Theoretische Informatik I

Einheit 3.3

Eigenschaften kontextfreier Sprachen

- 1. Abschlußeigenschaften
- 2. Normalformen
- 3. Prüfen von Eigenschaften / Syntaxanalyse
- 4. Wann sind Sprachen nicht kontextfrei?

Abschlusseigenschaften kontextfreier Sprachen

Typ-2 Sprachen sind komplizierter als Typ-3 Sprachen

• Abgeschlossenheit gilt nur für 6 Operationen

 Vereinigung zweier kontextfreier Sprachen 	$L_1 \cup L_2$
 Spiegelung einer kontextfreien Sprache 	$oldsymbol{L}^{R}$
- Hülle einer kontextfreien Sprache	$oldsymbol{L}^*$
 Verkettung zweier kontextfreier Sprachen 	$\boldsymbol{L_1} \hspace{1em} \circ \hspace{1em} \boldsymbol{L_2}$
- Substitution/Homomorphismus einer kontextfreien Sprache	$oldsymbol{\sigma}(oldsymbol{L})$
 Inverser Homomorphismus einer kontextfreien Sprache 	$h^{-1}(L)$

Abschlusseigenschaften kontextfreier Sprachen

Typ-2 Sprachen sind komplizierter als Typ-3 Sprachen

• Abgeschlossenheit gilt nur für 6 Operationen

 Vereinigung zweier kontextfreier Sprachen 	$L_1 \cup L_2$
 Spiegelung einer kontextfreien Sprache 	L^R
 Hülle einer kontextfreien Sprache 	$oldsymbol{L}^*$
 Verkettung zweier kontextfreier Sprachen 	$\boldsymbol{\mathit{L}}_{1} \hspace{-0.5em} \circ \hspace{-0.5em} \boldsymbol{\mathit{L}}_{2}$
- Substitution/Homomorphismus einer kontextfreien Sprache	$oldsymbol{\sigma}(oldsymbol{L})$
 Inverser Homomorphismus einer kontextfreien Sprache 	$h^{-1}(L)$
Keine Abgeschlossenheit für	
 Komplement einer kontextfreien Sprache 	$\overline{m{L}}$
 Durchschnitt zweier kontextfreier Sprachen 	$L_1\cap L_2$
 Differenz zweier kontextfreier Sprachen 	$oldsymbol{L}_1$ - $oldsymbol{L}_2$

Abschlusseigenschaften kontextfreier Sprachen

Typ-2 Sprachen sind komplizierter als Typ-3 Sprachen

• Abgeschlossenheit gilt nur für 6 Operationen

 Vereinigung zweier kontextfreier Sprachen 	$L_1 \cup L_2$
 Spiegelung einer kontextfreien Sprache 	$oldsymbol{L}^{oldsymbol{R}}$
 Hülle einer kontextfreien Sprache 	$oldsymbol{L}^*$
 Verkettung zweier kontextfreier Sprachen 	$\boldsymbol{L}_1 {\circ} \boldsymbol{L}_2$
 Substitution/Homomorphismus einer kontextfreien Sprache 	$oldsymbol{\sigma}(oldsymbol{L})$
 Inverser Homomorphismus einer kontextfreien Sprache 	$h^{-1}(L)$

• Keine Abgeschlossenheit für

 Komplement einer kontextfreien Sprache 	$\overline{m{L}}$
 Durchschnitt zweier kontextfreier Sprachen 	$\boldsymbol{L}_1\cap\boldsymbol{L}_2$
Differenz zweier kontextfreier Sprachen	$oldsymbol{L_1}$ - $oldsymbol{L_2}$

Nachweis mit Grammatiken und PDAs

- Modelle sind ineinander umwandelbar wähle das passendste
- Negative Nachweise mit einem Typ-2 Pumping Lemma

SUBSTITUTIONEN VON SPRACHEN

Verallgemeinerung von Homomorphismen

 \bullet Abbildung σ von Wörtern in Sprachen

 $\sigma: \Sigma^* \to \mathcal{L}$ ist **Substitution**, wenn $\sigma(v_1...v_n) = \sigma(v_1) \circ ... \circ \sigma(v_n)$ für alle $v_i \in \Sigma$ $\sigma(L) = \bigcup \{ \sigma(w) \mid w \in L \}$ ist das Abbild der Wörter von L unter σ

SUBSTITUTIONEN VON SPRACHEN

Verallgemeinerung von Homomorphismen

 \bullet Abbildung σ von Wörtern in Sprachen

 $\sigma: \Sigma^* \to \mathcal{L}$ ist **Substitution**, wenn $\sigma(v_1...v_n) = \sigma(v_1) \circ ... \circ \sigma(v_n)$ für alle $v_i \in \Sigma$ $\sigma(L) = \bigcup \{\sigma(w) \mid w \in L\}$ ist das Abbild der Wörter von L unter σ

- Beispiel: $\sigma(0) = \{a^n b^n \mid n \in \mathbb{N}\}, \ \sigma(1) = \{aa, bb\}$
 - $-\sigma:\{0,1\}^* \to \mathcal{L}$ ist eindeutig definiert durch $\sigma(0)$ und $\sigma(1)$

$$\begin{split} -\,\sigma(01) &= \{a^n b^n \,|\, n \in \mathbb{N}\} \circ \{aa, bb\} \\ &= \{w \in \{a, b\}^* \,|\, w = a^n b^{n+2} \vee w = a^n b^n aa \; \text{ für ein } n \in \mathbb{N}\} \end{split}$$

$$-\sigma(\{0\}^*) = \{a^n b^n \mid n \in \mathbb{N}\}^*$$

$$= \{w \in \{a, b\}^* \mid w = a^{n_1} b^{n_1} a^{n_2} b^{n_2} ... a^{n_k} b^{n_k} \text{ für ein } k \text{ und } n_i \in \mathbb{N}\}$$

SUBSTITUTIONEN VON SPRACHEN

Verallgemeinerung von Homomorphismen

 \bullet Abbildung σ von Wörtern in Sprachen

 $\sigma: \Sigma^* \to \mathcal{L}$ ist **Substitution**, wenn $\sigma(v_1...v_n) = \sigma(v_1) \circ ... \circ \sigma(v_n)$ für alle $v_i \in \Sigma$ $\sigma(L) = \bigcup \{ \sigma(w) \mid w \in L \}$ ist das Abbild der Wörter von L unter σ

- Beispiel: $\sigma(0) = \{a^n b^n \mid n \in \mathbb{N}\}, \ \sigma(1) = \{aa, bb\}$
 - $-\sigma:\{0,1\}^* \to \mathcal{L}$ ist eindeutig definiert durch $\sigma(0)$ und $\sigma(1)$
 - $-\sigma(01) = \{a^n b^n \mid n \in \mathbb{N}\} \circ \{aa, bb\}$ $= \{ w \in \{a, b\}^* \mid w = a^n b^{n+2} \lor w = a^n b^n aa \text{ für ein } n \in \mathbb{N} \}$
 - $-\sigma(\{0\}^*) = \{a^n b^n \mid n \in \mathbb{N}\}^*$ $= \{ w \in \{a, b\}^* \mid w = a^{n_1}b^{n_1}a^{n_2}b^{n_2}..a^{n_k}b^{n_k} \text{ für ein } k \text{ und } n_i \in \mathbb{N} \}$
- Extrem ausdrucksstarker Mechanismus
 - $-L_1 \cup L_2 = \sigma(\{1,2\})$ für $\sigma(1)=L_1, \sigma(2)=L_2$
 - $-L_1 \circ L_2 = \sigma(\{12\})$ für $\sigma(1) = L_1, \sigma(2) = L_2$
 - $-L^* = \sigma(\{1\}^*)$ für $\sigma(1)=L$

 $L \in \mathcal{L}_2, \sigma$ Substitution, $\sigma(a) \in \mathcal{L}_2$ für $a \in T \implies \sigma(L)$ kontextfrei

• Beweis mit Grammatiken

"Ersetze $a \in T$ durch Startsymbol der kontextfreien Grammatik für $\sigma(a)$ "

 $L \in \mathcal{L}_2, \, \sigma \, ext{Substitution}, \, \sigma(a) \in \mathcal{L}_2 \, ext{für} \, \, a \in T \, \Rightarrow \, \sigma(L) \, \, ext{kontextfrei}$

• Beweis mit Grammatiken

"Ersetze $a \in T$ durch Startsymbol der kontextfreien Grammatik für $\sigma(a)$ "

Seien L und $\sigma(a)$ kontextfrei für alle $a \in T$

Dann gibt es Typ-2 Grammatiken
$$G = (V, T, P, S)$$
 mit $L = L(G)$

und
$$G_a = (V_a, T_a P_a, S_a)$$
 mit $\sigma(a) = L(G_a)$

Dann ist
$$\sigma(L) = \sigma(L(G)) = \bigcup \{ \sigma(a_1) \circ ... \circ \sigma(a_n) \mid S \xrightarrow{*} a_1...a_n \}$$

= $\{ w_1...w_n \mid \exists a_1...a_n. S \xrightarrow{*} a_1...a_n \land S_{a_i} \xrightarrow{*} w_i \}$

 $L \in \mathcal{L}_2, \, \sigma \, ext{Substitution}, \, \sigma(a) \in \mathcal{L}_2 \, ext{für} \, \, a \in T \, \Rightarrow \, \sigma(L) \, \, ext{kontextfrei}$

• Beweis mit Grammatiken

"Ersetze $a \in T$ durch Startsymbol der kontextfreien Grammatik für $\sigma(a)$ "

Seien L und $\sigma(a)$ kontextfrei für alle $a \in T$

Dann gibt es Typ-2 Grammatiken G = (V, T, P, S) mit L = L(G)

und
$$G_a = (V_a, T_a P_a, S_a)$$
 mit $\sigma(a) = L(G_a)$

Dann ist
$$\sigma(L) = \sigma(L(G)) = \bigcup \{ \sigma(a_1) \circ ... \circ \sigma(a_n) \mid S \xrightarrow{*} a_1...a_n \}$$

$$= \{w_1..w_n \mid \exists a_1..a_n. S \xrightarrow{*} a_1..a_n \land S_{a_i} \xrightarrow{*} w_i\}$$

Sei
$$P_{\sigma} = \{A \rightarrow \alpha_{\sigma} \mid A \rightarrow \alpha \in P\} \cup \bigcup_{a \in T} P_a$$
, wobei α_{σ} aus $\alpha \in (V \cup T)^*$

entsteht, indem jedes $a \in T$ durch S_a ersetzt wird

und
$$G_{\sigma} = (V_{\sigma}, T_{\sigma}, P_{\sigma}, S)$$
 wobei $V_{\sigma} = V \cup \bigcup_{a \in T} V_a$ und $T_{\sigma} = \bigcup_{a \in T} T_a$

$L\in\mathcal{L}_2,\,\sigma$ Substitution, $\sigma(a)\in\mathcal{L}_2$ für $a\in T \implies \sigma(L)$ kontextfrei

• Beweis mit Grammatiken

"Ersetze $a \in T$ durch Startsymbol der kontextfreien Grammatik für $\sigma(a)$ "

