Theoretische Informatik I

Einheit 4.2

Modelle für Typ-0 & Typ-1 Sprachen

- 1. Nichtdeterministische Turingmaschinen
- 2. Äquivalenz zu Typ-0 Sprachen
- 3. Linear beschränkte Automaten und Typ-1 Sprachen

Maschinenmodelle vs. Grammatiken

- ullet Ableitbarkeit $w \longrightarrow_G z$ ist nichtdeterministisch
 - In w können verschiedene Teilworte ersetzt werden
 - Auf ein Teilwort können verschiedene Regeln angewandt werden
 - Simulation erfordert nichtdeterministisches Maschinenmodell

Maschinenmodelle vs. Grammatiken

ullet Ableitbarkeit $w \longrightarrow_G z$ ist nichtdeterministisch

- In w können verschiedene Teilworte ersetzt werden
- Auf ein Teilwort können verschiedene Regeln angewandt werden
- Simulation erfordert nichtdeterministisches Maschinenmodell

• Maschinenmodelle sind i.a. deterministisch

- Nichtdeterministische Modelle sind "unrealistisch"
 und nur für elegantere Modellierung geeignet
- Nichtdeterministische Modelle sind evtl. deterministisch simulierbar aber nur mit exponentiellem Aufwand

Maschinenmodelle vs. Grammatiken

ullet Ableitbarkeit $w \longrightarrow_G z$ ist nichtdeterministisch

- In w können verschiedene Teilworte ersetzt werden
- Auf ein Teilwort können verschiedene Regeln angewandt werden
- Simulation erfordert nichtdeterministisches Maschinenmodell

• Maschinenmodelle sind i.a. deterministisch

- Nichtdeterministische Modelle sind "unrealistisch"
 und nur für elegantere Modellierung geeignet
- Nichtdeterministische Modelle sind evtl. deterministisch simulierbar aber nur mit exponentiellem Aufwand

• Verwende nichtdeterministische Turingmaschinen

- "Simultane" Behandlung vieler alternativer Konfigurationen
- Zeige Äquivalenz zu deterministischen Turingmaschinen
- Zeige Äquivalenz zu Typ-0 Grammatiken
- Zeige Äquivalenz zu Typ-1 Grammatiken für eingeschränktes Modell

NICHTDETERMINISTISCHE TURINGMASCHINEN

- Eine nichtdeterministische Turingmaschine (NTM) ist ein 7-Tupel $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ mit
 - Q nichtleere endliche Zustandsmenge
 - $-\Sigma$ endliches **Eingabealphabet**
 - $-\Gamma$ ⊇ Σ endliches **Bandalphabet**
 - $-\delta:Q\times\Gamma\to\mathcal{P}_e(Q\times\Gamma\times\{L,R\})$ endliche Überführungsfunktion
 - $-q_0 \in Q$ Startzustand
 - $-B \in \Gamma \setminus \Sigma$ Leersymbol des Bands
 - $-F\subseteq Q$ Menge von akzeptierenden (End-)**Zuständen**

NICHTDETERMINISTISCHE TURINGMASCHINEN

- Eine nichtdeterministische Turingmaschine (NTM) ist ein 7-Tupel $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ mit
 - − Q nichtleere endliche **Zustandsmenge**
 - $-\Sigma$ endliches **Eingabealphabet**
 - $-\Gamma$ ⊇ Σ endliches **Bandalphabet**
 - $-\delta:Q\times\Gamma\to\mathcal{P}_e(Q\times\Gamma\times\{L,R\})$ endliche Überführungsfunktion
 - $-q_0 \in Q$ Startzustand
 - -B ∈ $\Gamma \setminus \Sigma$ Leersymbol des Bands
 - $-F\subseteq Q$ Menge von akzeptierenden (End-)**Zuständen**
- ullet Definition von $lacksquare^*$ und L(M) analog zu DTM

