Theoretische Informatik II

Einheit 6

- 1. Konkrete Komplexitätsanalyse
- 2. Das \mathcal{P} - $\mathcal{N}\mathcal{P}$ Problem
- 3. NP-vollständige Probleme
- 4. Grenzen überwinden

Komplexitätstheorie

Was kann mit vertretbarem Aufwand gelöst werden?

• Berechenbarkeitsanalyse alleine reicht nicht

- Klärt nur die Grundsatzfrage: berechenbar/entscheidbar oder nicht
- Für praktische Lösbarkeit muß Berechnungsaufwand vertretbar sein

• Analyse benötigter Ressourcen (Komplexität)

– Zeitbedarf des Algorithmus

Time

- Speicherbedarf des Verfahrens (RAM, Harddisk)

Space

– Netzzugriffe, Zugriff auf andere Medien,

Die Meßgröße muß objektiv sein

– Unabhängig von konkreter Hardware und Programmiersprache

Optimierungsfähigkeiten des Compilers

Auswahl der Testdaten

Komplexitätsmaße sollten abstrakt formuliert sein

THEORETISCH	e Inform	матік II 80	ი:

Größenordnung ist wichtiger als Detail

• Genaue Betrachtungen sind unpraktikabel

- Mühsam bei nichttrivialen Algorithmen
- Abhängig von Programmierdetails und Maschinenmodell Welches Maschinenmodell sollte der Standard sein?

• Abschätzung der Komplexität ist sinnvoller

- Asymptotisches Verhalten für große Eingabedaten ist wichtig

• Ignoriere Konstanten

 Additive Konstanten und konstante Faktoren werden durch Hardwaresteigerungen ausgeglichen

Analyse des wirklich relevanten Aufwands

DIE MATHEMATIK ASYMPTOTISCHER VERGLEICHE

• $g \leq_a f$ (f wächst asymptotisch schneller als g)

Ab einer bestimmten Stelle ist f immer mindestens so groß wie g

- Es gibt ein $n_0 \in \mathbb{N}$ mit $g(n) \leq f(n)$ für alle $n \geq n_0$

• (Größen-)Ordnung einer Funktion

- f als obere Schranke:
$$\mathcal{O}(f) = \{g: \mathbb{N} \to \mathbb{R}^+ | \exists c > 0. \ g \leq_a c * f \}$$

- f als untere Schranke:
$$\Omega(\mathbf{f}) = \{g: \mathbb{N} \to \mathbb{R}^+ | \exists c > 0. \ c * f \leq_a g \}$$

$$-f$$
 als exakte Schranke: $\Theta(f) = \{g: \mathbb{N} \to \mathbb{R}^+ | \exists c, c' > 0. \ c * f \leq_a g \leq_a c' * f \}$

Schreibweisen auch: $g = \mathcal{O}(f)$ statt $g \in \mathcal{O}(f)$, $\mathcal{O}(f) < \mathcal{O}(g)$ statt $\mathcal{O}(f) \subset \mathcal{O}(g)$

$$\mathcal{O}(1) \stackrel{.}{=} \mathcal{O}(\lambda n.1), \ \mathcal{O}(n) \stackrel{.}{=} \mathcal{O}(\lambda n.n), \ \mathcal{O}(n^2) \stackrel{.}{=} \mathcal{O}(\lambda n.n^2)...$$

• Beispiele für Ordnung konkreter Funktionen

- Konstante Funktion:
$$g_1(n)=k$$
 für alle n

$$g_1 \in \mathcal{O}(1)$$

- Polynome:
$$g_2(n) = c_0 + c_1 * n + ... + c_m * n^m$$

$$g_2 \in \mathcal{O}(n^m)$$

- Logarithmenfunktionen:
$$g_3(n) = log_b n$$

$$g_3 \in \mathcal{O}(log_2n)$$

- Fakultätsfunktion:
$$g_4(n)=n!=1*2*..*n$$

$$g_4 \in \mathcal{O}(n^n)$$

Zeit- und Platzbedarf von Maschinen

• Bestimme Aufwand relativ zur Eingabegröße

$$-\mathbf{T}_{\mathbf{M}}(\mathbf{n}) = \max\{t_{M}(w) \mid |w|=n\}$$

(worst-case)