Seien L und $\sigma(a)$ kontextfrei für alle $a \in T$

Dann gibt es Typ-2 Grammatiken
$$G = (V, T, P, S)$$
 mit $L = L(G)$

und
$$G_a = (V_a, T_a P_a, S_a)$$
 mit $\sigma(a) = L(G_a)$

Dann ist
$$\sigma(L) = \sigma(L(G)) = \bigcup \{ \sigma(a_1) \circ ... \circ \sigma(a_n) \mid S \xrightarrow{*} a_1...a_n \}$$

$$= \{w_1..w_n \mid \exists a_1..a_n. S \xrightarrow{*} a_1..a_n \land S_{a_i} \xrightarrow{*} w_i\}$$

Sei
$$P_{\sigma} = \{A \rightarrow \alpha_{\sigma} \mid A \rightarrow \alpha \in P\} \cup \bigcup_{a \in T} P_a$$
, wobei α_{σ} aus $\alpha \in (V \cup T)^*$

entsteht, indem jedes $a \in T$ durch S_a ersetzt wird

und
$$G_{\sigma} = (V_{\sigma}, T_{\sigma}, P_{\sigma}, S)$$
 wobei $V_{\sigma} = V \cup \bigcup_{a \in T} V_a$ und $T_{\sigma} = \bigcup_{a \in T} T_a$

Dann gilt
$$w_1...w_n \in L(G_\sigma) \Leftrightarrow S \xrightarrow{*}_{G_\sigma} w_1...w_n$$

$$\Leftrightarrow \exists a_1..a_n \in T^*. S \xrightarrow{*}_{G} a_1..a_n \land S_{a_i} \xrightarrow{*}_{G_{a_i}} w_i$$

 $\Leftrightarrow w_1..w_n \in \sigma(L)$

Also ist $\sigma(L)$ kontextfrei

- $ullet L_1, L_2$ kontextfrei $\Rightarrow L_1 \cup L_2$ kontextfrei
 - Sei $\sigma(1)=L_1$ und $\sigma(2)=L_2$
 - Dann ist $\sigma:\{1,2\} \rightarrow \mathcal{L}_2$ Substitution und $L_1 \cup L_2 = \sigma(\{1,2\}) \in \mathcal{L}_2$

- $ullet L_1, L_2$ kontextfrei $\Rightarrow L_1 \cup L_2$ kontextfrei
 - Sei $\sigma(1)=L_1$ und $\sigma(2)=L_2$
 - Dann ist $\sigma:\{1,2\}\to\mathcal{L}_2$ Substitution und $L_1\cup L_2=\sigma(\{1,2\})\in\mathcal{L}_2$
- $ullet L_1, L_2$ kontextfrei $\Rightarrow L_1 \circ L_2$ kontextfrei
 - Sei $\sigma(1)=L_1$ und $\sigma(2)=L_2$
 - Dann ist $\sigma:\{1,2\}\to\mathcal{L}_2$ Substitution und $L_1\circ L_2=\sigma(\{12\})\in\mathcal{L}_2$

- $ullet L_1, L_2$ kontextfrei $\Rightarrow L_1 \cup L_2$ kontextfrei
 - Sei $\sigma(1)=L_1$ und $\sigma(2)=L_2$
 - Dann ist $\sigma:\{1,2\}\to\mathcal{L}_2$ Substitution und $L_1\cup L_2=\sigma(\{1,2\})\in\mathcal{L}_2$
- $ullet L_1, L_2$ kontextfrei $\Rightarrow L_1 \circ L_2$ kontextfrei
 - Sei $\sigma(1)=L_1$ und $\sigma(2)=L_2$
 - Dann ist $\sigma:\{1,2\}\to\mathcal{L}_2$ Substitution und $L_1\circ L_2=\sigma(\{12\})\in\mathcal{L}_2$
- ullet L kontextfrei $\Rightarrow L^*$ kontextfrei
 - Für $\sigma(1)=L$ ist $\sigma:\{1\} \rightarrow \mathcal{L}_2$ Substitution und $L^* = \sigma(\{1\}^*) \in \mathcal{L}_2$

- $ullet L_1, L_2$ kontextfrei $\Rightarrow L_1 \cup L_2$ kontextfrei
 - Sei $\sigma(1)=L_1$ und $\sigma(2)=L_2$
 - Dann ist $\sigma:\{1,2\}\to\mathcal{L}_2$ Substitution und $L_1\cup L_2=\sigma(\{1,2\})\in\mathcal{L}_2$
- $ullet L_1, L_2$ kontextfrei $\Rightarrow L_1 \circ L_2$ kontextfrei
 - Sei $\sigma(1)=L_1$ und $\sigma(2)=L_2$
 - Dann ist $\sigma:\{1,2\}\to\mathcal{L}_2$ Substitution und $L_1\circ L_2=\sigma(\{12\})\in\mathcal{L}_2$
- ullet L kontextfrei $\Rightarrow L^*$ kontextfrei
 - Für $\sigma(1)=L$ ist $\sigma:\{1\} \rightarrow \mathcal{L}_2$ Substitution und $L^* = \sigma(\{1\}^*) \in \mathcal{L}_2$
- ullet L kontextfrei $\Rightarrow L^+$ kontextfrei
 - Für $\sigma(1)=L$ ist $\sigma:\{1\} \rightarrow \mathcal{L}_2$ Substitution und $L^+ = \sigma(\{1\}^+) \in \mathcal{L}_2$

- $ullet L_1, L_2$ kontextfrei $\Rightarrow L_1 \cup L_2$ kontextfrei
 - Sei $\sigma(1)=L_1$ und $\sigma(2)=L_2$
 - Dann ist $\sigma:\{1,2\}\to\mathcal{L}_2$ Substitution und $L_1\cup L_2=\sigma(\{1,2\})\in\mathcal{L}_2$
- $ullet L_1, L_2$ kontextfrei $\Rightarrow L_1 \circ L_2$ kontextfrei
 - Sei $\sigma(1)=L_1$ und $\sigma(2)=L_2$
 - Dann ist $\sigma:\{1,2\}\to\mathcal{L}_2$ Substitution und $L_1\circ L_2=\sigma(\{12\})\in\mathcal{L}_2$
- ullet L kontextfrei $\Rightarrow L^*$ kontextfrei
 - Für $\sigma(1)=L$ ist $\sigma:\{1\} \rightarrow \mathcal{L}_2$ Substitution und $L^* = \sigma(\{1\}^*) \in \mathcal{L}_2$
- ullet L kontextfrei $\Rightarrow L^+$ kontextfrei
 - $-\operatorname{F\"{u}r} \sigma(1) = L \text{ ist } \sigma: \{1\} \longrightarrow \mathcal{L}_2 \text{ Substitution und } L^+ = \sigma(\{1\}^+) \in \mathcal{L}_2$
- ullet $L\in\mathcal{L}_2, h$ Homomorphismus $\Rightarrow h(L)$ kontextfrei
 - $-\operatorname{F\"{u}r} \sigma(a) = \{h(a)\} \text{ ist } \sigma: T \to \mathcal{L}_2 \text{ Substitution und } h(L) = \sigma(L) \in \mathcal{L}_2$

Abschluss unter Spiegelung

$$L$$
 kontextfrei $\Rightarrow L^R$ = $\{w_n..w_1 \mid w_1..w_n \in L\}$ kontextfrei

- Beweis mit Grammatiken
 - Bilde Spiegelgrammatik zu G = (V, T, P, S) mit L = L(G)

Abschluss unter Spiegelung

$$L$$
 kontextfrei $\Rightarrow L^R = \{w_n..w_1 \mid w_1..w_n \in L\}$ kontextfrei

• Beweis mit Grammatiken

- Bilde Spiegelgrammatik zu G = (V, T, P, S) mit L = L(G)
- Setze $G_R = (V, T, P_R, S)$ mit $P_R = \{A \rightarrow \alpha^R \mid A \rightarrow \alpha \in P\}$
- Dann gilt für alle $A \in V$, $w \in (V \cup T)^*$: $A \xrightarrow{*}_G w \Leftrightarrow A \xrightarrow{*}_{G_R} w^R$
 - · Beweis durch Induktion über Länge der Ableitung
- $-\operatorname{Also} L(G_R) = \{ w \in T^* \mid S \xrightarrow{*}_{G_R} w \} = \{ v^R \in T^* \mid S \xrightarrow{*}_{G} v \} = (L(G))^R$

Abschluss unter Spiegelung

$$L$$
 kontextfrei $\Rightarrow L^R = \{w_n..w_1 \mid w_1..w_n \in L\}$ kontextfrei

• Beweis mit Grammatiken

- Bilde Spiegelgrammatik zu G = (V, T, P, S) mit L = L(G)
- Setze $G_R = (V, T, P_R, S)$ mit $P_R = \{A \rightarrow \alpha^R \mid A \rightarrow \alpha \in P\}$
- Dann gilt für alle $A \in V$, $w \in (V \cup T)^*$: $A \xrightarrow{*}_G w \Leftrightarrow A \xrightarrow{*}_{GR} w^R$
 - · Beweis durch Induktion über Länge der Ableitung
- Also $L(G_R) = \{ w \in T^* \mid S \xrightarrow{*}_{G_R} w \} = \{ v^R \in T^* \mid S \xrightarrow{*}_{G} v \} = (L(G))^R$

• Beweis mit PDAs ähnlich wie bei Typ-3 Sprachen

- Bilde Umkehrautomaten zu $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ mit $L=L_F(P)$

ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN

$L \in \mathcal{L}_2, h$ Homomorphismus $\Rightarrow h^{-1}(L)$ kontextfrei

• Beweis mit Pushdown Automaten

"Berechnung von h vor Abarbeitung der Wörter im Automaten"

Abschluss unter inversen Homomorphismen

$L \in \mathcal{L}_2, h$ Homomorphismus $\Rightarrow h^{-1}(L)$ kontextfrei

• Beweis mit Pushdown Automaten

"Berechnung von h vor Abarbeitung der Wörter im Automaten"

Sei
$$L$$
 kontextfrei und $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ ein PDA

$$\operatorname{mit} L = L_F(P) = \{ v \in \Sigma^* \mid \exists q \in F. \ \exists \beta \in \Gamma^*. \ (q_0, v, Z_0) \ \vdash^* (q, \epsilon, \beta) \}$$

Dann ist
$$h^{-1}(L) = \{ w \in \Sigma'^* \mid \exists q \in F. \exists \beta \in \Gamma^*. (q_0, h(w), Z_0) \vdash^* (q, \epsilon, \beta) \}$$

Konstruiere PDA $P_h = (Q_h, \Sigma', \Gamma, \delta_h, q_{0_h}, Z_0, F_h)$ mit der Eigenschaft

$$(q_{0_h}, w, Z_0) \, \vdash^* (q_h, \epsilon, \beta) \, \Leftrightarrow \, (q_0, h(w), Z_0) \, \vdash^* (q, \epsilon, \beta) \text{ für Endzustände}$$

Abschluss unter inversen Homomorphismen

$L \in \mathcal{L}_2, h$ Homomorphismus $\Rightarrow h^{-1}(L)$ kontextfrei

• Beweis mit Pushdown Automaten

"Berechnung von h vor Abarbeitung der Wörter im Automaten"

Sei *L* kontextfrei und
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
 ein PDA

$$\operatorname{mit} L = L_F(P) = \{ v \in \Sigma^* \mid \exists q \in F. \ \exists \beta \in \Gamma^*. \ (q_0, v, Z_0) \ \vdash^* (q, \epsilon, \beta) \}$$

Dann ist
$$h^{-1}(L) = \{ w \in \Sigma'^* \mid \exists q \in F. \exists \beta \in \Gamma^*. (q_0, h(w), Z_0) \vdash^* (q, \epsilon, \beta) \}$$

Konstruiere PDA
$$P_h = (Q_h, \Sigma', \Gamma, \delta_h, q_{0_h}, Z_0, F_h)$$
 mit der Eigenschaft

$$(q_{0_h}, w, Z_0) \stackrel{*}{\vdash} (q_h, \epsilon, \beta) \Leftrightarrow (q_0, h(w), Z_0) \stackrel{*}{\vdash} (q, \epsilon, \beta)$$
 für Endzustände

Ein Ansatz wie
$$\delta_h(q, a, X) = \hat{\delta}(q, h(a), X)$$
 funktioniert nicht!