$$-(uZ, q, Xv) \vdash (u, p, ZYv),$$
 falls $(p, Y, L) \in \delta(q, X)$

$$-(u, q, Xv) \vdash (uY, p, v),$$
 falls $(p, Y, R) \in \delta(q, X)$

NICHTDETERMINISTISCHE TURINGMASCHINEN

- Eine nichtdeterministische Turingmaschine (NTM) ist ein 7-Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ mit
 - Q nichtleere endliche Zustandsmenge
 - $-\Sigma$ endliches **Eingabealphabet**
 - $-\Gamma$ ⊇ Σ endliches **Bandalphabet**
 - $-\delta:Q\times\Gamma\to\mathcal{P}_e(Q\times\Gamma\times\{L,R\})$ endliche Überführungsfunktion
 - $-q_0 \in Q$ Startzustand
 - -B ∈ Γ\Σ Leersymbol des Bands
 - $-F\subseteq Q$ Menge von akzeptierenden (End-)**Zuständen**
- ullet Definition von $lacksquare^*$ und L(M) analog zu DTM
 - $-(uZ, q, Xv) \vdash (u, p, ZYv),$ falls $(p, Y, L) \in \delta(q, X)$
 - $-(u, q, Xv) \vdash (uY, p, v),$ falls $(p, Y, R) \in \delta(q, X)$
 - $-oldsymbol{L(M)} = \{w \in \Sigma^* \mid \exists p \in F. \ \exists u,v \in \Gamma^*. \ (\epsilon,q_0,w) \ dash^* \ (u,p,v)\}$

Verarbeite alle Alternativen sequentiell

_ THEORETISCHE INFORMATIK I §4.2: _______ 3 ______ MODELLE FÜR TYP-0 & TYP-1 SPRACHEN

Verarbeite alle Alternativen sequentiell

- Für $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ definiere Mengen K_i^w
 - Menge der in i Schritten erzeugbaren Konfigurationen bei Eingabe w

$$K_0^w := \{(\epsilon, q_0, w)\}, K_{i+1}^w := \{\kappa' \mid \exists \kappa \in K_i^w. \kappa \vdash \kappa'\}$$

– Es gilt $w \in L(M) \iff \exists i. \ \exists p \in F. \ \exists u,v \in \Gamma^*. \ (u,p,v) \in K_i^w$

Verarbeite alle Alternativen sequentiell

- Für $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ definiere Mengen K_i^w
 - Menge der in i Schritten erzeugbaren Konfigurationen bei Eingabe \boldsymbol{w}

$$K_0^w := \{(\epsilon, q_0, w)\}, K_{i+1}^w := \{\kappa' \mid \exists \kappa \in K_i^w. \kappa \vdash \kappa'\}$$

- Es gilt $w \in L(M) \iff \exists i. \ \exists p \in F. \ \exists u,v \in \Gamma^*. \ (u,p,v) \in K_i^w$
- ullet Beschreibe DTM zur Erzeugung der K_i^w

– Arbeitsband beschreibt alle bisher erzeugten Konfigurationen der NTM Die aktuell betrachtete Konfiguration κ wird markiert

Verarbeite alle Alternativen sequentiell

- Für $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ definiere Mengen K_i^w
 - Menge der in i Schritten erzeugbaren Konfigurationen bei Eingabe \boldsymbol{w}

$$K_0^w := \{(\epsilon, q_0, w)\}, K_{i+1}^w := \{\kappa' \mid \exists \kappa \in K_i^w. \kappa \vdash \kappa'\}$$

- Es gilt $w \in L(M) \iff \exists i. \ \exists p \in F. \ \exists u,v \in \Gamma^*. \ (u,p,v) \in K_i^w$
- ullet Beschreibe DTM zur Erzeugung der $K_{m{i}}^w$

$$|q_0|w_1..w_n| \ \, \sharp \ \, \|\#|u_1^1|q_1^1|v_1^1| \ \, \#|u_1^2|q_1^2|v_1^2| \ \, \#\cdots\#|u_1^{j_1}|q_1^{j_1}|v_1^{j_1}| \ \, \sharp \ \, |$$

