Theoretische Informatik II

Einheit 5.3

Funktionale & Logische Programme

- 1. Der λ -Kalkül
- 2. Arithmetische Repräsentierbarkeit
- 3. Die Churchsche These

Der λ -Kalkül

Grundlage funktionaler Programmiersprachen

• Einfacher mathematischer Mechanismus

- Funktionen werden definiert und angewandt
- Beschreibung des Funktionsverhaltens wird zum Namen der Funktion
- Funktionswerte werden ausgerechnet durch Einsetzen von Werten

• Leicht zu verstehende Basiskonzepte

1. Definition einer Funktion:

$$f = \lambda x.2*x+3$$

 λ -Abstraktion

Name der Funktion irrelevant für Beschreibung des Verhaltens

2. Anwendung der Funktion (ohne Auswertung):

$$f(4) = (\lambda x. 2*x+3)(4)$$

Applikation

3. Auswertung einer Funktionsanwendung (tatsächliches Ausrechnen):

$$(\lambda x. 2*x+3)(4) \xrightarrow{\beta} 2*4+3 \xrightarrow{*} 11$$

Reduktion

λ-Kalkül – Syntax

• Einfache Programmiersprache: λ -Terme

- Variablen x
- $-\lambda x$. t, wobei x Variable und t λ -Term Vorkommen von x in t werden gebunden

-ft, wobei t und $f\lambda$ -Terme

- (t), wobei t λ -Term

 λ -Abstraktion

Applikation

• Prioritäten und Kurzschreibweisen

- Applikation bindet stärker als λ -Abstraktion
- Applikation ist links-assoziativ:

f t_1 t_2 $\hat{=}$ (f $t_1)$ t_2

- Notation $f(t_1, \ldots, t_n)$ steht für iterierte Applikation $f(t_1, \ldots, t_n)$

• Beispiele für λ -Terme

-x

 $-\lambda f.\lambda x.f(x)$

 $-\lambda f.\lambda g.\lambda x. f g (g x)$

-x(x)

Symbole sind immer Variablen Anwendung einer Funktion Funktionen höherer Ordnung Selbstanwendung

λ-Kalkül – Berechnung durch Auswertung

• Ersetze Funktionsparameter durch -argumente

- **Reduktion** $(\lambda x.t)(b) \xrightarrow{\beta} t[b/x]$
- Substitution t[b/x]: ersetze freie Vorkommen von x in t durch b

Sonderfälle: $|\lambda x \cdot u| [b/x] = \lambda x \cdot u$ x ist nicht frei in u $|\lambda x \cdot u| [b/y] = |\lambda z \cdot u[z/x]| [b/y]$ $y \neq x$ frei in u, x frei in b, z neu

Substitution und Reduktion am Beispiel

Vom λ -Kalkül zu echten Programmen

• λ-Kalkül ist der Basismechanismus

- Die Assemblersprache funktionaler Programme
- Spezialhardware (Lisp-Maschinen) kann λ -Terme direkt auswerten

• Programm- und Datenstrukturen werden codiert

- Berechnung auf λ -Ausdrücken muß Effekte auf Struktur simulieren
- Nicht anders als in konventionellen Computern
 - · Datenstrukturen werden als als Bitketten codiert
 - · Programmstrukturen werden in Sprungbefehle übersetzt

• Die wichtigsten Strukturen sind leicht codierbar

- Boolesche Operationen: T, F, if b then s else t
- Tupel/Projektionen: (s, t), pair.1, pair.2, let (x, y) = pair in t
- Zahlen und arithmetische Operationen
- Iteration oder Rekursion von Funktionen

Darstellung Boolescher Operatoren im λ -Kalkül

Zwei verschiedene Objekte und ein Test

$$\begin{array}{ll} \mathsf{T} & \equiv \ \lambda \mathtt{x}.\lambda \mathtt{y}.\mathtt{x} \\ \mathsf{F} & \equiv \ \lambda \mathtt{x}.\lambda \mathtt{y}.\mathtt{y} \\ \text{if } b \ \text{ then } s \ \text{else } t & \equiv \ b\,s\,t \end{array}$$