Wie bei DEAs muß h(a) schrittweise in den Zuständen abgearbeitet werden

Abschluss unter inversen Homomorphismen

$L \in \mathcal{L}_2, h$ Homomorphismus $\Rightarrow h^{-1}(L)$ kontextfrei

• Beweis mit Pushdown Automaten

"Berechnung von h vor Abarbeitung der Wörter im Automaten"

Sei *L* kontextfrei und
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
 ein PDA

$$\operatorname{mit} L = L_F(P) = \{ v \in \Sigma^* \mid \exists q \in F. \ \exists \beta \in \Gamma^*. \ (q_0, v, Z_0) \ \stackrel{*}{\vdash} \ (q, \epsilon, \beta) \}$$

Dann ist
$$h^{-1}(L) = \{ w \in \Sigma'^* \mid \exists q \in F. \ \exists \beta \in \Gamma^*. \ (q_0, h(w), Z_0) \ \vdash^* (q, \epsilon, \beta) \}$$

Konstruiere PDA
$$P_h = (Q_h, \Sigma', \Gamma, \delta_h, q_{0_h}, Z_0, F_h)$$
 mit der Eigenschaft

$$(q_{0_h}, w, Z_0) \stackrel{*}{\vdash} (q_h, \epsilon, \beta) \Leftrightarrow (q_0, h(w), Z_0) \stackrel{*}{\vdash} (q, \epsilon, \beta)$$
 für Endzustände

Ein Ansatz wie $\delta_h(q, a, X) = \hat{\delta}(q, h(a), X)$ funktioniert nicht!

Wie bei DEAs muß h(a) schrittweise in den Zuständen abgearbeitet werden

Setze
$$Q_h = Q \times \{ v \in \Sigma^* \mid v \text{ Suffix von } h(a) \text{ für ein } a \in \Sigma' \}$$

$$\boldsymbol{\delta_h}((\boldsymbol{q},\boldsymbol{\epsilon}),\boldsymbol{a},\boldsymbol{X}) = \{((\boldsymbol{q},h(\boldsymbol{a})),X)\}$$

$$a \in \Sigma$$
', $X \in \Gamma$

$$\boldsymbol{\delta_h}((\boldsymbol{q},\boldsymbol{bv}),\boldsymbol{\epsilon},\boldsymbol{X}) = \{((p,v),\alpha) \mid (p,\alpha) \in \delta(q,b,X)\} \ b \in \Sigma \cup \{\epsilon\}, v \in \Sigma^*, X \in \Gamma$$

$$q_{0_h} = (q_0, \epsilon)$$
 $F_h = \{(q, \epsilon) | q \in F\}$

Dann gilt
$$((q,\epsilon),a,X) \vdash^*_{P_h} ((p,\epsilon),\epsilon,\beta) \Leftrightarrow (q,h(a),X) \vdash^*_{P} (p,\epsilon,\beta)$$

Also ist
$$h^{-1}(L) = L(P_h)$$
 und damit kontextfrei

Abgeschlossenheit gilt nicht für diese Operationen

- ullet Durchschnitt: $L_1, L_2 \in \mathcal{L}_2 \not\Rightarrow L_1 \cap L_2 \in \mathcal{L}_2$
 - $-L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$ ist nicht kontextfrei (Beweis später)
 - $\text{Aber } L = \{0^n 1^n 2^m \mid n, m \in \mathbb{N}\} \cap \{0^m 1^n 2^n \mid n, m \in \mathbb{N}\}$ und $\{0^n 1^n 2^m \mid n, m \in \mathbb{N}\}$ und $\{0^m 1^n 2^n \mid n, m \in \mathbb{N}\}$ sind kontextfrei (Regeln für erste Sprache: $S \to AB, A \to 0A1, A \to 01, B \to 2B, B \to 2$)

Abgeschlossenheit gilt nicht für diese Operationen

- ullet Durchschnitt: $L_1, L_2 \in \mathcal{L}_2 \not\Rightarrow L_1 \cap L_2 \in \mathcal{L}_2$
 - $-L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\} \text{ ist nicht kontextfrei}$ (Beweis später)
 - $\text{Aber } L = \{0^n 1^n 2^m \mid n, m \in \mathbb{N}\} \cap \{0^m 1^n 2^n \mid n, m \in \mathbb{N}\}$ und $\{0^n 1^n 2^m \mid n, m \in \mathbb{N}\} \text{ und } \{0^m 1^n 2^n \mid n, m \in \mathbb{N}\} \text{ sind kontextfrei}$ (Regeln für erste Sprache: $S \to AB, A \to 0A1, A \to 01, B \to 2B, B \to 2$)

Der Durchschnitt kontextfreier und regulärer Sprachen ist kontextfrei (HMU Satz 7.27)

Abgeschlossenheit gilt nicht für diese Operationen

- ullet Durchschnitt: $L_1, L_2 \in \mathcal{L}_2 \not\Rightarrow L_1 \cap L_2 \in \mathcal{L}_2$
 - $-L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\} \text{ ist nicht kontextfrei}$ (Beweis später)
 - $\, \text{Aber} \, \, L = \{ 0^n 1^n 2^m \, | \, n, m \in \mathbb{N} \} \, \cap \, \{ 0^m 1^n 2^n \, | \, n, m \in \mathbb{N} \} \\ \text{und} \, \, \{ 0^n 1^n 2^m \, | \, n, m \in \mathbb{N} \} \, \, \text{und} \, \, \{ 0^m 1^n 2^n \, | \, n, m \in \mathbb{N} \} \, \, \text{sind kontextfrei} \\ \text{(Regeln für erste Sprache:} \, \, S \rightarrow AB, \, A \rightarrow 0A1, \, A \rightarrow 01, \, B \rightarrow 2B, \, B \rightarrow 2)$

Der Durchschnitt kontextfreier und regulärer Sprachen ist kontextfrei (HMU Satz 7.27)

- ullet Komplement $\underline{L} \in \mathcal{L}_2 \not\Rightarrow \overline{L} \in \mathcal{L}_2$
 - Es ist $L_1 \cap L_2 = \overline{L_1 \cup \overline{L_2}}$
 - Bei Abgeschlossenheit unter Komplementbildung würde Abgeschlossenheit unter Durchschnitt folgen

Abgeschlossenheit gilt nicht für diese Operationen

- ullet Durchschnitt: $L_1, L_2 \in \mathcal{L}_2 \not\Rightarrow L_1 \cap L_2 \in \mathcal{L}_2$
 - $-L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$ ist nicht kontextfrei

(Beweis später)

$$\begin{split} -\operatorname{Aber} \, L &= \{0^n 1^n 2^m \,|\, n, m \in \mathbb{N}\} \cap \{0^m 1^n 2^n \,|\, n, m \in \mathbb{N}\} \\ & \text{ und } \{0^n 1^n 2^m \,|\, n, m \in \mathbb{N}\} \text{ und } \{0^m 1^n 2^n \,|\, n, m \in \mathbb{N}\} \text{ sind kontextfrei} \\ & \text{ (Regeln für erste Sprache: } S \to AB, A \to 0A1, A \to 01, B \to 2B, B \to 2) \end{split}$$

Der Durchschnitt kontextfreier und regulärer Sprachen ist kontextfrei (HMU Satz 7.27)

- ullet Komplement $L\in\mathcal{L}_2
 Rightarrow \overline{L}\in\mathcal{L}_2$
 - Es ist $L_1 \cap L_2 = \overline{L_1 \cup \overline{L_2}}$
 - Bei Abgeschlossenheit unter Komplementbildung würde Abgeschlossenheit unter Durchschnitt folgen
- ullet Differenz: $L_1, L_2 \in \mathcal{L}_2 \not\Rightarrow L_1 L_2 \in \mathcal{L}_2$
 - Es ist $\overline{L} = \Sigma^* L$
 - Aus Abschluß unter Differenz folgt Abschluß unter Komplement

Welche Eigenschaften sind automatisch prüfbar?

Welche Eigenschaften sind automatisch prüfbar?

- Ist eine kontextfreie Sprache leer?
 - Entspricht Test auf Erreichbarkeit von Endzuständen
 - Nicht ganz so einfach, da Stackinhalt die Erreichbarkeit beeinflußt

Welche Eigenschaften sind automatisch prüfbar?

• Ist eine kontextfreie Sprache leer?

- Entspricht Test auf Erreichbarkeit von Endzuständen
- Nicht ganz so einfach, da Stackinhalt die Erreichbarkeit beeinflußt

• Zugehörigkeit: gehört ein Wort zur Sprache?

- Verarbeitung durch Pushdown-Automaten ist nichtdeterministisch
- Deterministische Pushdown-Automaten sind nicht mächtig genug
- Frage nach Zugehörigkeit beinhaltet oft Frage nach Ableitungsbaum

Welche Eigenschaften sind automatisch prüfbar?

• Ist eine kontextfreie Sprache leer?

- Entspricht Test auf Erreichbarkeit von Endzuständen
- Nicht ganz so einfach, da Stackinhalt die Erreichbarkeit beeinflußt

• Zugehörigkeit: gehört ein Wort zur Sprache?

- Verarbeitung durch Pushdown-Automaten ist nichtdeterministisch
- Deterministische Pushdown-Automaten sind nicht m\u00e4chtig genug
- Frage nach Zugehörigkeit beinhaltet oft Frage nach Ableitungsbaum

• Äquivalenz: sind zwei Typ-2 Sprachen identisch?

– Zusammenfassen äquivalenter Zustände im PDA kaum durchführbar

Welche Eigenschaften sind automatisch prüfbar?

• Ist eine kontextfreie Sprache leer?

- Entspricht Test auf Erreichbarkeit von Endzuständen
- Nicht ganz so einfach, da Stackinhalt die Erreichbarkeit beeinflußt

• Zugehörigkeit: gehört ein Wort zur Sprache?

- Verarbeitung durch Pushdown-Automaten ist nichtdeterministisch
- Deterministische Pushdown-Automaten sind nicht m\u00e4chtig genug
- Frage nach Zugehörigkeit beinhaltet oft Frage nach Ableitungsbaum

• Äquivalenz: sind zwei Typ-2 Sprachen identisch?