- Arbeitsband beschreibt alle bisher erzeugten Konfigurationen der NTM Die aktuell betrachtete Konfiguration κ wird markiert
- Lesen: Extrahiere aus κ das gelesene Symbol X und Zustand q der NTM
- Verarbeiten: Erzeuge aus κ und $\delta(q,X)$ alle Nachfolgekonfigurationen Lösche Markierung von κ und markiere nächste Konfiguration auf Band

Verarbeite alle Alternativen sequentiell

- Für $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ definiere Mengen K_i^w
 - Menge der in i Schritten erzeugbaren Konfigurationen bei Eingabe w

$$K_0^w := \{(\epsilon, q_0, w)\}, K_{i+1}^w := \{\kappa' \mid \exists \kappa \in K_i^w. \kappa \vdash \kappa'\}$$

- Es gilt $w \in L(M) \iff \exists i. \ \exists p \in F. \ \exists u,v \in \Gamma^*. \ (u,p,v) \in K_i^w$
- ullet Beschreibe DTM zur Erzeugung der $oldsymbol{K_i^w}_{K_1^w}$

$$\boxed{q_0 | w_1..w_n | \$ | \# | u_1^1|q_1^1|v_1^1 | \# | u_1^2|q_1^2|v_1^2 | \#\cdots \# | u_1^{j_1}|q_1^{j_1}|v_1^{j_1} | \$ | \# | u_2^1|q_1^1|v_2^1 | \#\cdots \# | u_2^{j_2}|q_2^{j_2}|v_2^{j_2} | \$ | \cdots}$$

- Arbeitsband beschreibt alle bisher erzeugten Konfigurationen der NTM Die aktuell betrachtete Konfiguration κ wird markiert
- Lesen: Extrahiere aus κ das gelesene Symbol X und Zustand q der NTM
- Verarbeiten: Erzeuge aus κ und $\delta(q,X)$ alle Nachfolgekonfigurationen Lösche Markierung von κ und markiere nächste Konfiguration auf Band Jede mögliche Konfiguration der NTM wird von der DTM aufgesucht

SIMULATION VON NTMs IST EXPONENTIELL

• Größe der DTM linear mit Größe der NTM

- Zustandsüberführungstabelle wird durch Unterprogramme codiert
- Berechnung der Nachfolgekonfigurationen auf einem Hilfsband

SIMULATION VON NTMs IST EXPONENTIELL

• Größe der DTM linear mit Größe der NTM

- Zustandsüberführungstabelle wird durch Unterprogramme codiert
- Berechnung der Nachfolgekonfigurationen auf einem Hilfsband

• Rechenzeit wächst exponentiell

- Einzelschritte linear in Größe einer NTM Konfiguation simulierbar
 - · Bestimmen einer Nachfolgekonfiguration ist "konstant"
 - · Schreiben der Nachfolgekonfiguration linear (zwei Arbeitsbänder)

SIMULATION VON NTMs IST EXPONENTIELL

• Größe der DTM linear mit Größe der NTM

- Zustandsüberführungstabelle wird durch Unterprogramme codiert
- Berechnung der Nachfolgekonfigurationen auf einem Hilfsband

• Rechenzeit wächst exponentiell

- Einzelschritte linear in Größe einer NTM Konfiguation simulierbar
 - · Bestimmen einer Nachfolgekonfiguration ist "konstant"
 - · Schreiben der Nachfolgekonfiguration linear (zwei Arbeitsbänder)

Aber ...