$$-S_M(n) = \max\{s_M(w) | |w|=n\}$$

Einheit 5.1, Folie 7

• Komplexität einer Maschine

- M hat **Zeitkomplexität** $\mathcal{O}(f)$, falls $T_M \in \mathcal{O}(f)$
- M hat Platzkomplexität $\mathcal{O}(f)$, falls $S_M \in \mathcal{O}(f)$

• Wichtige Komplexitätklassen

- polynomielle (Zeit-)Komplexität: $T_M \in \mathcal{O}(n^k)$ für ein $k \in \mathbb{N}$
- exponentielle (Zeit-)Komplexität: $T_M \in \mathcal{O}(2^{n^k})$ für ein $k \in \mathbb{N}$

Maße für andere Berechnungsmodelle analog

RECHENZEIT: WO LIEGT DIE GRENZE DES HANDHABBAREN?

Rechenzeiten auf 3.3 Ghz Prozessor										
Größe n	Größe n 10 20 30 40 50 60							1000	1.000.000	
Wachstum										
$\log_2 n$	1ns	2ns		3ns				10ns	100ns	
n	3ns	6ns	9ns	12ns	15ns	18ns		300ns	$300\mu\mathrm{s}$	
n^2	30ns	120ns	270ns	480ns	750ns	$1.1\mu s$		$300\mu\mathrm{s}$	300s	
n^3	300ns	$2.4\mu\mathrm{s}$	$8.1 \mu s$	$19.2\mu\mathrm{s}$	$37.5 \mu s$	$64\mu s$		300ms	9.5y	
2^n	300ns	$300\mu s$	300ms	300s	83.3h	9.5y				
3^n	$17.8 \mu s$	1.1s	17.3h	116y	2.500.000.000y					

Wieviel mehr kann man in der gleichen Zeit berechnen, wenn Computer um den Faktor 1000 schneller werden?

	$\log_2 n$	n	n^2	n^3	2^n	3^n
Problemsteigerung	10^{300} -fach	1000-fach	31-fach	10-fach	plus 10	plus 6

Auswirkung asymptotischer Analyse

Polynomielle Lösbarkeit ist entscheidend

- Exponentieller Aufwand ist für die Praxis unakzeptabel
- Unterschiede innerhalb polynomieller Komplexität sind tolerierbar aber durchaus relevant für konkrete Implementierungen

• Bessere Hardware ist selten eine gute Lösung

- Wenn Algorithmen schlecht sind, nützt die beste Hardware wenig
- Es lohnt sich, in die Verbesserung von Algorithmen zu investieren

• Es gibt noch ungeklärte Fragen

- Macht Parallelismus / Nichtdeterminismus Probleme handhabbar?
 - · Effizienzsteigerung von exponentieller auf polynomielle Zeit?
- Zusammenhang zwischen Platzbedarf und Laufzeitverhalten?
 - · Bisher nur grobe Abschätzungen bekannt

Fragestellungen der Komplexitätstheorie

• Komplexität konkreter Verfahren

Maximaler Verbrauch im Einzelfall (worst case)
 Wichtig bei sicherheitskritischen Anwendungen

Durchschnittlicher Bedarf im Langzeitverhalten (average case)
 Verlangt mathematisch schwierige statistische Analyse

• Analyse von Problemen

- Wie effizient ist die bestmögliche Lösung? (untere Schranken)

Komplexitätsklassen

- Welche Probleme haben (in etwa) den gleichen Schwierigkeitsgrad?
- Problemreduktion: effiziente Lösungen wiederverwenden

• Welche Probleme sind handhabbar?