Konditional(-simulation) ist invers zu T und F

Paare: Datenkapselung und Komponentenzugriff

```
\begin{array}{ll} (u\,,v) & \equiv & \lambda \mathrm{pair.\ pair}\,u\,v \\ pair.1 & \equiv & pair\,\left(\lambda \mathrm{x}.\lambda \mathrm{y}.\mathrm{x}\right) \\ pair.2 & \equiv & pair\,\left(\lambda \mathrm{x}.\lambda \mathrm{y}.\mathrm{y}\right) \\ \text{let } (x\,,y) = pair\ \text{in } t \equiv & pair\,\left(\lambda x.\lambda \mathrm{y}.t\right) \end{array}
```

Analyseoperator ist invers zur Paarbildung

SIMULATION ARITHMETISCHER OPERATIONEN

• Darstellung natürlicher Zahlen durch iterierte Terme

- Semantisch: wiederholte Anwendung von Funktionen
- Repräsentiere die Zahl n durch den Term $\lambda f \cdot \lambda x \cdot f \cdot (f \cdot \cdot \cdot (f \cdot x) \cdot \cdot \cdot)$
- Notation: $\overline{n} \equiv \lambda f . \lambda x . f^n x$
- Bezeichnung: Church Numerals
- $f:\mathbb{N}^n \to \mathbb{N} \lambda$ -berechenbar:
 - Es gibt einen λ -Term t mit der Eigenschaft

$$f(x_1,..,x_n)=m \Leftrightarrow t \overline{x_1}..\overline{x_n}=\overline{m}$$

• Operationen müssen Termvielfachheit berechnen

- Simulation einer Funktion auf Darstellung von Zahlen muß Darstellung des Funktionsergebnisses liefern
- -z.B. add \overline{m} \overline{n} muß als Wert immer den Term $\overline{m+n}$ ergeben

n-mal

Programmierung im λ -Kalkül

- Nachfolgerfunktion: $s \equiv \lambda n . \lambda f . \lambda x . n f (f x)$
 - Zeige: Der Wert von S \overline{n} ist der Term $\overline{n+1}$

$$\begin{array}{lll} \mathbf{S} \ \overline{n} & \equiv & (\lambda \mathbf{n}.\lambda \mathbf{f}.\lambda \mathbf{x}. \ \mathbf{n} \ \mathbf{f} \ (\mathbf{f} \ \mathbf{x})) \ (\lambda \mathbf{f}.\lambda \mathbf{x}. \ \mathbf{f}^n \, \mathbf{x}) \\ & \longrightarrow & \lambda \mathbf{f}.\lambda \mathbf{x}. \ (\lambda \mathbf{f}.\lambda \mathbf{x}. \ \mathbf{f}^n \, \mathbf{x}) \ \mathbf{f} \ (\mathbf{f} \ \mathbf{x}) \\ & \longrightarrow & \lambda \mathbf{f}.\lambda \mathbf{x}. \ (\lambda \mathbf{x}. \ \mathbf{f}^n \, \mathbf{x}) \ (\mathbf{f} \ \mathbf{x}) \\ & \longrightarrow & \lambda \mathbf{f}.\lambda \mathbf{x}. \ \mathbf{f}^n \ (\mathbf{f} \ \mathbf{x}) \\ & \longrightarrow & \lambda \mathbf{f}.\lambda \mathbf{x}. \ \mathbf{f}^{n+1} \ \mathbf{x} \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \equiv \ \overline{n+1}$$

- Addition: add $\equiv \lambda m. \lambda n. \lambda f. \lambda x. m f (n f x)$
- Multiplikation: $mul \equiv \lambda m. \lambda n. \lambda f. \lambda x. m (n f) x$
- Test auf Null: $zero \equiv \lambda n. \ n \ (\lambda n.F) \ T$
- Vorgängerfunktion:

$$p \equiv \lambda n. (n(\lambda fx. (s, let (f, x) = fx in f x))(\lambda z. \overline{0}, \overline{0})).2$$

