v)\})^* = R$
- Andernfalls modifiziere R durch Verschmelzung
 - Setze $P_u := \{x \in V \mid \exists w \in [u]_R . x \text{ Vorgänger von } w\}$
 - Setze $P_v := \{x \in V \mid \exists w \in [v]_R. x \text{ Vorgänger von } w\}$
 - Vereinige Äquivalenzklassen $[u]_R$ und $[v]_R$ in R
 - Wiederhole für $x \in P_u$ und $y \in P_v$ Falls $x \sim_R y$ und $[x]_R \neq [y]_R$ dann setze $R := \mathsf{MERGE}(R, x, y)$

Halte mit der modifizierten Relation R als Ergebnis

Kongruenzabschluss: $d = e \vdash a(b(d, f), c) = a(b(e, f), c)$



- ullet Graph ist Termbaum von a(b(d,f),c) und a(b(e,f),c)
 - Identische Teilausdrücke benutzen denselben Teilbaum
 - Initiale Relation: $R := \{ \{a_1\}, \{a_2\}, \{b_1\}, \{b_2\}, \{c\}, \{d\}, \{e\}, \{f\} \} \}$
- Hinzunahme von d = e

Bestimme Vorgänger von $[d]_R$ ($\{b_1\}$) und $[e]_R$ ($\{b_2\}$)

- Vereinige $[d]_R$ und $[e]_R$: $R := \{\{a_1\}, \{a_2\}, \{b_1\}, \{b_2\}, \{c\}, \{d, e\}, \{f\}\}\}$

Bestimme Vorgänger von $[b_1]_R$ ($\{a_1\}$) und $[b_2]_R$ ($\{a_2\}$)

- Vereinige $[b_1]_R$ und $[b_2]_R$: $R := \{\{a_1\}, \{a_2\}, \{b_1, b_2\}, \{c\}, \{d, e\}, \{f\}\}\}$

Bestimme Vorgänger von $[a_1]_R$ (\emptyset) und $[a_2]_R$ (\emptyset)

- Vereinige $[a_1]_R$ und $[a_2]_R$: $R := \{\{a_1, a_2\}, \{b_1, b_2\}, \{c\}, \{d, e\}, \{f\}\}\}$

Wurzelknoten der beiden Terme sind äquivalent

Kongruenzabschluss: $g(g(g(a))) \doteq a$, $g(g(g(g(g(a))))) \doteq a$

```
• Graph ist Termbaum von g(g(g(g(g(a)))))
  - Initiale Relation: R := \{ \{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}, \{v_5\}, \{v_6\} \}
• Hinzunahme von g(g(g(g(g(a))))) \doteq a
  -R := \{ \{v_1, v_6\}, \{v_2\}, \{v_3\}, \{v_4\}, \{v_5\} \}  ist abgeschlossen
• Hinzunahme von g(g(g(a))) \doteq a
  MERGE(R,v_3,v_6):
  -P_{v_3} := \{v_2\}, P_{v_6} := \{v_5\}, R := \{\{v_1, v_6, v_3\}, \{v_2\}, \{v_4\}, \{v_5\}\}
  - Wegen (v_3, v_6) \in R gilt v_2 \sim_R v_5 aber [v_2]_R \neq [v_5]_R
  MERGE(R, v_2, v_5):
  -P_{v_2} := \{v_1\}, P_{v_5} := \{v_4\}, R := \{\{v_1, v_6, v_3\}, \{v_4\}, \{v_2, v_5\}\}
  - Wegen (v_2, v_5) \in R gilt v_1 \sim_R v_4 aber [v_1]_R \neq [v_4]_R
  MERGE(R, v_1, v_4):
  -P_{v_1} := \{v_2, v_5\}, P_{v_4} := \{v_3\}, R := \{\{v_1, v_6, v_3, v_4\}, \{v_2, v_5\}\}
  - Wegen (v_6, v_4) \in R gilt v_5 \sim_R v_3 aber [v_5]_R \neq [v_3]_R
  MERGE(R, v_5, v_3):
  -P_{v_5} := \{v_1, v_4\}, P_{v_3} := \{v_2, v_5, v_3\}, R := \{\{v_1, v_6, v_3, v_4, v_2, v_5\}\}
                                                                                               \mathbf{a} (v_6)
  Alle Knoten sind äquivalent: R=R^*
```

matisierte Logik und Programmierung $\S13$:

Grenzen von Entscheidungsverfahren

• Weitere Theorien sind effektiv entscheidbar

- Schließen über Listenstrukturen
- Geometrische Probleme
- Aussagenlogik mit uninterpretierten Funktionssymbolen

Einbettung in Typentheorie aufwendig

- Teilterme im Entscheidungsvorgang müssen Typbedingungen erfüllen
- Korrektheitsbeweis schwierig zu führen

• Kein Ersatz für Taktik-Konzept

- Implementierung immer auf Systemebene
- Benutzer kann Prozedur nicht selbst bei Bedarf erweitern
- Anpassungen an Benutzerwünsche machen Prozeduren unvorhersagbar