– Zusammenfassen äquivalenter Zustände im PDA kaum durchführbar

• Kontextfreie Grammmatiken sind zu kompliziert

- Analyse braucht einfachere Versionen von Typ-2 Grammatiken
- Bringe Grammatik auf "Normalform" (äquivalente einfachere Struktur)

DIE CHOMSKY NORMALFORM

Trenne Variablen von Terminalsymbolen

- Grammatik in Chomsky-Normalform
 - Grammatik G = (V, T, P, S), bei der jede Produktion die Form $A \rightarrow B C$ oder $A \rightarrow a$ hat $(A, B, C \in V, a \in T)$
 - Grammatiken in Chomsky Normalform sind auch kontextsensitiv

DIE CHOMSKY NORMALFORM

Trenne Variablen von Terminalsymbolen

- Grammatik in Chomsky-Normalform
 - Grammatik G = (V, T, P, S), bei der jede Produktion die Form $A \rightarrow B C$ oder $A \rightarrow a$ hat $(A, B, C \in V, a \in T)$
 - Grammatiken in Chomsky Normalform sind auch kontextsensitiv
- ullet Jede kontextfreie Grammatik G mit $\epsilon
 ot \in L(G)$ ist in **Chomsky-Normalform transformierbar**
 - 1. Eliminierung von ϵ -Produktionen $A \to \epsilon$
 - 2. Eliminierung von Einheitsproduktionen $A \rightarrow B$
 - 3. Eliminierung unnützer Symbole
 - 4. Separieren von Terminalsymbolen und Variablen in Produktionen
 - 5. Aufspalten von Produktionen $A \to \alpha$ mit $|\alpha| > 2$

DIE CHOMSKY NORMALFORM

Trenne Variablen von Terminalsymbolen

- Grammatik in Chomsky-Normalform
 - Grammatik G = (V, T, P, S), bei der jede Produktion die Form $A \rightarrow B C$ oder $A \rightarrow a$ hat $(A, B, C \in V, a \in T)$
 - Grammatiken in Chomsky Normalform sind auch kontextsensitiv
- ullet Jede kontextfreie Grammatik G mit $\epsilon \not\in L(G)$ ist in **Chomsky-Normalform transformierbar**
 - 1. Eliminierung von ϵ -Produktionen $A \to \epsilon$
 - 2. Eliminierung von Einheitsproduktionen $A \rightarrow B$
 - 3. Eliminierung unnützer Symbole
 - 4. Separieren von Terminalsymbolen und Variablen in Produktionen
 - 5. Aufspalten von Produktionen $A \to \alpha$ mit $|\alpha| > 2$

Aufblähung/Transformationszeit quadratisch relativ zur Größe von G

- ullet $\epsilon ext{-Produktionen sind "uberflüssig"}, falls <math>\epsilon
 ot\in L(G)$
 - Variablen $A \in V$ mit $A \xrightarrow{*} \epsilon$ sind **eliminierbar**

- ullet ϵ -Produktionen sind überflüssig, falls $\epsilon \not\in L(G)$
 - Variablen $A \in V$ mit $A \xrightarrow{*} \epsilon$ sind **eliminierbar**
 - Menge eliminierbarer Symbole kann iterativ bestimmt werden
 - · Ist $A \rightarrow \epsilon \in P$ dann ist A eliminierbar
 - · Ist $A \rightarrow X_1...X_n \in P$ und alle X_i eliminierbar, dann ist A eliminierbar
 - Verfahren terminiert nach maximal |V| + 1 Iterationen

ullet ϵ -Produktionen sind überflüssig, falls $\epsilon ot \in L(G)$

- Variablen $A \in V$ mit $A \xrightarrow{*} \epsilon$ sind **eliminierbar**
- Menge eliminierbarer Symbole kann iterativ bestimmt werden
 - · Ist $A \rightarrow \epsilon \in P$ dann ist A eliminierbar
 - · Ist $A \rightarrow X_1...X_n \in P$ und alle X_i eliminierbar, dann ist A eliminierbar
- Verfahren terminiert nach maximal |V| + 1 Iterationen

• Erzeuge Grammatik ohne eliminierbare Symbole

- Für G=(V,T,P,S) bestimme alle eliminierbare Variablen
- Für $A \rightarrow \alpha \in P$ mit eliminierbaren Symbolen $X_1, ..., X_m$ in α erzeuge 2^m Regeln $A \rightarrow \alpha_{i_1,...,i_k}$ ($\{i_1,...,i_k\}$ Teilmenge von $\{1,...,m\}$)
- Entferne alle Regeln der Form $A \rightarrow \epsilon$ (auch neu erzeugte)

ullet ϵ -Produktionen sind überflüssig, falls $\epsilon ot \in L(G)$

- Variablen $A \in V$ mit $A \xrightarrow{*} \epsilon$ sind **eliminierbar**
- Menge eliminierbarer Symbole kann iterativ bestimmt werden
 - · Ist $A \rightarrow \epsilon \in P$ dann ist A eliminierbar
 - · Ist $A \rightarrow X_1...X_n \in P$ und alle X_i eliminierbar, dann ist A eliminierbar
- Verfahren terminiert nach maximal |V| + 1 Iterationen

• Erzeuge Grammatik ohne eliminierbare Symbole

- Für G=(V,T,P,S) bestimme alle eliminierbare Variablen
- Für $A \rightarrow \alpha \in P$ mit eliminierbaren Symbolen $X_1, ..., X_m$ in α erzeuge 2^m Regeln $A \rightarrow \alpha_{i_1,...,i_k}$ ($\{i_1,...,i_k\}$ Teilmenge von $\{1,...,m\}$)
- Entferne alle Regeln der Form $A \rightarrow \epsilon$ (auch neu erzeugte)
- Wenn S eliminierbar ist, kann $S' \to S$ und $S' \to \epsilon$ ergänzt werden

ullet ϵ -Produktionen sind überflüssig, falls $\epsilon ot \in L(G)$

- Variablen $A \in V$ mit $A \xrightarrow{*} \epsilon$ sind **eliminierbar**
- Menge eliminierbarer Symbole kann iterativ bestimmt werden
 - · Ist $A \rightarrow \epsilon \in P$ dann ist A eliminierbar
 - · Ist $A \rightarrow X_1...X_n \in P$ und alle X_i eliminierbar, dann ist A eliminierbar
- Verfahren terminiert nach maximal |V| + 1 Iterationen

• Erzeuge Grammatik ohne eliminierbare Symbole

- Für G=(V,T,P,S) bestimme alle eliminierbare Variablen
- Für $A \rightarrow \alpha \in P$ mit eliminierbaren Symbolen $X_1, ..., X_m$ in α erzeuge 2^m Regeln $A \rightarrow \alpha_{i_1,...,i_k}$ ($\{i_1,...,i_k\}$ Teilmenge von $\{1,...,m\}$)
- Entferne alle Regeln der Form $A \rightarrow \epsilon$ (auch neu erzeugte)
- Wenn S eliminierbar ist, kann $S' \to S$ und $S' \to \epsilon$ ergänzt werden

• Erzeugte Grammatik ist äquivalent

$$-$$
 Zeige $A \xrightarrow{*}_{G} w \Leftrightarrow A \xrightarrow{*}_{G} w \land (w \neq \epsilon \lor A = S')$ durch Induktion über Länge der Ableitung

$$P = \{ S \rightarrow AB, A \rightarrow aAA \mid \epsilon, B \rightarrow bBB \mid \epsilon \}$$

• Ermittlung eliminierbarer Symbole

- 1.: A und B sind eliminierbar
- 2.: S ist ebenfalls eliminierbar

$$P = \{ S \rightarrow AB, A \rightarrow aAA \mid \epsilon, B \rightarrow bBB \mid \epsilon \}$$

• Ermittlung eliminierbarer Symbole

- 1.: A und B sind eliminierbar
- 2.: S ist ebenfalls eliminierbar

• Verändere Regeln der Grammatik

- $-\operatorname{Aus} S \rightarrow AB$ wird $S \rightarrow AB \mid A \mid B$
- $-\operatorname{Aus} A \rightarrow aAA \mid \epsilon \text{ wird } A \rightarrow aAA \mid aA \mid a$
- $-\operatorname{Aus} B \rightarrow bBB \mid \epsilon \text{ wird } \boldsymbol{B} \rightarrow b\boldsymbol{BB} \mid b\boldsymbol{B} \mid \boldsymbol{b}$

$$P = \{ S \rightarrow AB, A \rightarrow aAA \mid \epsilon, B \rightarrow bBB \mid \epsilon \}$$

• Ermittlung eliminierbarer Symbole

- 1.: A und B sind eliminierbar
- 2.: S ist ebenfalls eliminierbar

• Verändere Regeln der Grammatik

- $-\operatorname{Aus} S \rightarrow AB$ wird $S \rightarrow AB \mid A \mid B$
- $-\operatorname{Aus} A \rightarrow aAA \mid \epsilon \text{ wird } A \rightarrow aAA \mid aA \mid a$
- $-\operatorname{Aus} B \rightarrow bBB \mid \epsilon \text{ wird } \boldsymbol{B} \rightarrow b\boldsymbol{BB} \mid b\boldsymbol{B} \mid \boldsymbol{b}$

Grammatik erzeugt $L(G) - \{\epsilon\}$ ohne ϵ -Produktionen

$$P = \{ S \rightarrow AB, A \rightarrow aAA \mid \epsilon, B \rightarrow bBB \mid \epsilon \}$$

• Ermittlung eliminierbarer Symbole

- 1.: A und B sind eliminierbar
- 2.: S ist ebenfalls eliminierbar

• Verändere Regeln der Grammatik

- $-\operatorname{Aus} S \rightarrow AB$ wird $S \rightarrow AB \mid A \mid B$
- $-\operatorname{Aus} A \rightarrow aAA \mid \epsilon \text{ wird } A \rightarrow aAA \mid aA \mid a$
- $-\operatorname{Aus} B \rightarrow bBB \mid \epsilon \text{ wird } \boldsymbol{B} \rightarrow b\boldsymbol{BB} \mid b\boldsymbol{B} \mid \boldsymbol{b}$

Grammatik erzeugt $L(G) - \{\epsilon\}$ ohne ϵ -Produktionen

Ergänze neues Startsymbol

-S war eliminierbar: ergänze Produktionen $S' \to S \mid \epsilon$

Grammatik erzeugt L(G) mit initialer ϵ -Produktion

- Bestimme alle Einheitspaare (A,B) mit $A \stackrel{*}{\longrightarrow} B$
 - Wie üblich ... iteratives Verfahren:
 - · Alle Paare (A,A) für $A \in V$ sind Einheitspaare
 - · Ist (A,B) Einheitspaar und $B \rightarrow C \in P$ dann ist (A,C) Einheitspaar
 - Verfahren terminiert nach maximal |V| + 1 Iterationen

- Bestimme alle Einheitspaare (A,B) mit $A \stackrel{*}{\longrightarrow} B$
 - Wie üblich ... iteratives Verfahren:
 - · Alle Paare (A,A) für $A \in V$ sind Einheitspaare
 - · Ist (A,B) Einheitspaar und $B \rightarrow C \in P$ dann ist (A,C) Einheitspaar
 - Verfahren terminiert nach maximal |V|+1 Iterationen
- Erzeuge Grammatik ohne Einheitsproduktionen $A \rightarrow B$
 - Bestimme alle Einheitspaare in G
 - Für jedes Einheitspaar (A,B) erzeuge Produktionen $\{A \rightarrow \alpha \mid B \rightarrow \alpha \in P \text{ keine Einheitsproduktion}\}$