- Rechenzeit der NTM ist Länge des kürzesten akzeptierenden Pfades
- Bei k Alternativen pro Schritt muß die Simulation für n Schritte der NTM im schlimmsten Fall bis zu k^n Konfigurationen erzeugen

Turingmaschinen als Maschinenmodell für \mathcal{L}_0

Typ-0 Grammatiken und Turingmaschinen beschreiben dieselbe Klasse von Sprachen

Turingmaschinen als Maschinenmodell für \mathcal{L}_0

Typ-0 Grammatiken und Turingmaschinen beschreiben dieselbe Klasse von Sprachen

• Grammatik — Turingmaschine

Turingmaschine simuliert Anwendung der Produktionsregeln

- Ableitbare Wörter werden schrittweise auf Hilfsband geschrieben
- Wörter auf dem Hilfsband werden mit der Eingabe verglichen Maschine akzeptiert, wenn $w \in L(G)$, und terminiert sonst nicht

Turingmaschinen als Maschinenmodell für \mathcal{L}_0

Typ-0 Grammatiken und Turingmaschinen beschreiben dieselbe Klasse von Sprachen

• Grammatik — Turingmaschine

Turingmaschine simuliert Anwendung der Produktionsregeln

- Ableitbare Wörter werden schrittweise auf Hilfsband geschrieben
- Wörter auf dem Hilfsband werden mit der Eingabe verglichen Maschine akzeptiert, wenn $w \in L(G)$, und terminiert sonst nicht

• Turingmaschine — Grammatik

Grammatik simuliert Konfigurationsübergänge der Turingmaschine

- Erzeuge alle möglichen Eingabewörter und Anfangskonfigurationen
- Codiere Konfigurationsübergänge von M als Regeln
- Simuliere Akzeptieren durch Löschen von Nonterminalsymbolen Grammatik generiert genau alle Wörter, die M akzeptiert

Zu jeder Grammatik G=(V,T,P,S) kann eine NTM M konstruiert werden mit L(G)=L(M)

1. Schreibe die Eingabe w auf Hilfsband 1

- 1. Schreibe die Eingabe w auf Hilfsband 1
- 2. Schreibe das Startsymbol S auf Hilfsband 2

- 1. Schreibe die Eingabe w auf Hilfsband 1
- 2. Schreibe das Startsymbol S auf Hilfsband 2
- 3. Simuliere eine Regelanwendung in G
 - Wähle nichtdeterministisch ein Teilwort u des Wortes auf Band 2
 - Wähle nichtdeterministisch eine Regel der Form $u \rightarrow v$ aus P
 - Verschiebe Symbole, die rechts von u stehen, um |v| |u| Stellen
 - Ersetze u durch v

- 1. Schreibe die Eingabe w auf Hilfsband 1
- 2. Schreibe das Startsymbol S auf Hilfsband 2
- 3. Simuliere eine Regelanwendung in G
 - Wähle nichtdeterministisch ein Teilwort u des Wortes auf Band 2
 - Wähle nichtdeterministisch eine Regel der Form $u \rightarrow v$ aus P
 - Verschiebe Symbole, die rechts von u stehen, um |v|-|u| Stellen
 - Ersetze *u* durch *v*
- 4. Vergleiche w mit dem Wort auf Hilfsband 2
 - Akzeptiere w, wenn die Worte gleich sind
 - Ansonsten fahre fort mit 3.

KORREKTHEIT DER KONSTRUKTION

• M simuliert Ableitbarkeit in G

- Nach i Schritten steht auf Band 2 ein Wort w_i mit $S \xrightarrow{i}_C w_i$
- Wenn M das Wort w nach i Schritten akzeptiert, dann gilt $w = w_i$

Korrektheit der Konstruktion

• M simuliert Ableitbarkeit in G

- Nach i Schritten steht auf Band 2 ein Wort w_i mit $S \xrightarrow{i}_G w_i$
- Wenn M das Wort w nach i Schritten akzeptiert, dann gilt $w = w_i$

ullet M akzeptiert L(G)