Programmierung rekursiver Funktionen

Wende Fixpunktkombinator auf Funktionskörper an

- Fixpunktkombinator: λ -Term R mit Eigenschaft R t = t (R t) für alle t
- Definiert man f durch $F \equiv R (\lambda f \cdot \lambda x \cdot t[f, x])$, wobei im Programmkörper t sowohl f als auch x vorkommen können, dann gilt

$$\mathbf{F} \mathbf{x} = (\lambda f . \lambda x . t[f, x]) F x \xrightarrow{*} \mathbf{t}[\mathbf{F}, \mathbf{x}]$$

- Kurzschreibweise: $F \equiv \text{letrec } f(x) = t \ (\equiv R(\lambda f.\lambda x.t))$
- Y-Kombinator: $Y \equiv \lambda f \cdot (\lambda x \cdot f(xx)) (\lambda x \cdot f(xx))$
 - Bekanntester Fixpunktkombinator

Y
$$t$$
 \equiv $(\lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))) t$
 $\longrightarrow (\lambda x. t(xx)) (\lambda x. t(xx))$
 $\longrightarrow t ((\lambda x. t(xx)) (\lambda x. t(xx)))$
 $t (Y t) \equiv t ((\lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))) t)$
 $\longrightarrow t ((\lambda x. t(xx)) (\lambda x. t(xx)))$

Der λ -Kalkül ist Turing-mächtig

Alle μ -rekursiven Funktionen sind λ -berechenbar

- Nachfolgerfunktion s:
- $s \equiv \lambda n. \lambda f. \lambda x. n f (f x)$
- Projektionsfunktionen pr_m^n :

$$\mathsf{pr}_{m}^{n} \equiv \lambda \mathbf{x}_{1} ... \lambda \mathbf{x}_{n} ... \mathbf{x}_{m}$$

• Konstantenfunktion c_m^n :

$$\mathbf{c}_{m}^{n} \equiv \lambda \mathbf{x}_{1} ... \lambda \mathbf{x}_{n} ... \overline{\mathbf{m}}$$

• Komposition $f \circ (g_1,..,g_n)$:

$$o \equiv \lambda f. \lambda g_1... \lambda g_n... \lambda x... f(g_1 x)...(g_n x)$$

• Primitive Rekursion Pr[f, g]:

 $PR \equiv \lambda f.\lambda g.$ letrec $h(x) = \lambda y.$ if zero y then fx else gx(py) (hx(py))

• Minimierung $\mu[f]$:

 $Mu \equiv \lambda f \cdot \lambda x \cdot (letrec \min(y) = if zero(f x y) then y else \min(s y)) \overline{0}$

Arithmetische Repräsentierbarkeit

Rechtfertigung logischer Programmiersprachen

Spezifikation von Funktionen in logischem Kalkül

- Formeln repräsentieren Ein-/Ausgabeverhalten von Funktionen
- Repräsentation muß eindeutig sein (nur eine Ausgabe pro Eingabe)
- Eindeutigkeit muß ausschließlich aus logischen Axiomen beweisbar sein

• Zentraler Begriff: Gültigkeit in einer Theorie

- Logische Theorie T gegeben durch formale Sprache und Axiome
- Formel F ist gültig in $T (\models_T F)$, wenn F logisch aus den Axiomen folgt

ullet Berechenbarkeitsbegriff: $f{:}\mathbb{N}^k{ o}\mathbb{N}$ repräsentierbar in T

- Es gibt eine Formel F mit $f(i_1, ..., i_k) = j$ g.d.w. $\models_T F(\overline{i_1}, ..., \overline{i_k}, \overline{j})$, d.h. in der Theorie T ist beweisbar, ob f einen bestimmten Wert annimmt
- $-\overline{n}$ ist ein Term der formalen Sprache, der die Zahl n codiert

Die Arithmetische Theorie \mathcal{Q}

• Formale Sprache

- Sprache der Prädikatenlogik (mit Gleichheit)
- Konstantensymbol $\overline{0}$
- Einstelliges Funktionssymbol s
- Zweistellige Funktionssymbole + und *

• Semantik: Logik + 7 Axiome

(ohne Induktion!)