- Bestimme alle Einheitspaare (A,B) mit $A \stackrel{*}{\longrightarrow} B$
 - Wie üblich ... iteratives Verfahren:
 - · Alle Paare (A,A) für $A \in V$ sind Einheitspaare
 - · Ist (A,B) Einheitspaar und $B \rightarrow C \in P$ dann ist (A,C) Einheitspaar
 - Verfahren terminiert nach maximal |V|+1 Iterationen
- Erzeuge Grammatik ohne Einheitsproduktionen $A \rightarrow B$
 - Bestimme alle Einheitspaare in G
 - Für jedes Einheitspaar (A,B) erzeuge Produktionen $\{A \rightarrow \alpha \mid B \rightarrow \alpha \in P \text{ keine Einheitsproduktion}\}$
- Erzeugte Grammatik ist äquivalent
 - Ableitungen in G' sind "Kurzformen" von Ableitungen in GBeweis, wie immer, durch Induktion über Länge der Ableitung

Elimination von Einheitsproduktionen am Beispiel

$$P' = \{ E
ightharpoonup T \mid E+T, T
ightharpoonup F \mid T*F, F
ightharpoonup I \mid (E)$$
 $I
ightharpoonup a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \}$

• Bestimme alle Einheitspaare (A,B) mit $A \stackrel{*}{\longrightarrow} B$

Elimination von Einheitsproduktionen am Beispiel

$$P' = \{ E
ightharpoonup T \mid E+T, T
ightharpoonup F \mid T*F, F
ightharpoonup I \mid (E)$$
 $I
ightharpoonup a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \}$

• Bestimme alle Einheitspaare (A,B) mit $A \stackrel{*}{\longrightarrow} B$

- 1.: (E,E), (T,T), (F,F) und (I,I) sind Einheitspaare
- 2.: (E,T), (T,F) und (F,I) sind ebenfalls Einheitspaare
- 3.: (E,F) und (T,I) sind ebenfalls Einheitspaare
- 4.: (E,I) ist ebenfalls Einheitspaar
- 5.: Keine weiteren Einheitspaare möglich

Elimination von Einheitsproduktionen am Beispiel

$$P' = \{ E \rightarrow T \mid E+T, T \rightarrow F \mid T*F, F \rightarrow I \mid (E) \ I \rightarrow a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \}$$

• Bestimme alle Einheitspaare (A,B) mit $A \stackrel{*}{\longrightarrow} B$

- 1.: (E,E), (T,T), (F,F) und (I,I) sind Einheitspaare
- 2.: (E,T), (T,F) und (F,I) sind ebenfalls Einheitspaare
- 3.: (E,F) und (T,I) sind ebenfalls Einheitspaare
- 4.: (E,I) ist ebenfalls Einheitspaar
- 5.: Keine weiteren Einheitspaare möglich

• Erzeuge Grammatik ohne Einheitsproduktionen

- Einheitspaare mit E: $\{E \rightarrow E + T \mid T * F \mid (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1\}$
- Einheitspaare mit T: $\{T \rightarrow T*F \mid (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1\}$
- Einheitspaare mit $F: \{F \rightarrow (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1\}$
- Einheitspaare mit I: $\{I \rightarrow a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1\}$

- ullet X nützlich, falls $S \stackrel{*}{\longrightarrow} \alpha X \beta \stackrel{*}{\longrightarrow} w \in T^*$
 - Erzeugend $(X \xrightarrow{*} v \in T^*)$ und erreichbar $(S \xrightarrow{*} \alpha X \beta)$

- X nützlich, falls $S \stackrel{*}{\longrightarrow} \alpha X\beta \stackrel{*}{\longrightarrow} w \in T^*$
 - Erzeugend $(X \xrightarrow{*} v \in T^*)$ und erreichbar $(S \xrightarrow{*} \alpha X \beta)$
- Beispiel: $P = \{ S \rightarrow AB \mid a, A \rightarrow b \}$
 - · Erreichbar: S, A, B, a, und b erzeugend: S, A, a, und b

- X nützlich, falls $S \stackrel{*}{\longrightarrow} \alpha X \beta \stackrel{*}{\longrightarrow} w \in T^*$
 - Erzeugend $(X \xrightarrow{*} v \in T^*)$ und erreichbar $(S \xrightarrow{*} \alpha X \beta)$
- Beispiel: $P = \{ S \rightarrow AB \mid a, A \rightarrow b \}$
 - · Erreichbar: S, A, B, a, und b erzeugend: S, A, a, und b
 - Nach Elimination von $B: \{ S \rightarrow a, A \rightarrow b \}$
 - · Erreichbar: S und a erzeugend: S, A, a, und b

- X nützlich, falls $S \stackrel{*}{\longrightarrow} \alpha X\beta \stackrel{*}{\longrightarrow} w \in T^*$
 - Erzeugend $(X \xrightarrow{*} v \in T^*)$ und erreichbar $(S \xrightarrow{*} \alpha X \beta)$
- Beispiel: $P = \{ S \rightarrow AB \mid a, A \rightarrow b \}$
 - · Erreichbar: S, A, B, a, und b erzeugend: S, A, a, und b
 - Nach Elimination von $B: \{ S \rightarrow a, A \rightarrow b \}$
 - · Erreichbar: S und a erzeugend: S, A, a, und b
 - Nach Elimination von $A: \{ S \rightarrow a \}$
 - · Erreichbar: S und a erzeugend: S und a

Erzeugte Produktionenmenge ist äquivalent zu P

- X nützlich, falls $S \stackrel{*}{\longrightarrow} \alpha X\beta \stackrel{*}{\longrightarrow} w \in T^*$
 - Erzeugend $(X \xrightarrow{*} v \in T^*)$ und erreichbar $(S \xrightarrow{*} \alpha X \beta)$
- Beispiel: $P = \{ S \rightarrow AB \mid a, A \rightarrow b \}$
 - · Erreichbar: S, A, B, a, und b erzeugend: S, A, a, und b
 - Nach Elimination von $B: \{ S \rightarrow a, A \rightarrow b \}$
 - · Erreichbar: S und a erzeugend: S, A, a, und b
 - Nach Elimination von $A: \{ S \rightarrow a \}$
 - · Erreichbar: S und a erzeugend: S und a

Erzeugte Produktionenmenge ist äquivalent zu P

- Eliminations verfahren für G mit $L(G) \neq \emptyset$
 - Eliminiere nichterzeugende Symbole und Produktionen, die sie enthalten
 - Eliminiere unerreichbare Symbole und Produktionen, die sie enthalten

Resultierende Grammatik G' erzeugt dieselbe Sprache wie G

G' enthält nur nützliche Symbole und $S \in V'$

Also
$$w \in L(G) \Leftrightarrow S \xrightarrow{*}_G w \Leftrightarrow S \xrightarrow{*}_G w \Leftrightarrow w \in L(G')$$

• Generiere Menge erzeugender Symbole iterativ

- Alle Terminalsymbole $a \in T$ sind erzeugend
- Ist $A \rightarrow X_1...X_n \in P$ und alle X_i erzeugend, dann ist A erzeugend
- Verfahren terminiert nach maximal |V| + 1 Iterationen

• Generiere Menge erzeugender Symbole iterativ

- Alle Terminalsymbole $a \in T$ sind erzeugend
- Ist $A \rightarrow X_1...X_n \in P$ und alle X_i erzeugend, dann ist A erzeugend
- Verfahren terminiert nach maximal |V|+1 Iterationen

• Generiere Menge erreichbarer Symbole iterativ

- S ist erreichbar
- Ist $A \rightarrow X_1...X_n \in P$ und A erreichbar dann sind alle X_i erreichbar
- Verfahren terminiert nach maximal |V| + |T| Iterationen

• Generiere Menge erzeugender Symbole iterativ

- Alle Terminalsymbole $a \in T$ sind erzeugend
- Ist $A \rightarrow X_1...X_n \in P$ und alle X_i erzeugend, dann ist A erzeugend
- Verfahren terminiert nach maximal |V| + 1 Iterationen

• Generiere Menge erreichbarer Symbole iterativ

- S ist erreichbar
- Ist $A \rightarrow X_1...X_n \in P$ und A erreichbar dann sind alle X_i erreichbar
- Verfahren terminiert nach maximal |V| + |T| Iterationen
- Beispiel: $P = \{ S \rightarrow AB \mid a, A \rightarrow b \}$
 - Erzeugende Symbole: 1.: a und b sind erzeugend
 - 2.: S und A sind ebenfalls erzeugend
 - 3.: Keine weiteren Symbole sind erzeugend

• Generiere Menge erzeugender Symbole iterativ

- Alle Terminalsymbole $a \in T$ sind erzeugend
- Ist $A \rightarrow X_1...X_n \in P$ und alle X_i erzeugend, dann ist A erzeugend
- Verfahren terminiert nach maximal |V|+1 Iterationen

• Generiere Menge erreichbarer Symbole iterativ

- S ist erreichbar
- Ist $A \rightarrow X_1...X_n \in P$ und A erreichbar dann sind alle X_i erreichbar
- Verfahren terminiert nach maximal |V| + |T| Iterationen

• Beispiel: $P = \{ S \rightarrow AB \mid a, A \rightarrow b \}$

- Erzeugende Symbole: 1.: a und b sind erzeugend

2.: S und A sind ebenfalls erzeugend

3.: Keine weiteren Symbole sind erzeugend

- Erreichbare Symbole: 1.: S ist erreichbar

2.: A, B und a sind ebenfalls erreichbar

3.: b ist ebenfalls erreichbar

Erzeugung der Chomsky-Normalform

Nur Produktionen der Form $A \rightarrow B C$ oder $A \rightarrow a$

- Jede kontextfreie Grammatik G ist umwandelbar in eine äquivalente Grammatik ohne unnütze Symbole, (echte) ϵ -Produktionen und Einheitsproduktionen
 - Falls $L(G) = \emptyset$, wähle $G' = (V, T, \emptyset, S)$ (Test auf ∅ später)
 - Sonst eliminiere ϵ -Produktionen, Einheitsproduktionen, unnütze Symbole

Erzeugung der Chomsky-Normalform

Nur Produktionen der Form $A \rightarrow B C$ oder $A \rightarrow a$

- Jede kontextfreie Grammatik G ist umwandelbar in eine äquivalente Grammatik ohne unnütze Symbole, (echte) ϵ -Produktionen und Einheitsproduktionen
 - Falls $L(G) = \emptyset$, wähle $G' = (V, T, \emptyset, S)$ (Test auf ∅ später)
 - Sonst eliminiere ϵ -Produktionen, Einheitsproduktionen, unnütze Symbole
- Separiere Terminalsymbole von Variablen
 - Für jedes Terminalsymbol $a \in T$ erzeuge neue Variable X_a
 - Ersetze Produktionen $A \rightarrow \alpha$ mit $|\alpha| \ge 2$ durch $A \rightarrow \alpha_X$ (a $\in T$ ersetzt durch X_a)
 - Ergänze Produktionen $X_a \rightarrow a$ für alle $a \in T$