- Welche Fragestellungen sind (nicht) polynomiell lösbar
- Welche Verbesserung können unkonventionelle Ansätze erreichen?
 (Nichtdeterministische, approximierende, probabilistische Verfahren)

Theoretische Informatik II

Einheit 6.1

Konkrete Komplexitätsanalyse

- 1. Komplexität spezifischer Algorithmen
- 2. Komplexität von Problemstellungen

Abschätzung der Komplexität von Algorithmen

Obere Schranken für die Laufzeit von Verfahren

• Analyse auf Ebene abstrakter Algorithmen

- Asymptotische Komplexität hängt nicht von Programmiersprache ab
- Konstanter Expansionsfaktor bei Übersetzung in Maschinensprache (Simulation durch Turingmaschinen würde zu polynomieller Expansion führen)

• Elementaroperationen gelten als ein Schritt

- -+, -, *,∕,... Einzelschritte, wenn Zahlengröße beschränkt (z.B. 64-bit)
- Liefert vereinfachte (modellunabhängige) Zählung von Elementaroperationen
- Höherer Aufwand bei beliebig großen Zahlen

• Fokus auf sequentielle Algorithmen

- Parallele/nichtdeterministische Maschinen haben evtl. bessere Laufzeit

Sequentielle Suche: kommt x in L vor?

• Durchsuche Liste L von links nach rechts

```
function search_{seq}(x,L) \equiv
   found := false;
   for i = 1 to length(L) do
      if L[i]=x then found:=true
   od;
   return found;
```

Verfahren ist anwendbar auf beliebige Listen

Laufzeitanalyse

- Eine Operation für Initialisierung found:=false
- Je 2 Operationen pro Element von L in der for-Schleife
- Eine Operation für Ausgabe des Ergebnisses
- Insgesamt 2n+2 Schritte, wenn n die Größe der Liste L ist

Sequentielle Suche ist in $\mathcal{O}(n)$

BINÄRE SUCHE

Nur anwendbar, wenn Liste L geordnet ist

• Teste mittleres Element; dann rechts oder links

```
function \operatorname{search}_{bin}(x,L) \equiv
let function \operatorname{search}_b(x,L,\operatorname{left},\operatorname{right}) \equiv
if left>right then return false
else
mid := (left+right) div 2;
if x<L[mid] then \operatorname{search}_b(x,L,\operatorname{left},\operatorname{mid}-1)
elseif x>L[mid] then \operatorname{search}_b(x,L,\operatorname{mid}+1,\operatorname{right})
else return true
fi;
return \operatorname{search}_b(x,L,1,\operatorname{length}(L))
```

- Eine grobe Laufzeitanalyse reicht aus
 - Konstante Anzahl von Operationen pro Aufruf von search_b
 - Wie oft wird search_b aufgerufen?

Binäre Suche – Analyse

```
function \operatorname{search}_{bin}(x,L) \equiv
let function \operatorname{search}_b(x,L,\operatorname{left},\operatorname{right}) \equiv
if left>right then return false
else

mid := (left+right) div 2;
if x<L[mid] then \operatorname{search}_b(x,L,\operatorname{left},\operatorname{mid}-1)
elseif x>L[mid] then \operatorname{search}_b(x,L,\operatorname{mid}+1,\operatorname{right})
else return true
fi;
return \operatorname{search}_b(x,L,1,\operatorname{length}(L))
```

Abstand von left und right halbiert sich pro Aufruf (mit Abrundung)

Anzahl von Operationen pro Aufruf von $search_b$ ist eine Konstante k

Abstand zu Beginn ist n-1 (n ist die Größe der Liste L)

search_b terminiert bei Erfolg oder wenn Abstand Null ist

Lösung der Gleichung $time(n) = k + time(\lfloor n/2 \rfloor)$ ist $time(n) = k * \log_2 n$

Binäre Suche ist in $\mathcal{O}(\log_2 n)$

SORTIERVERFAHREN

• Ordne Elemente in aufsteigender Reihenfolge

- Geordnete Listen unterstützen effizienten Zugriff auf Elemente
- Eine der häufigsten Operationen in der Programmierung