- Es gilt $w \in L(G) \Leftrightarrow \exists i. \ S \stackrel{i}{\longrightarrow}_G w$
- Wenn M das Wort w nach i Schritten akzeptiert, dann gilt $S \stackrel{i}{\longrightarrow}_G w$, also $w \in L(G)$
- Wenn $S \xrightarrow{i}_G w$ gilt, dann kann M in i Schritten das Wort w auf Band 2 erzeugen und akzeptieren, also $w \in L(M)$

Korrektheit der Konstruktion

• M simuliert Ableitbarkeit in G

- Nach i Schritten steht auf Band 2 ein Wort w_i mit $S \xrightarrow{i}_G w_i$
- Wenn M das Wort w nach i Schritten akzeptiert, dann gilt $w = w_i$

ullet M akzeptiert L(G)

- Es gilt $w \in L(G) \Leftrightarrow \exists i. \ S \stackrel{i}{\longrightarrow}_G w$
- Wenn M das Wort w nach i Schritten akzeptiert, dann gilt $S \xrightarrow{i}_G w$, also $w \in L(G)$
- Wenn $S \xrightarrow{i}_G w$ gilt, dann kann M in i Schritten das Wort w auf Band 2 erzeugen und akzeptieren, also $w \in L(M)$

• M terminiert nicht immer

- Für $w \notin L(G)$ gilt $w \neq w_i$ für alle i

Simuliere Abarbeitung der Turingmaschine

- ullet Idee: Generiere alle Konfigurationen von M
 - Konfigurationen (u,q,v) werden als Wörter uqv codiert
 - Begrenzer # trennt Eingabe w von Konfigurationen
 - Verarbeitung von w simuliert durch Wörter der Form w # uqv #

Simuliere Abarbeitung der Turingmaschine

ullet Idee: Generiere alle Konfigurationen von M

- Konfigurationen (u,q,v) werden als Wörter uqv codiert
- Begrenzer # trennt Eingabe w von Konfigurationen
- Verarbeitung von w simuliert durch Wörter der Form w # uqv #

• Beschreibe Konfigurationsübergänge durch Regeln

- Regeln simulieren Vorschriften für Erzeugung von \vdash aus δ

Simuliere Abarbeitung der Turingmaschine

ullet Idee: Generiere alle Konfigurationen von M

- Konfigurationen (u,q,v) werden als Wörter uqv codiert
- Begrenzer # trennt Eingabe w von Konfigurationen
- Verarbeitung von w simuliert durch Wörter der Form w # uqv #

• Beschreibe Konfigurationsübergänge durch Regeln

- Regeln simulieren Vorschriften für Erzeugung von \vdash aus δ
- ullet Lege w frei, wenn M akzeptiert hat
 - Entferne Wort nach #, wenn M einen Endzustand erreicht

Simuliere Abarbeitung der Turingmaschine

ullet Idee: Generiere alle Konfigurationen von M

- Konfigurationen (u,q,v) werden als Wörter uqv codiert
- Begrenzer # trennt Eingabe w von Konfigurationen
- Verarbeitung von w simuliert durch Wörter der Form w # uqv #

• Beschreibe Konfigurationsübergänge durch Regeln

- Regeln simulieren Vorschriften für Erzeugung von \vdash aus δ
- ullet Lege w frei, wenn M akzeptiert hat
 - Entferne Wort nach #, wenn M einen Endzustand erreicht
- ullet Grammatik erzeugt von M akzeptierte Sprache

$$-L(G) = \{w \in \Sigma^* \mid \exists p \in F. \ \exists u, v \in \Gamma^*. \ (\epsilon, q_0, w) \ \vdash^* (u, p, v)\} = L(M)$$

- Erzeugung von Anfangskonfigurationen
 - Regeln zur Erzeugung aller Wörter der Form $w \# q_0 w \#$