Erzeugung der Chomsky-Normalform

Nur Produktionen der Form $A \rightarrow B C$ oder $A \rightarrow a$

- Jede kontextfreie Grammatik G ist umwandelbar in eine äquivalente Grammatik ohne unnütze Symbole, (echte) ϵ -Produktionen und Einheitsproduktionen
 - Falls $L(G) = \emptyset$, wähle $G' = (V, T, \emptyset, S)$ (Test auf ∅ später)
 - Sonst eliminiere ϵ -Produktionen, Einheitsproduktionen, unnütze Symbole
- Separiere Terminalsymbole von Variablen
 - Für jedes Terminalsymbol $a \in T$ erzeuge neue Variable X_a
 - Ersetze Produktionen $A \rightarrow \alpha$ mit $|\alpha| \ge 2$ durch $A \rightarrow \alpha_X$ (a $\in T$ ersetzt durch X_a)
 - Ergänze Produktionen $X_a \rightarrow a$ für alle $a \in T$
- Spalte Produktionen $A \to \alpha$ mit $|\alpha| > 2$
 - Ersetze jede Produktion $A \rightarrow X_1...X_k$ durch k-1 Produktionen $A \rightarrow X_1Y_1, Y_1 \rightarrow X_2Y_2, ...Y_{k-2} \rightarrow X_{k-1}X_k$, wobei alle Y_i neue Variablen

Erzeugung der Chomsky-Normalform am Beispiel

$$P = \{E
ightharpoonup E + T \mid T*F \mid (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \ T
ightharpoonup T*F \mid (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \ F
ightharpoonup (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \ I
ightharpoonup a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \ \}$$

Erzeugung der Chomsky-Normalform am Beispiel

$$P = \{E \to E + T \mid T * F \mid (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \\ T \to T * F \mid (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \\ F \to (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \\ I \to a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \}$$

• Separiere Terminalsymbole von Variablen

$$P' = \{E \to EX_{+}T \mid TX_{*}F \mid X_{(}EX_{)} \mid a \mid b \mid c \mid IX_{a} \mid IX_{b} \mid IX_{c} \mid IX_{0} \mid IX_{1} \\ T \to TX_{*}F \mid X_{(}EX_{)} \mid a \mid b \mid c \mid IX_{a} \mid IX_{b} \mid IX_{c} \mid IX_{0} \mid IX_{1} \\ F \to X_{(}EX_{)} \mid a \mid b \mid c \mid IX_{a} \mid IX_{b} \mid IX_{c} \mid IX_{0} \mid IX_{1} \\ I \to a \mid b \mid c \mid IX_{a} \mid IX_{b} \mid IX_{c} \mid IX_{0} \mid IX_{1} \\ X_{a} \to a, X_{b} \to b, X_{c} \to c, X_{0} \to 0, X_{1} \to 1, X_{+} \to +, X_{*} \to *, X_{(} \to (, X_{)} \to) \}$$

Erzeugung der Chomsky-Normalform am Beispiel

$$P = \{E \rightarrow E + T \mid T*F \mid (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \ T \rightarrow T*F \mid (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \ F \rightarrow (E) \mid a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \ I \rightarrow a \mid b \mid c \mid Ia \mid Ib \mid Ic \mid I0 \mid I1 \ \}$$

• Separiere Terminalsymbole von Variablen

$$P' = \{E \to EX_{+}T \mid TX_{*}F \mid X_{(}EX_{)} \mid a \mid b \mid c \mid IX_{a} \mid IX_{b} \mid IX_{c} \mid IX_{0} \mid IX_{1} \\ T \to TX_{*}F \mid X_{(}EX_{)} \mid a \mid b \mid c \mid IX_{a} \mid IX_{b} \mid IX_{c} \mid IX_{0} \mid IX_{1} \\ F \to X_{(}EX_{)} \mid a \mid b \mid c \mid IX_{a} \mid IX_{b} \mid IX_{c} \mid IX_{0} \mid IX_{1} \\ I \to a \mid b \mid c \mid IX_{a} \mid IX_{b} \mid IX_{c} \mid IX_{0} \mid IX_{1} \\ X_{a} \to a, X_{b} \to b, X_{c} \to c, X_{0} \to 0, X_{1} \to 1, X_{+} \to +, X_{*} \to *, X_{(} \to (, X_{)} \to) \}$$

ullet Spalte Produktionen A ightarrow lpha mit |lpha| > 2

Tests für Eigenschaften kontextfreier Sprachen

• Ist eine kontextfreie Sprache leer?

- $-\operatorname{Für} G = (V, T, P, S) \operatorname{gilt}$
 - L(G) ist leer genau dann wenn S nicht erzeugend ist
- Menge erzeugender Variablen kann iterativ bestimmt werden
- Mit speziellen Datenstrukturen ist Test in linearer Zeit durchführbar

(Details ins HMU §7.4.3)

Tests für Eigenschaften kontextfreier Sprachen

• Ist eine kontextfreie Sprache leer?

- $-\operatorname{Für} G = (V, T, P, S) \operatorname{gilt}$
 - L(G) ist leer genau dann wenn S nicht erzeugend ist
- Menge erzeugender Variablen kann iterativ bestimmt werden
- Mit speziellen Datenstrukturen ist Test in linearer Zeit durchführbar

(Details ins HMU §7.4.3)

• Gehört ein Wort zu einer kontextfreien Sprache?

- Naive Methode für den Test $w \in L(G)$:
 - 1. Erzeuge Chomsky-Normalform G' von G
 - 2. In G' erzeuge alle Ableitungsbäume mit 2|w|-1 Variablenknoten
 - 3. Teste, ob einer dieser Bäume das Wort w erzeugt

Tests für Eigenschaften kontextfreier Sprachen

• Ist eine kontextfreie Sprache leer?

- $-\operatorname{Für} G = (V, T, P, S) \operatorname{gilt}$
 - L(G) ist leer genau dann wenn S nicht erzeugend ist
- Menge erzeugender Variablen kann iterativ bestimmt werden
- Mit speziellen Datenstrukturen ist Test in linearer Zeit durchführbar

(Details ins HMU §7.4.3)

• Gehört ein Wort zu einer kontextfreien Sprache?

- Naive Methode für den Test $w \in L(G)$:
 - 1. Erzeuge Chomsky-Normalform G' von G
 - 2. In G' erzeuge alle Ableitungsbäume mit 2|w|-1 Variablenknoten
 - 3. Teste, ob einer dieser Bäume das Wort w erzeugt
- Hochgradig ineffizient, da exponentiell viele Bäume zu erzeugen
- Iterative Analyseverfahren sind besser

SYNTAXANALYSE: Cocke-Younger-Kasami Algorithmus

Bestimme Variablenmengen, aus denen $w_i..w_j$ ableitbar

ullet Eingabe: Grammatik $oldsymbol{G}=(V,T,P,S)$ in Chomsky-NF, $oldsymbol{w}\in T^*$

SYNTAXANALYSE: Cocke-Younger-Kasami Algorithmus

Bestimme Variablenmengen, aus denen $w_i..w_j$ ableitbar

- Eingabe: Grammatik G = (V, T, P, S) in Chomsky-NF, $w \in T^*$
- Berechne Mengen $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_j\}$ iterativ

 $w_1 \quad w_2 \dots \quad w_{n-1}$ w_n

Bestimme Variablenmengen, aus denen $w_i..w_j$ ableitbar

- Eingabe: Grammatik G = (V, T, P, S) in Chomsky-NF, $w \in T^*$
- Berechne Mengen $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_j\}$ iterativ j=i: $V_{i,i} = \{A \in V \mid A \longrightarrow w_i \in P\}$

Bestimme Variablenmengen, aus denen $w_i...w_j$ ableitbar

- ullet Eingabe: Grammatik $oldsymbol{G}=(V,T,P,S)$ in Chomsky-NF, $oldsymbol{w}\in T^*$
- Berechne Mengen $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_i\}$ iterativ

$$j{=}i{:} \ egin{array}{c} V_{i,i} = \{A \in V \mid A {
ightarrow} w_i \in P \} \ j{>}i{:} \ V_{i,j} = \{A \in V \mid B {
ightarrow} v_i \in P \} \ \exists i {
ightarrow} \{ i {
ightarrow} v_i {
ight$$

Bestimme Variablenmengen, aus denen $w_i...w_j$ ableitbar

- ullet Eingabe: Grammatik $oldsymbol{G}=(V,T,P,S)$ in Chomsky-NF, $oldsymbol{w}\in T^*$
- Berechne Mengen $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_i\}$ iterativ

$$j=i: oldsymbol{V_{i,i}} = \{A \in V \mid A \longrightarrow w_i \in P\}$$
 $j>i: oldsymbol{V_{i,j}} = \{A \in V \mid A \longrightarrow w_i \in P\}$ $V_{1,n}$ $V_{1,n-1} \ V_{2,n}$ \vdots \vdots \vdots \vdots $V_{1,2} \ V_{2,3} \dots \ V_{n-1,n}$ $V_{n-1,n}$ $V_{n-1,n}$

Bestimme Variablenmengen, aus denen $w_i...w_j$ ableitbar

- ullet Eingabe: Grammatik $oldsymbol{G}=(V,T,P,S)$ in Chomsky-NF, $oldsymbol{w}\in T^*$
- Berechne Mengen $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_i\}$ iterativ

ullet Akzeptiere w genau dann, wenn $S \in V_{1,|w|}$

Bestimme Variablenmengen, aus denen $w_i...w_j$ ableitbar

- Eingabe: Grammatik G = (V, T, P, S) in Chomsky-NF, $w \in T^*$
- Berechne Mengen $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_i\}$ iterativ

$$j=i: oldsymbol{V_{i,i}} = \{A \in V \mid A \longrightarrow w_i \in P\}$$
 $j>i: oldsymbol{V_{i,j}} = \{A \in V \mid A \longrightarrow w_i \in P\}$ $V_{1,n}$ $V_{1,n-1} \ V_{2,n}$ $\vdots \ i : \ V_{1,2} \ V_{2,3} \dots \ V_{n-1,n}$ $V_{n-1,n} \ A \longrightarrow BC \in P$. $V_{1,1} \ V_{2,2} \dots \ V_{n-1,n-1} \ V_{n,n}$ $V_{n-1,n-1} \ V_{n,n}$ $V_{n-1,n-1} \ V_{n,n}$

ullet Akzeptiere w genau dann, wenn $S \in V_{1,|w|}$

Entscheidet $w \in L(G)$ in kubischer Zeit relativ zur Größe von wKonstruiert gleichzeitig den Syntaxbaum von w

$$\{\,S\mathop{
ightarrow} AB|BC,A\mathop{
ightarrow} BA|a,B\mathop{
ightarrow} CC|b,C\mathop{
ightarrow} AB|a\,\}\,$$

ullet Prüfe w=baaba \in L(G)

$$\{\,S\mathop{
ightarrow} AB|BC,A\mathop{
ightarrow} BA|a,B\mathop{
ightarrow} CC|b,C\mathop{
ightarrow} AB|a\,\}\,$$

- ullet Prüfe $w=baaba\in L(G)$
- Berechne $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_j\}$

 \boldsymbol{a}

 \boldsymbol{a}

$$\{\,S \mathop{
ightarrow} AB|BC, A\mathop{
ightarrow} BA|a, B\mathop{
ightarrow} CC|b, C\mathop{
ightarrow} AB|a\,\}\,$$

- ullet Prüfe $w=baaba\in L(G)$
- Berechne $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_j\}$

$$\{B\}$$
 $\{A,C\}$ $\{A,C\}$ $\{B\}$ $\{A,C\}$ b a b a

$$\{\,S\mathop{
ightarrow} AB|BC,A\mathop{
ightarrow} BA|a,B\mathop{
ightarrow} CC|b,C\mathop{
ightarrow} AB|a\,\}\,$$