• Viele Verfahren bekannt

http://www.sortieralgorithmen.de

- Insertion Sort: Einfügen des Listenanfangs in geordnete Teilliste
- Selection Sort: Auswahl des jeweils kleinsten Elements als Listenanfang
- **Bubblesort**: Austauschen benachbarter Elemente
- Quicksort: Aufteilung nach Größe, Sortieren der entstehenden Teillisten
- Mergesort: Aufteilen in Teillisten, Sortieren und Mischen der Teillisten
- Mergesort (II): Identifizieren und Mischen geordneter Teillisten

'Bestes' Verfahren hängt von Problemgröße ab

Bubblesort

Fortlaufender Vergleich benachbarter Elemente Austausch bei falscher Reihenfolge

```
function bubblesort(L) =
  for upper = length(L)-1 downto 1 do
     for j = 1 to upper do
        if L[j]>L[j+1] then
           aux := L[j];
          L[j] := L[j+1];
          L[j+1] := aux
        fi
     od
  od
```

• Beispiel einer Sortierung mit Bubblesort

1	2	5	6	7	8	9	
---	---	---	---	---	---	---	--

Elemente steigen wie Blasen auf, bis sie auf größere treffen

Bubblesort - Laufzeitanalyse

```
function bubblesort(L) =
  for upper = length(L)-1 downto 1 do
    for j = 1 to upper do
        if L[j]>L[j+1] then
            aux := L[j];
        L[j] := L[j+1];
        L[j+1] := aux
        fi
        od
        od
        od
```

• Feste Anzahl von Operationen im Schleifenrumpf

- Vergleich benachbarter Elemente
- ggf. Austauch unter Verwendung einer Hilfsvariablen

ullet Anzahl Schleifen abhängig von Listengröße n

- Innere Schleife wird jeweils genau upper-mal durchlaufen
- Insgesamt $n-1 + n-2 + \dots + 2 + 1 = n*(n-1)/2$ Durchläufe

Bubblesort ist in $\mathcal{O}(n^2)$

SORTIEREN SCHNELLER ALS $\mathcal{O}(n^2)$

• Identifiziere Läufe, d.h. geordnete Teilfolgen

• Verschmelze Läufe zu neuen Läufen

9	7	8	2	1	5	6
7	8	9	1	2	15	6

- Länge der Läufe wächst Anzahl halbiert sich
- Wiederhole bis Folge geordnet

7	8	9	1	2	15	6
1	2	5	6	7	8	9

- Liste ist eine einzige (komplett) geordnete Teilfolge

Analyse des Verfahrens

Abstrakte Skizze reicht für Laufzeitanalyse

- ullet Verschmelzen ist in $\mathcal{O}(n)$
 - Folge wird jeweils komplett durchlaufen
- Verschmelzen halbiert Anzahl der Läufe
 - Je zwei Läufe werden zu einem gemischt
- ullet Man braucht maximal $\log_2 n$ Verschmelzungen
 - Danach ist nur ein einziger Lauf übrig, d.h. die Liste ist sortiert

Sortieren durch Verschmelzen ist in $\mathcal{O}(n * \log_2 n)$

• Fundamentale Datenstruktur vieler Anwendungen

- Ordnungstruktur für effiziente Verwaltung großer Datenmengen
- Beschreibung der Topographie von Netzwerken

• Graphen haben Knoten und Kanten (G = (V, E))

- Eine Kante e zwischen zwei Knoten $v\neq v'$ kann gerichtet (e=(v,v'))oder ungerichtet $(e = \{v, v'\})$ sein
- Beschreibbar als Liste $v_1, ..., v_n, \{v_{i_1}, v'_{i_1}\}, ..., \{v_{i_m}, v'_{i_m}\}$
- In gewichteten Graphen ist jede Kante mit einer Zahl markiert

• Bäume sind zyklenfreie ungerichtete Graphen

- Ein Baum spannt einen Graphen auf, wenn jeder Knoten von G von der Wurzel des Baums aus erreichbar ist
- Ein MWST ist ein aufspannender Baum mit minimalem Gewicht