• Erzeugung von Anfangskonfigurationen

- Regeln zur Erzeugung aller Wörter der Form $w \# q_0 w \#$

• Simulation der Konfigurationsübergänge

- Regeln der Form $q X V \mapsto Y p V$ für $V \in \Gamma$, $\delta(q, X) = (p, Y, R)$
- Regeln der Form $\ {\it q}\ X\,\#\mapsto Y\,{\it p}\ B\,\#$ für $\delta(q,X)=(p,Y,R)$
- Regeln der Form $Z q X \mapsto p Z Y$ für $Z \in \Gamma$, $\delta(q, X) = (p, Y, L)$
- Regeln der Form $\# \ q \ X \mapsto \# \ p \ B \ Y$ für $\delta(q,X) = (p,Y,L)$

• Erzeugung von Anfangskonfigurationen

- Regeln zur Erzeugung aller Wörter der Form $w \# q_0 w \#$

• Simulation der Konfigurationsübergänge

- Regeln der Form $q X V \mapsto Y p V$ für $V \in \Gamma$, $\delta(q, X) = (p, Y, R)$
- Regeln der Form $\ {\it q} \, X \, \# \mapsto Y \, {\it p} \, B \, \#$ für $\delta(q,X) = (p,Y,R)$
- Regeln der Form $Z q X \mapsto p Z Y$ für $Z \in \Gamma$, $\delta(q, X) = (p, Y, L)$
- Regeln der Form $\# q X \mapsto \# p B Y$ für $\delta(q, X) = (p, Y, L)$

• Schlußregeln für Endzustände

- Regeln der Form $Zq \mapsto q$
- Regeln der Form $q Z \mapsto q$
- Regeln der Form $\# q \# \mapsto \epsilon$

für
$$Z \in \Gamma$$
, $q \in F$

$$\text{für }Z\in\Gamma,\ q\in F$$

für
$$q \in F$$

• Erzeugung von Anfangskonfigurationen

- Regeln zur Erzeugung aller Wörter der Form $w \# q_0 w \#$

• Simulation der Konfigurationsübergänge

- Regeln der Form $q X V \mapsto Y p V$ für $V \in \Gamma$, $\delta(q, X) = (p, Y, R)$
- Regeln der Form $\ {\it q} \, X \, \# \mapsto Y \, {\it p} \, B \, \#$ für $\delta(q,X) = (p,Y,R)$
- Regeln der Form $Z q X \mapsto p Z Y$ für $Z \in \Gamma$, $\delta(q, X) = (p, Y, L)$
- Regeln der Form $\# \ q \ X \mapsto \# \ p \ B \ Y$ für $\delta(q,X) = (p,Y,L)$

• Schlußregeln für Endzustände

- Regeln der Form $Z q \mapsto q$
- Regeln der Form $q Z \mapsto q$
- Regeln der Form $\# q \# \mapsto \epsilon$

für
$$Z \in \Gamma$$
, $q \in F$

$$\text{für }Z\in\Gamma,\ q\in F$$

für
$$q \in F$$

Detailbeweise z.B. in Erk-Priese, Seite 199–201

Linear beschränkte Automaten

Welches Modell paßt zu Typ-1 Sprachen?

Linear beschränkte Automaten

Welches Modell paßt zu Typ-1 Sprachen?

- Typ-1 Sprachen werden "expansiv" erzeugt
 - In jeder Ableitung $S \longrightarrow w_1 \longrightarrow w_2 \dots \longrightarrow w$ eines Wortes $w \in L(G)$ ist keines der w_i länger als w (Ausnahme $w = \epsilon$)
 - Turingmaschine braucht maximal |w| Bandzellen zur Simulation

Linear beschränkte Automaten

Welches Modell paßt zu Typ-1 Sprachen?