$$\begin{array}{lll} \mathbf{Q_{1}} & \forall x,y.\ \mathsf{s}(x) = \mathsf{s}(y) \Rightarrow x = y & \mathbf{Q_{4}} \colon \ \forall x.\ x + \overline{\mathbf{0}} = x \\ \mathbf{Q_{2}} & \forall x.\ \mathsf{s}(x) \neq \overline{\mathbf{0}} & \mathbf{Q_{5}} \colon \ \forall x,y.\ x + \mathsf{s}(y) = \mathsf{s}(x + y) \\ \mathbf{Q_{3}} & \forall x.\ x \neq \overline{\mathbf{0}} \Rightarrow \exists y.x = \mathsf{s}(y) & \mathbf{Q_{6}} \colon \ \forall x.\ x * \overline{\mathbf{0}} = \overline{\mathbf{0}} \\ \mathbf{Q_{7}} & \forall x,y.x * \mathsf{s}(y) = (x * y) + x \end{array}$$

• Axiome gelten auch für Nichtstandardzahlen

- Es sind auch andere Interpretationen der Symbole S, +, * möglich Definiere Operationen S, +, * auf $\mathbb{N} \cup \{\infty, \infty'\}$

Kommutativität, Assoziativität müssen auf $\mathbb{N} \cup \{\infty, \infty'\}$ nicht gelten

Dennoch kann man alle berechenbaren Funktionen in Q repräsentieren

Repräsentierbarkeit in Q

• $f:\mathbb{N}^k \to \mathbb{N}$ arithmetisch repräsentierbar

-f ist repräsentierbar in \mathcal{Q} , wobei $n \in \mathbb{N}$ codiert als $\overline{n} \equiv \underline{s}(...\underline{(s(\overline{0}))...})$

• Beispiele arithmetisch repräsentierbarer Funktionen

Addition: such 3-stellige Formel ADD mit i+j=k gdw. $\models_{\mathcal{Q}} ADD(\bar{i}, \bar{j}, \bar{k})$ Einfach, da + Teil der Sprache ist: $ADD(x_1, x_2, y) \equiv y = x_1 + x_2$

Multiplikation

 $MUL(x_1, x_2, y) \equiv y = x_1 * x_2$

Vergleich ≤ (Hilfsprädikat für Funktionsbeschreibungen)

 $LE(x,y) \equiv \exists z.x+z=y$

 $LT(x, y) \equiv LE(s(x), y)$

Subtraktion

 $SUB(x_1, x_2, y) \equiv x_1 = x_2 + y \lor (LE(x_1, x_2) \land y = \overline{0})$

Division

 $DIV(x_1, x_2, y) \equiv \exists z. LT(z, x_2) \land x_2 * y + z = x_1$

Divisions rest/Modulo $MOD(x_1, x_2, y) \equiv LT(y, x_2) \land \exists z . x_2 * z + y = x_1$

ullet Repräsentierbarkeit in $\mathcal Q$ ist Turing-mächtig

– Alle μ -rekursiven Funktionen sind repräsentierbar in \mathcal{Q}

 \mapsto Anhang

Weitere Modelle für Berechenbarkeit

Abakus

- Erweiterung des mechanischen Abakus: beliebig viele Stangen / Kugeln
- Zwei Operationen: Kugel hinzunehmen / Kugel wegnehmen

Registermaschinen

- Direkter Zugriff auf endliche Zahl von Registern
- Register enthalten (unbegrenzte) natürliche Zahlen
- Befehle entsprechen elementarem Assembler

• Mini-PASCAL / mini-JAVA

- Basisversion einer imperativen höheren Programmiersprache
- Arithmetische Operationen, Fallunterscheidung, Schleifen
- Operationale Semantik erklärt Bedeutung der Befehle

Markov-Algorithmen

- Wie Typ-0 Grammatiken, aber mit fester Strategie für Regelanwendung
- Verarbeitet Eingabeworte, statt mit einem Startsymbol zu beginnen