- ullet Prüfe $w=baaba\in L(G)$
- Berechne $V_{i,j} = \{A \in V \mid A \xrightarrow{*} w_i...w_i\}$

```
\{S,A\} \{B\} \{S,C\} \{S,A\}
 \{B\} \qquad \{A,C\} \qquad \{A,C\} \qquad \{B\} \qquad \{A,C\}
```

$$\{\,S \mathop{
ightarrow} AB|BC, A\mathop{
ightarrow} BA|a, B\mathop{
ightarrow} CC|b, C\mathop{
ightarrow} AB|a\,\}\,$$

- ullet Prüfe $w=baaba\in L(G)$
- Berechne $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_i\}$

$$\{\,S\mathop{
ightarrow} AB|BC,A\mathop{
ightarrow} BA|a,B\mathop{
ightarrow} CC|b,C\mathop{
ightarrow} AB|a\,\}\,$$

- ullet Prüfe $w=baaba\in L(G)$
- Berechne $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_i\}$

```
- \{S,A,C\}
- \{B\} \{S,A\}  \{B\} \{S,C\} \{S,A\}
 \{B\} \qquad \{A,C\} \qquad \{A,C\} \qquad \{B\} \qquad \{A,C\}
```

$$\{\,S \mathop{
ightarrow} AB|BC, A\mathop{
ightarrow} BA|a, B\mathop{
ightarrow} CC|b, C\mathop{
ightarrow} AB|a\,\}\,$$

- ullet Prüfe $w=baaba\in L(G)$
- Berechne $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_j\}$

```
\{S, A, C\}
  - \{S, A, C\}
\{B\} \qquad \{A,C\} \qquad \{A,C\} \qquad \{B\} \qquad \{A,C\}
```

$$\{\,S \mathop{
ightarrow} AB|BC, A\mathop{
ightarrow} BA|a, B\mathop{
ightarrow} CC|b, C\mathop{
ightarrow} AB|a\,\}\,$$

- ullet Prüfe $w=baaba\in L(G)$
- Berechne $V_{i,j} = \{A \in V \mid A \stackrel{*}{\longrightarrow} w_i...w_i\}$

ullet $S\in V_{1,5},$ also $w\in L(G)$

Unentscheidbare Probleme für Typ-2 Sprachen

Die folgenden Probleme können nicht getestet werden

$$ullet L(G) = T^*$$

Welche Menge beschreibt G?

$$\bullet \ L(G_1) = L(G_2)$$

Aquivalenz von Grammatiken

$$\bullet L(G_1) \subseteq L(G_2)$$

$$\bullet \ L(G_1) \cap L(G_2) = \emptyset$$

$$ullet$$
 $L(G)\in \mathcal{L}_3$

$$ullet \, \overline{L(G)} \in \mathcal{L}_2$$

kontextfreies Komplement?

kontextfreier Schnitt?

Beweise brauchen Berechenbarkeitstheorie / TI-2

 $ullet L(G_1) \cap L(G_2) \in \mathcal{L}_2$

Warum ist $L=\{0^n1^n2^n\mid n\in\mathbb{N}\}$ nicht kontextfrei?

Warum ist $L=\{0^n1^n2^n\mid n\in\mathbb{N}\}$ nicht kontextfrei?

• Typ-2 Grammatiken arbeiten lokal

- Anwendbarkeit einer Produktion hängt nur von einer Variablen ab (der Kontext der Variablen ist irrelevant)
- Eine Regel kann nur an einer Stelle im Wort etwas erzeugen
- Eine Typ-2 Grammatik kann entweder 0/1 oder 1/2 simultan erhöhen aber nicht beides gleichzeitig
- Grammatik müßte die Anzahl der 0/1 oder 1/2 im Voraus bestimmen und diese Anzahl für die 2 bzw. 0 im Namen der Variablen codieren

Warum ist $L=\{0^n1^n2^n\mid n\in\mathbb{N}\}$ nicht kontextfrei?

• Typ-2 Grammatiken arbeiten lokal

- Anwendbarkeit einer Produktion hängt nur von einer Variablen ab (der Kontext der Variablen ist irrelevant)
- Eine Regel kann nur an einer Stelle im Wort etwas erzeugen
- Eine Typ-2 Grammatik kann entweder 0/1 oder 1/2 simultan erhöhen aber nicht beides gleichzeitig
- Grammatik müßte die Anzahl der 0/1 oder 1/2 im Voraus bestimmen und diese Anzahl für die 2 bzw. 0 im Namen der Variablen codieren

Grammatiken sind endlich

- Es gibt nur endlich viele Variablen
- Für n>|V| muß eine Variable X doppelt benutzt worden sein zur Codierung von 0^n1^n und 0^i1^i mit i< n
- Grammatik würde auch $0^n 1^n 2^i$ und $0^i 1^i 2^n$ generieren

Warum ist $L=\{0^n1^n2^n\mid n\in\mathbb{N}\}$ nicht kontextfrei?

• Typ-2 Grammatiken arbeiten lokal

- Anwendbarkeit einer Produktion hängt nur von einer Variablen ab (der Kontext der Variablen ist irrelevant)
- Eine Regel kann nur an einer Stelle im Wort etwas erzeugen
- Eine Typ-2 Grammatik kann entweder 0/1 oder 1/2 simultan erhöhen aber nicht beides gleichzeitig
- Grammatik müßte die Anzahl der 0/1 oder 1/2 im Voraus bestimmen und diese Anzahl für die 2 bzw. 0 im Namen der Variablen codieren

Grammatiken sind endlich

- Es gibt nur endlich viele Variablen
- Für n>|V| muß eine Variable X doppelt benutzt worden sein zur Codierung von 0^n1^n und 0^i1^i mit i< n
- Grammatik würde auch $0^n 1^n 2^i$ und $0^i 1^i 2^n$ generieren

• Genaues Argument ist etwas komplizierter

- Allgemeine Version: Pumping Lemma für kontextfreie Sprachen

Wie zeigt man, daß eine Sprache nicht kontextfrei ist?

Wie zeigt man, daß eine Sprache nicht kontextfrei ist?

- ullet Für jede kontextfreie Sprache $L\in\mathcal{L}_2$ gibt es eine Zahl $n\in\mathbb{N}$, so daß jedes Wort $z\in L$ mit Länge $|z|\!\geq\! n$ zerlegt werden kann in $z=u\,v\,w\,x\,y\,$ mit den Eigenschaften
 - (1) $v \circ x \neq \epsilon$,
 - (2) $|v w x| \leq n$ und
 - (3) für alle $i \in \mathbb{N}$ ist $u v^i w x^i y \in L$

Wie zeigt man, daß eine Sprache nicht kontextfrei ist?

- ullet Für jede kontextfreie Sprache $L\in\mathcal{L}_2$ gibt es eine Zahl $n\in\mathbb{N}$, so daß jedes Wort $z\in L$ mit Länge $|z|\!\geq\! n$ zerlegt werden kann in $z=u\,v\,w\,x\,y\,$ mit den Eigenschaften
 - (1) $v \circ x \neq \epsilon$,
 - (2) $|v|w|x| \leq n$ und
 - (3) für alle $i \in \mathbb{N}$ ist $u v^i w x^i y \in L$
- Aussage ist wechselseitig konstruktiv
 - Die Zahl n kann zu jeder kontextfreien Sprache L bestimmt werden
 - Die Zerlegung z = u v w x y kann zu jedem Wort $z \in L$ bestimmt werden

Wie zeigt man, daß eine Sprache nicht kontextfrei ist?

- ullet Für jede kontextfreie Sprache $L\in\mathcal{L}_2$ gibt es eine Zahl $n\in\mathbb{N},$ so daß jedes Wort $z\in L$ mit Länge $|z|{\ge}n$ zerlegt werden kann in
 - z = u v w x y mit den Eigenschaften
 - (1) $v \circ x \neq \epsilon$,
 - (2) $|v|w|x| \leq n$ und
 - (3) für alle $i \in \mathbb{N}$ ist $u v^i w x^i y \in L$

Aussage ist wechselseitig konstruktiv

- Die Zahl n kann zu jeder kontextfreien Sprache L bestimmt werden
- Die Zerlegung z = u v w x y kann zu jedem Wort $z \in L$ bestimmt werden

Beweis benötigt Chomsky-Normalform

- Ableitungen der Länge k können maximal Wörter der Länge 2^k erzeugen
- Ableitungen der Länge k>|V| benutzen ein Hilfssymbol X doppelt
- Die Schleife der Ableitung von X aus X kann beliebig wiederholt werden

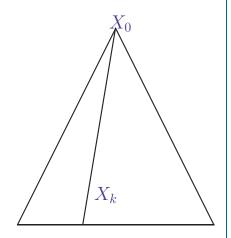
Für jede Sprache $L \in \mathcal{L}_2$ gibt es ein $n \in \mathbb{N}$, so daß jedes $z \in L$ mit Länge $|z| \ge n$ zerlegt werden kann in z = u v w x y mit (1) $v \circ x \ne \epsilon$, (2) $|v w x| \le n$ (3) $u v^i w x^i y \in L$ für alle $i \in \mathbb{N}$

Für jede Sprache $L \in \mathcal{L}_2$ gibt es ein $n \in \mathbb{N}$, so daß jedes $z \in L$ mit Länge $|z| \ge n$ zerlegt werden kann in z = u v w x y mit (1) $v \circ x \neq \epsilon$, (2) $|v w x| \leq n$ (3) $u v^i w x^i y \in L$ für alle $i \in \mathbb{N}$

- $-\operatorname{F\"{u}r} L=\emptyset$ oder $L=\{\epsilon\}$ gilt die Behauptung trivialerweise
- Andernfalls sei G=(V, T, P, S) in Chomsky-Normalform mit L=L(G)

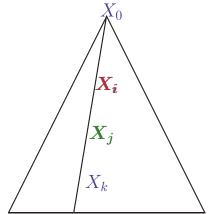
Für jede Sprache $L \in \mathcal{L}_2$ gibt es ein $n \in \mathbb{N}$, so daß jedes $z \in L$ mit Länge $|z| \ge n$ zerlegt werden kann in z = u v w x y mit (1) $v \circ x \ne \epsilon$, (2) $|v w x| \le n$ (3) $u v^i w x^i y \in L$ für alle $i \in \mathbb{N}$

- $-\operatorname{F\"{u}r} L = \emptyset$ oder $L = \{\epsilon\}$ gilt die Behauptung trivialerweise
- Andernfalls sei G=(V, T, P, S) in Chomsky-Normalform mit L=L(G)
- Wähle $n=2^{|V|}$ und betrachte $z=z_1..z_m$ mit $|z| \ge n$
- Dann hat jeder Ableitungsbaum für z eine Tiefe von mindestens |V|+1



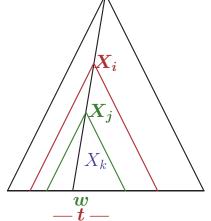
Für jede Sprache $L \in \mathcal{L}_2$ gibt es ein $n \in \mathbb{N}$, so daß jedes $z \in L$ mit Länge $|z| \ge n$ zerlegt werden kann in z = u v w x y mit (1) $v \circ x \ne \epsilon$, (2) $|v w x| \le n$ (3) $u v^i w x^i y \in L$ für alle $i \in \mathbb{N}$