• Typ-1 Sprachen werden "expansiv" erzeugt

- In jeder Ableitung $S \longrightarrow w_1 \longrightarrow w_2 \dots \longrightarrow w$ eines Wortes $w \in L(G)$ ist keines der w_i länger als w (Ausnahme $w = \epsilon$)
- Turingmaschine braucht maximal |w| Bandzellen zur Simulation

• Beschränke NTMs auf linearen Bandverbrauch

- Das Arbeitsband ist nur halbseitig unendlich
- Anfangskonfigurationen haben die Form $(\epsilon, q_0, w \#)$
- # ist ein spezielles Bandende-Symbol, das niemals überlaufen oder überschrieben werden darf

Linear beschränkte Automaten

Welches Modell paßt zu Typ-1 Sprachen?

• Typ-1 Sprachen werden "expansiv" erzeugt

- In jeder Ableitung $S \longrightarrow w_1 \longrightarrow w_2 \dots \longrightarrow w$ eines Wortes $w \in L(G)$ ist keines der w_i länger als w (Ausnahme $w = \epsilon$)
- Turingmaschine braucht maximal |w| Bandzellen zur Simulation

• Beschränke NTMs auf linearen Bandverbrauch

- Das Arbeitsband ist nur halbseitig unendlich
- Anfangskonfigurationen haben die Form $(\epsilon, q_0, w \#)$
- # ist ein spezielles Bandende-Symbol, das niemals überlaufen oder überschrieben werden darf

• Formal: linear beschränkter Automat (LBA)

- NTM $M = Q, \Sigma, \Gamma, \delta, q_0, B, F$) mit halbseitig unendlichem Band und ausgezeichnetem Symbol $\# \in \Gamma \setminus (\Sigma \cup \{B\})$ und der Einschränkung $\delta(q,\#)\subseteq\{(p,\#,L)|p\in Q\}$ für alle $q\in Q$

1. Anfangskonfiguration ist $(\epsilon, q_0, w^{\sharp})$

- 1. Anfangskonfiguration ist $(\epsilon, q_0, w^{\sharp})$
- 2. Wenn das Band leer ist, akzeptiere die Eingabe

- 1. Anfangskonfiguration ist $(\epsilon, q_0, w^{\#})$
- 2. Wenn das Band leer ist, akzeptiere die Eingabe
- 3. Ansonsten ersetze die erste 0 durch B
 - Wenn keine 0 unter dem Kopf steht, halte an ohne zu akzeptieren

- 1. Anfangskonfiguration ist $(\epsilon, q_0, w^{\sharp})$
- 2. Wenn das Band leer ist, akzeptiere die Eingabe
- 3. Ansonsten ersetze die erste 0 durch B
 - Wenn keine 0 unter dem Kopf steht, halte an ohne zu akzeptieren
- 4. Gehe rechts zur ersten 1; ersetze diese durch B
 - Vor der 1 dürfen nur Nullen oder Blanks kommen (!)
 - Wenn keine 1 vorkommt, halte an ohne zu akzeptieren

- 1. Anfangskonfiguration ist $(\epsilon, q_0, w^{\#})$
- 2. Wenn das Band leer ist, akzeptiere die Eingabe
- 3. Ansonsten ersetze die erste 0 durch B
 - Wenn keine 0 unter dem Kopf steht, halte an ohne zu akzeptieren
- 4. Gehe rechts zur ersten 1; ersetze diese durch B
 - Vor der 1 dürfen nur Nullen oder Blanks kommen (!)
 - Wenn keine 1 vorkommt, halte an ohne zu akzeptieren
- 5. Gehe rechts zur ersten 2; ersetze diese durch B
 - Vor der 2 dürfen nur noch Einsen oder Blanks kommen (!)
 - Wenn keine 2 am Ende steht, halte an ohne zu akzeptieren