Alle Modelle sind ebenfalls Turing-mächtig

DIE CHURCHSCHE THESE

- Alle Berechenbarkeitsmodelle sind äquivalent
 - Keines kann mehr berechnen als Turingmaschinen
 - Es ist keine Funktion bekannt, die man intuitiv als berechenbar ansieht, aber nicht mit einer Turingmaschine berechnen kann
- These von Alonzo Church: Die Klasse der **Turing-berechenbaren Funktionen ist identisch mit** der Klasse der intuitiv berechenbaren Funktionen
 - Unbeweisbare, aber wahrscheinlich richtige Behauptung
 - Arbeitshypothese für theoretische Argumente, die es ermöglicht, in Beweisen intuitiv formulierte Programme anstelle von konkreten Turingmaschinen zu verwenden

Berechenbarkeitsmodelle im Rückblick

• Es gibt viele äquivalente Modelle

- Maschinenbasierte Modelle: Turingmaschinen, Registermaschinen, ...
- Programmiersprachenbasierte Modelle: Mini-PASCAL, Mini-Java, ...
- Abstrakte mathematische Beschreibung: rekursive Funktionen
- Funktionale Programmierung: λ -Kalkül
- Logische Programmierung: Arithmetische Repräsentierbarkeit

• Alle Berechenbarkeitsmodelle sind i.w. äquivalent

- These: Alle berechenbaren Funktionen sind Turing-berechenbar (oder rekursiv, λ -berechenbar, arithmetisch repräsentierbar, ...)
- Die Theorie des Berechenbaren hängt nicht vom konkreten Modell ab, sondern basiert auf allgemeinen Eigenschaften, die alle Modelle (implizit) gemeinsam haben

ANHANG

Repräsentierbarkeit in Q

- Definiere Numeral $\overline{n} \equiv \underline{s(...(s(0))...)}$
 - Codierung der Zahl n als Term der formalen Sprache von $\mathcal Q$
- Definiere: $f: \mathbb{N}^k \rightarrow \mathbb{N}$ repräsentierbar in \mathcal{Q}

Es gibt eine k+1-stellige Formel F, so daß für alle $(i_1,...,i_k) \in \mathbb{N}^k$, $j \in \mathbb{N}$ gilt:

$$f(i_1,...,i_k) = j$$
 impliziert $\models_{\mathcal{Q}} F(\overline{i_1},...,\overline{i_k},\overline{j})$ $f(i_1,...,i_k) \neq j$ impliziert $\models_{\mathcal{Q}} \neg F(\overline{i_1},...,\overline{i_k},\overline{j})$

In Q ist beweisbar, ob f bei Eingabe $i_1, ..., i_k$ einen Wert j annimmt

- Konstruktion repräsentierbarer Funktionen
 - Angabe einer Formel F, die das Ein-/Ausgabeverhalten von f beschreibt
 - Nachweis, daß F (nur) für gültige Ein-/Ausgabepaare in Q beweisbar ist

Beispiele Repräsentierbarer Funktionen

Addition

- Bestimme eine 3-stellige Formel ADD mit i+j=k gdw. $\models_{\mathcal{Q}} ADD(\overline{i}, \overline{j}, \overline{k})$
- Einfach, da Addition vordefiniert: $ADD(x_1, x_2, y) \equiv y = x_1 + x_2$

• Korrektheit der Repräsentation

- Zeige: für alle $i, j, k \in \mathbb{N}$ mit i+j=k gilt $\models_{\mathcal{Q}} \overline{k}=\overline{i}+\overline{j}$ $(\hat{=} \text{ADD}(\overline{i}, \overline{j}, \overline{k}))$ und für alle $i, j, k \in \mathbb{N}$ mit $i+j\neq k$ gilt $\models_{\mathcal{Q}} \overline{k}\neq \overline{i}+\overline{j}$

Sei *i* beliebig, aber fest. Wir führen den Beweis durch Induktion über *j*:

- Für j = 0 folgt i=k, also $\overline{i}=\overline{k}$ und über Axiom Q_4 : $\models_{\mathcal{Q}} \overline{i}+\overline{0}=\overline{i}$
- Es gelte $\models_{\mathcal{Q}} \overline{n} = \overline{i} + \overline{j}$ für alle n und $j = m \in \mathbb{N}$ mit i+j=n
- Es sei j=m+1, also $\overline{j}=s(\overline{m})$ und es gelte i+j=k.