- $-\operatorname{F\"{u}r} L=\emptyset$ oder $L=\{\epsilon\}$ gilt die Behauptung trivialerweise
- Andernfalls sei G=(V, T, P, S) in Chomsky-Normalform mit L=L(G)
- Wähle $n=2^{|V|}$ und betrachte $z=z_1..z_m$ mit $|z| \ge n$
- Dann hat jeder Ableitungsbaum für z eine Tiefe von mindestens |V|+1
- Sei $X_0, ... X_k$ die Folge der verarbeiteten Variablen auf dem längsten Pfad Dann erscheint eine Variable zweimal: $X_i = X_j$ für ein i < j mit k |V| < i



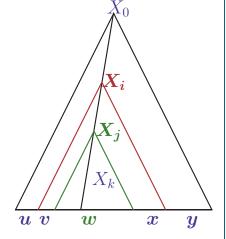
Für jede Sprache $L \in \mathcal{L}_2$ gibt es ein $n \in \mathbb{N}$, so daß jedes $z \in L$ mit Länge $|z| \ge n$ zerlegt werden kann in z = u v w x y mit (1) $v \circ x \ne \epsilon$, (2) $|v w x| \le n$ (3) $u v^i w x^i y \in L$ für alle $i \in \mathbb{N}$

- $-\operatorname{F\"{u}r} L=\emptyset$ oder $L=\{\epsilon\}$ gilt die Behauptung trivialerweise
- Andernfalls sei G=(V,T,P,S) in Chomsky-Normalform mit L=L(G)
- Wähle $n=2^{|V|}$ und betrachte $z=z_1..z_m$ mit $|z| \ge n$
- Dann hat jeder Ableitungsbaum für z eine Tiefe von mindestens |V|+1
- Sei $X_0, ... X_k$ die Folge der verarbeiteten Variablen auf dem längsten Pfad Dann erscheint eine Variable zweimal: $X_i = X_j$ für ein i < j mit k |V| < i
- Seien w und t die aus X_i bzw. X_i abgeleiteten Teilwörter



Für jede Sprache $L \in \mathcal{L}_2$ gibt es ein $n \in \mathbb{N}$, so daß jedes $z \in L$ mit Länge $|z| \ge n$ zerlegt werden kann in z = u v w x y mit (1) $v \circ x \ne \epsilon$, (2) $|v w x| \le n$ (3) $u v^i w x^i y \in L$ für alle $i \in \mathbb{N}$

- $-\operatorname{F\"{u}r} L=\emptyset$ oder $L=\{\epsilon\}$ gilt die Behauptung trivialerweise
- Andernfalls sei G=(V,T,P,S) in Chomsky-Normalform mit L=L(G)
- Wähle $n=2^{|V|}$ und betrachte $z=z_1..z_m$ mit $|z| \ge n$
- Dann hat jeder Ableitungsbaum für z eine Tiefe von mindestens |V|+1
- Sei $X_0, ... X_k$ die Folge der verarbeiteten Variablen auf dem längsten Pfad Dann erscheint eine Variable zweimal: $X_i = X_j$ für ein i < j mit k |V| < i
- Seien w und t die aus X_i bzw. X_i abgeleiteten Teilwörter
- Dann gilt t = v w x und z = u t y für Wörter u, v, x und y
- Da G in Chomsky-Normalform ist, gilt $v \circ x \neq \epsilon$
- Wegen k-|V| < i gilt $|v w x| = |t| \le n$
- Wegen $X_i = X_j$ kann die Ableitung von X_i bis X_j beliebig wiederholt werden und es gilt $u v^i w x^i y \in L$ für alle $i \in \mathbb{N}$



- $ullet L = \{0^m 1^m 2^m \mid m \in \mathbb{N}\}$ ist nicht kontextfrei
 - Verwende Kontraposition des Pumping Lemmas

$$(\forall n \in \mathbb{N}. \exists z \in L. |z| \geq n \land \forall u, v, w, x, y \in T^*. (z = u v w x y \land v \circ x \neq \epsilon \land |v w x| \leq n) \Rightarrow \exists i \in \mathbb{N}. u v^i w x^i y \notin L) \Rightarrow \mathbf{L} \notin \mathcal{L}_2$$

- $ullet L = \{0^m 1^m 2^m \mid m \in \mathbb{N}\}$ ist nicht kontextfrei
 - Verwende Kontraposition des Pumping Lemmas

$$(\forall n \in \mathbb{N}. \exists z \in L. |z| \geq n \land \forall u, v, w, x, y \in T^*. (z = u v w x y \land v \circ x \neq \epsilon \land |v w x| \leq n) \Rightarrow \exists i \in \mathbb{N}. u v^i w x^i y \notin L) \Rightarrow \mathbf{L} \notin \mathcal{L}_2$$

- Sei $n \in \mathbb{N}$ beliebig. Wir wählen $z = 0^m 1^m 2^m$ für ein m > n

- ullet $L=\{0^m1^m2^m\mid m\in \mathbb{N}\}$ ist nicht kontextfrei
 - Verwende Kontraposition des Pumping Lemmas

$$|(\forall n \in \mathbb{N}. \exists z \in L. |z| \geq n \land \forall u, v, w, x, y \in T^*. (z = u v w x y) \land v \circ x \neq \epsilon \land |v w x| \leq n) \Rightarrow \exists i \in \mathbb{N}. u v^i w x^i y \notin L) \Rightarrow \mathbf{L} \notin \mathcal{L}_2$$

- Sei $n \in \mathbb{N}$ beliebig. Wir wählen $z = 0^m 1^m 2^m$ für ein m > n
- Sei $u, v, w, x, y \in T^*$ beliebig mit z = u v w x y, und (1) $v \circ x \neq \epsilon$ und (2) $|v w x| \leq n$
- Wir wählen i = 0 und zeigen $u w y = u v^i w x^i y \notin L$

- ullet $L=\{0^m1^m2^m\mid m\in \mathbb{N}\}$ ist nicht kontextfrei
 - Verwende Kontraposition des Pumping Lemmas

$$(\forall n \in \mathbb{N}. \exists z \in L. |z| \geq n \land \forall u, v, w, x, y \in T^*. (z = u v w x y \land v \circ x \neq \epsilon \land |v w x| \leq n) \Rightarrow \exists i \in \mathbb{N}. u v^i w x^i y \notin L) \Rightarrow \mathbf{L} \notin \mathcal{L}_2$$

- Sei $n \in \mathbb{N}$ beliebig. Wir wählen $z = 0^m 1^m 2^m$ für ein m > n
- Sei $u, v, w, x, y \in T^*$ beliebig mit z = u v w x y, und (1) $v \circ x \neq \epsilon$ und (2) $|v w x| \leq n$
- Wir wählen i = 0 und zeigen $u w y = u v^i w x^i y \notin L$
- Wegen (2) enthält v w x keine Nullen oder keine Zweien
 - · Falls v w x keine Null enthält, dann enthält u w y genau m Nullen aber wegen (1) weniger Einsen und/oder Zweien
 - \cdot Falls v w x keine Zwei enthält, dann enthält u w y genau m Zweien aber wegen (1) weniger Nullen und/oder Einsen
- Damit kann $u w y = u v^0 w x^0 y$ nicht zu L gehören

- ullet $L=\{0^m1^m2^m\mid m\in \mathbb{N}\}$ ist nicht kontextfrei
 - Verwende Kontraposition des Pumping Lemmas

$$|(\forall n \in \mathbb{N}. \exists z \in L. |z| \geq n \land \forall u, v, w, x, y \in T^*. (z = u v w x y \land v \circ x \neq \epsilon \land |v w x| \leq n) \Rightarrow \exists i \in \mathbb{N}. u v^i w x^i y \notin L) \Rightarrow \mathbf{L} \notin \mathcal{L}_2$$

- Sei $n \in \mathbb{N}$ beliebig. Wir wählen $z = 0^m 1^m 2^m$ für ein m > n
- Sei $u, v, w, x, y \in T^*$ beliebig mit z = u v w x y, und (1) $v \circ x \neq \epsilon$ und (2) $|v w x| \leq n$
- Wir wählen i = 0 und zeigen $u w y = u v^i w x^i y \notin L$
- Wegen (2) enthält v w x keine Nullen oder keine Zweien
 - · Falls v w x keine Null enthält, dann enthält u w y genau m Nullen aber wegen (1) weniger Einsen und/oder Zweien
 - \cdot Falls v w x keine Zwei enthält, dann enthält u w y genau m Zweien aber wegen (1) weniger Nullen und/oder Einsen
- Damit kann $u w y = u v^0 w x^0 y$ nicht zu L gehören
- Mit dem Pumping Lemma folgt nun, daß L nicht kontextfrei ist

- $ullet L = \{0^m 1^m 2^m \mid m \in \mathbb{N}\}$ ist nicht kontextfrei
 - Verwende Kontraposition des Pumping Lemmas

$$(\forall n \in \mathbb{N}. \exists z \in L. |z| \geq n \land \forall u, v, w, x, y \in T^*. (z = u v w x y \land v \circ x \neq \epsilon \land |v w x| \leq n) \Rightarrow \exists i \in \mathbb{N}. u v^i w x^i y \notin L) \Rightarrow \mathbf{L} \notin \mathbf{\mathcal{L}_2}$$

- Sei $n \in \mathbb{N}$ beliebig. Wir wählen $z = 0^m 1^m 2^m$ für ein m > n
- Sei $u, v, w, x, y \in T^*$ beliebig mit z = u v w x y, und (1) $v \circ x \neq \epsilon$ und (2) $|v w x| \leq n$
- Wir wählen i = 0 und zeigen $u w y = u v^i w x^i y \notin L$
- Wegen (2) enthält v w x keine Nullen oder keine Zweien
 - · Falls v w x keine Null enthält, dann enthält u w y genau m Nullen aber wegen (1) weniger Einsen und/oder Zweien
 - \cdot Falls v w x keine Zwei enthält, dann enthält u w y genau m Zweien aber wegen (1) weniger Nullen und/oder Einsen
- Damit kann $u w y = u v^0 w x^0 y$ nicht zu L gehören
- Mit dem Pumping Lemma folgt nun, daß L nicht kontextfrei ist
- $ullet L' = \{ \ ww \ | \ w \in \{0,1\}^* \}
 ot\in \mathcal{L}_2$
 - Ähnliches Argument mit Wörtern der Form $0^m 1^m 0^m 1^m$

Rückblick: Eigenschaften kontextfreier Sprachen

Kontextfreie Sprachen sind deutlich komplizierter

Abschlußeigenschaften

- Operationen \cup , R , \circ , * , σ , h^{-1} erhalten Kontextfreiheit von Sprachen
- Keine Abgeschlossenheit unter ∩, ¯, -

Automatische Prüfungen

- Man kann testen ob eine kontextfreie Sprache leer ist
- Man kann testen ob ein Wort zu einer kontextfreien Sprache gehört
- Man kann nicht testen ob zwei kontextfreie Sprachen gleich sind
 Viele wichtige Fragen sind nicht automatisch prüfbar

Pumping Lemma

- Wiederholt man bestimmte Teile genügend großer Wörter einer kontextfreien Sprache beliebig oft, so erhält man immer ein Wort der Sprache
- Konsequenz: viele einfache Sprachen sind nicht kontextfrei
 Für diese sind aufwendigere Mechanismen erforderlich

→ TI-2