- 1. Anfangskonfiguration ist $(\epsilon, q_0, w^{\#})$
- 2. Wenn das Band leer ist, akzeptiere die Eingabe
- 3. Ansonsten ersetze die erste 0 durch B
 - Wenn keine 0 unter dem Kopf steht, halte an ohne zu akzeptieren
- 4. Gehe rechts zur ersten 1; ersetze diese durch B
 - Vor der 1 dürfen nur Nullen oder Blanks kommen (!)
 - Wenn keine 1 vorkommt, halte an ohne zu akzeptieren
- 5. Gehe rechts zur ersten 2; ersetze diese durch B
 - Vor der 2 dürfen nur noch Einsen oder Blanks kommen (!)
 - Wenn keine 2 am Ende steht, halte an ohne zu akzeptieren
- 6. Laufe zurück zum Anfang des restlichen Wortes
 - Fahre fort mit Schritt 2

- 1. Anfangskonfiguration ist $(\epsilon, q_0, w^{\#})$
- 2. Wenn das Band leer ist, akzeptiere die Eingabe
- 3. Ansonsten ersetze die erste 0 durch B
 - Wenn keine 0 unter dem Kopf steht, halte an ohne zu akzeptieren
- 4. Gehe rechts zur ersten 1; ersetze diese durch B
 - Vor der 1 dürfen nur Nullen oder Blanks kommen (!)
 - Wenn keine 1 vorkommt, halte an ohne zu akzeptieren
- 5. Gehe rechts zur ersten 2; ersetze diese durch B
 - Vor der 2 dürfen nur noch Einsen oder Blanks kommen (!)
 - Wenn keine 2 am Ende steht, halte an ohne zu akzeptieren
- 6. Laufe zurück zum Anfang des restlichen Wortes
 - Fahre fort mit Schritt 2

Optimierung: Schließe Lücken durch Verschieben

– Verfahren funktioniert analog auch für $\{0^n1^n2^n3^n4^n|n\in\mathbb{N}\}$

LBAs sind Maschinenmodell für Typ-1 Sprachen

$$\mathcal{L}_1$$
 = $\{L \mid L = L(M) ext{ für einen LBA } M \}$

ullet Beweise für \mathcal{L}_0 können modifiziert werden

LBAS SIND MASCHINENMODELL FÜR TYP-1 SPRACHEN

$$\mathcal{L}_1 = \{L \mid L = L(M) \text{ für einen LBA } M \}$$

- ullet Beweise für \mathcal{L}_0 können modifiziert werden
- Typ-1 Grammatik → LBA

Turingmaschine simuliert Anwendung der Produktionsregeln

- Ableitbare Wörter werden schrittweise erzeugt und mit w verglichen
- Beschränkung der Simulation auf Regelanwendungen, die Wörter mit maximaler Länge |w| erzeugen

Maschine ist linear beschränkter Automat

- Linkes und rechtes Ende des Bandes wird niemals überschritten
- Lineare Simulation der Hilfsbänder mit größerem Bandalphabet

LBAS SIND MASCHINENMODELL FÜR TYP-1 SPRACHEN

$$\mathcal{L}_1 = \{L \mid L = L(M) \text{ für einen LBA } M \}$$

- \bullet Beweise für \mathcal{L}_0 können modifiziert werden
- Typ-1 Grammatik → LBA

Turingmaschine simuliert Anwendung der Produktionsregeln

- Ableitbare Wörter werden schrittweise erzeugt und mit w verglichen
- Beschränkung der Simulation auf Regelanwendungen, die Wörter mit maximaler Länge |w| erzeugen

Maschine ist linear beschränkter Automat

- Linkes und rechtes Ende des Bandes wird niemals überschritten.
- Lineare Simulation der Hilfsbänder mit größerem Bandalphabet

• LBA → Typ-1 Grammatik

- LBA muß bei Eingabe w das Band nicht mehr erweitern
- Simuliere Verarbeitung der Eingabe w mit Wörtern der Form $(w_1, u_1)..(w_i, u_i)(w_{i+1}, \mathbf{q})(w_{i+1}, v_1)..(w_n, v_i)$ statt $w \# u\mathbf{q}v \#$
- Kürzende Grammatikregeln können jetzt expansiv formuliert werden