Dann gilt k = i+m+1 = n+1 und $\overline{k} = s(\overline{n})$.

Mit Axiom Q₅ folgt $\models_{\mathcal{Q}} \overline{i}+\overline{j} = \overline{i}+S(\overline{m}) = S(\overline{i}+\overline{m}) = S(\overline{n}) = \overline{k}$

Der Beweis für $i+j\neq k$ impliziert $\models_{\mathcal{Q}} \overline{k}\neq \overline{i}+\overline{j}$ ist analog

Beispiele Repräsentierbarer Funktionen (II)

Multiplikation

$$MUL(x_1, x_2, y) \equiv y = x_1 * x_2$$

Vergleich ≤ (Prädikat)

$$\text{LE}(x,y) \equiv \exists z.x+z=y$$

$$LT(x, y) \equiv LE(s(x), y)$$

• Subtraktion SUB
$$(x_1, x_2, y) \equiv x_1 = x_2 + y \lor (LE(x_1, x_2) \land y = \overline{0})$$

Division

$$\mathsf{DIV}(x_1, x_2, y) \equiv \exists \mathsf{z.LT}(\mathsf{z}, x_2) \land x_2 * y + \mathsf{z} = x_1$$

• Divisionsrest/Modulo

$$MOD(x_1, x_2, y) \equiv LT(y, x_2) \land \exists z. x_2 * z + y = x_1$$

• **Teilbarkeit** (Prädikat) DIVIDES
$$(x_1, x_2) \equiv \exists z . x_1 * z = x_2$$

• **Primzahleigenschaft** (Prädikat)

$$PRIME(x) \equiv \forall y. (LT(y,x) \land LT(\overline{1},y)) \Rightarrow \neg DIVIDES(y,x)$$

Mehr Beispiele in den Übungen

Repräsentierbarkeit in Q ist Turing-mächtig (I)

Definiere Min-rekursive Funktionen Defi nition rekursiver Funktionen ohne primitive Rekursion

- ullet \mathcal{R}_{min} : Menge der min-rekursiven Funktionen
 - Addition, Nachfolger, Projektions- oder Konstantenfunktion sowie
 - Alle Funktionen, die aus min-rekursiven Funktionen durch Komposition oder Minimierung entstehen

Wichtiger Sonderfall für Vergleiche mit anderen Modellen

- $\mathcal{R}_{min} \subseteq \mathcal{R}$: min-rekursive Funktionen sind μ -rekursiv
 - Offensichtlich, da Additition μ -rekursiv ist
- $\mathcal{R} \subseteq \mathcal{R}_{min}$: μ -rekursive Funktionen sind min-rekursiv
 - Beschreibe Abarbeitung des Stacks einer primitiven Rekursion
 - Suche nach erstem erzeugten Stack der Länge 1 (Details aufwendig)

Repräsentierbarkeit in Q ist Turing-mächtig (II)

Alle min-rekursiven Funktionen sind repräsentierbar

Nachfolgerfunktion s:

$$S(x,y) \equiv y=S(x)$$

• Projektionsfunktionen pr_m^n :

$$PR_m^n(x_1,..,x_n,y) \equiv y=x_m$$

• Konstantenfunktion c_m^n :

$$C_m^n(x_1,..,x_n,y) \equiv y = \overline{m}$$

• Addition add:

$$ADD(x_1, x_2, y) \equiv y = x_1 + x_2$$

• Komposition $f \circ (g_1,..,g_n)$:

$$H(\vec{x},z) \equiv \exists y_1,..,y_n.(G_1(\vec{x},y_1) \land ... \land G_n(\vec{x},y_n) \land F(y_1,..,y_n,z))$$

H repräsentiert $f \circ (g_1, ..., g_n)$, wenn $F, G_1, ..., G_n$ Repräsentationen von $f, g_1, ..., g_n$

• Minimierung $\mu[f]$:

$$H(\vec{x},y) \equiv \forall w. LE(w,y) \Rightarrow [F(\vec{x},y,\overline{0}) \Leftrightarrow w=y]$$

H repräsentiert $\mu[f]$, wenn F Repräsentation von f