Der Kruskal Algorithmus

Bestimme einen MWST in einem Graphen G

• Erzeuge Zusammenhangskomponenten in G

- Initialwert ist $\{v\}$ für jeden Knoten $v \in V$ $(Z := \{\{v\} \mid v \in V\})$
- Betrachte eine neue Kante $e \in E$ mit geringstem Gewicht Falls e Knoten aus verschiedenen Zusammenhangskomponenten verbindet, füge e dem MWST hinzu und vereinige die beiden Komponenten
- Wiederhole dies, bis alle Knoten in einer Komponente sind oder alle Kanten betrachtet wurden

• Implementierbar mit Laufzeit $\mathcal{O}(|V| + |E| \log |E|)$

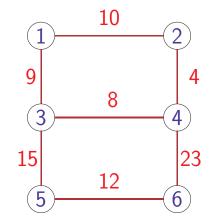
- Liste der Kanten muß zuerst nach Gewicht sortiert werden
- Zusammenhangskomponenten müssen mit Pointern repräsentiert werden
- Turingmaschine würde Laufzeit $\mathcal{O}((|V|+|E|)^4)$ benötigen HMU §10.1.2

Das Problem des Handlungsreisenden

Gegeben n Städte, eine Kostentabelle von Kosten c_{ij} um von Stadt i nach Stadt j zu reisen und eine Kostenbeschränkung B. Gibt es eine Rundreise durch alle n Städte, deren Kosten unter dem Limit B liegt?

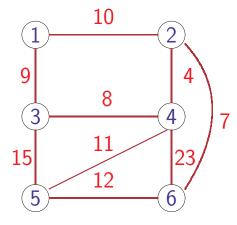
• Formulierung als Graphenproblem

- Ein Hamiltonscher Kreis im Graphen G = (V, E) ist ein Kreis, der nur aus Kanten aus E besteht und jeden Knoten genau einmal berührt.
- **TSP**: Finde einen Hamiltonschen Kreis mit minimalen Kosten B



Nur eine Rundreise: [1,3,5,6,4,2]

Kosten: 73

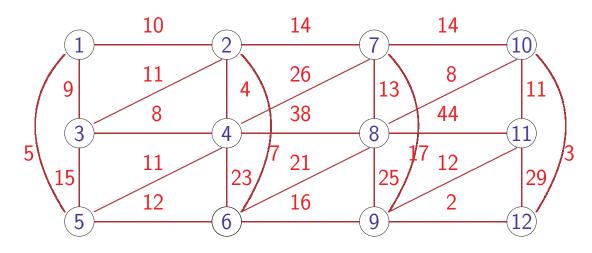


Billigere Rundreise: [1,2,6,5,4,3]

Kosten: 57

Das Problem des Handlungsreisenden

• Graphen können sehr komplex sein



• Keine effiziente allgemeine Lösung bekannt

- Bester Ansatz ist "Generate & Test"
- Test ist polynomiell, aber es gibt exponentiell viele Möglichkeiten

• Approximative Lösungen möglich

- Rundreise mit Kosten 50% über Optimum polynomiell bestimmbar
- Benötigt Rahmenbedingung $c_{ij} \leq c_{ik} + c_{kj}$ (Dreiecksungleichung)

Komplexität von Problemen

Untere Schranken für Komplexität von Lösungen

- Lösungen eines Problems sind unterschiedlich gut
 - Suchen: Lineare Suche $\mathcal{O}(n)$ Binärsuche $\mathcal{O}(\log_2 n)$
 - Sortieren: Bubblesort $\mathcal{O}(n^2)$ Mergesort $\mathcal{O}(n*\log_2 n)$
- Wie effizient kann ein Problem gelöst werden?
 - Gibt es eine Mindestkomplexität für eine optimale Lösung?
 - Wann ist eine Lösung gut genug?
- Antwort könnte von Art der Frage abhängen
 - Entscheidungsproblem: Gibt es überhaupt eine Lösung der Aufgabe?
 - Optimierungsproblem: Was ist die bestmögliche Lösung?
 - Berechnungsproblem: Bestimme eine konkrete Lösung
- Nachweis ist im Normalfall aufwendig
 - Man muß über alle möglichen Algorithmen argumentieren

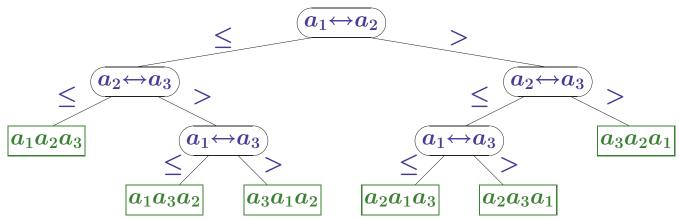
Komplexität von Sortierverfahren

Geht es schneller als $\mathcal{O}(n*\log_2 n)$?

• Sortierverfahren müssen Elemente vergleichen

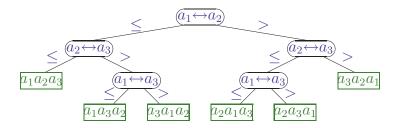
- Sonst kann die Anordnung der Elemente nicht garantiert werden
- Wieviel Vergleiche werden benötigt um $a_1, ..., a_n$ zu ordnen?
- Bestimme Anzahl der Vergleiche für den ungünstigsten Fall

• Betrachte Entscheidungsbaum von Algorithmen



- Innere Knoten entsprechen den durchgeführten Vergleichen
- Kanten markiert mit Vergleichergebnis $(\leq,>)$
- Blätter sind resultierende Anordnung der Elemente

Komplexität von Sortierverfahren (II)



• Algorithmen entsprechen Entscheidungsbäumen

- Abarbeitung für konkrete Eingaben entspricht einem Ast im Baum
- Konkrete Laufzeit des Algorithmus entspricht Länge des Astes
- Komplexität des Algorithmus entspricht Tiefe des Entscheidungsbaumes Komplexität von Sortieren ≡ minimale Tiefe von Entscheidungsbäumen

• Wie tief ist ein Entscheidungsbaum?

- Jeder Entscheidungsbaum für hat $a_1, ..., a_n$ hat n! Blätter
- Ein binärer Baum der Tiefe k hat maximal 2^k Blätter
- Jeder Entscheidungsbaum hat mindestens Tiefe $\log_2 n!$
- $-\log_2 n! = \log_2(\prod_{i=1}^n i) = \sum_{i=1}^n \log_2 i \ge \sum_{i=n/2}^n \log_2(n/2) = n/2 * (\log_2 n 1)$

Sortieren ist in $\Omega(n * \log_2 n)$

Komplexität anderer Problemstellungen

• Addition *n*-stelliger Zahlen

 $\mathcal{O}(n)$

- Einstellige Addition von rechts nach links mit Ubertrag

• Multiplikation *n*-stelliger Zahlen

 $\mathcal{O}(n^2)$

– Jede Stelle muß mit jeder Stelle multipliziert werden

• Division *n*-stelliger Zahlen

 $\mathcal{O}(n^2)$

– Schriftliche Division bestimmt Ergebnis von links nach rechts

• Matrixmultiplikation $n \times n$ -Matrizen

 $\mathcal{O}(n^3)$

• Berechnung von n!

$$\mathcal{O}(n^2 * (\log_2 n)^2)$$

- Obergrenze: n-fache Multiplikation von n und n!: $n * \log_2 n * \log_2(n^n)$
- Untergrenze: n/2-fach n/2*(n/2)!: $n/2*\log_2(n/2)*n/4*(\log_2 n 2)$

• Primzahltest bei *n*-stelliger Zahlen

 $\mathcal{O}(n^{12})$

- AKS Algorithmus auf Basis tiefer mathematischer Einsichten (2002)
- Alle früheren Verfahren waren exponentiell
- Alle bekannten Faktorisierungsverfahren sind exponentiell
- Ergebnis gut für offene kryptographische Systeme (wähle n > 200)