Theoretische Informatik II

Einheit 6.5

Hierarchie von Komplexitätsklassen

- 1. Pseudopolynomielle Algorithmen
- 2. Komplementäre Klassen
- 3. Polynomieller Platz
- 4. Hierarchiesätze

Gibt es "leichte" \mathcal{NP} -vollständige Probleme?

Gibt es "leichte" \mathcal{NP} -vollständige Probleme?

- Was unterscheidet CLIQUE von KP?
 - Beide Probleme sind \mathcal{NP} -vollständig, aber
 - $\cdot 3SAT \leq_p CLIQUE$ codiert Formel durch gleich großen Graph
 - $\cdot 3SAT \leq_p KP$ benutzt exponentiell große Zahlen als Codierung

Gibt es "leichte" \mathcal{NP} -vollständige Probleme?

• Was unterscheidet CLIQUE von KP?

- Beide Probleme sind \mathcal{NP} -vollständig, aber
 - $\cdot 3SAT \leq_p CLIQUE$ codiert Formel durch gleich großen Graph
 - $\cdot 3SAT \leq_p KP$ benutzt exponentiell große Zahlen als Codierung
- Ist KP nur wegen der großen Zahlen \mathcal{NP} -vollständig?

Gibt es "leichte" \mathcal{NP} -vollständige Probleme?

• Was unterscheidet CLIQUE von KP?

- Beide Probleme sind \mathcal{NP} -vollständig, aber
 - $\cdot 3SAT \leq_p CLIQUE$ codiert Formel durch gleich großen Graph
 - $\cdot 3SAT \leq_p KP$ benutzt exponentiell große Zahlen als Codierung
- Ist KP nur wegen der großen Zahlen \mathcal{NP} -vollständig?

• Es gibt "bessere" Lösungen für KP

$$\mathbf{KP} = \{ (g_1..g_n, a_1..a_n, G, A) \mid \exists J \subseteq \{1..n\}. \ \Sigma_{i \in J} g_i \leq G \land \Sigma_{i \in J} a_i \geq A \}$$

- Man muß nicht alle Kombinationen von $\{1..n\}$ einzeln auswerten
- Man kann iterativ den optimalen Nutzen bestimmen,
 indem man die Anzahl der Gegenstände und das Gewicht erhöht
- Sehr effizient, wenn das maximale Gewicht nicht zu groß wird

$$\mathbf{KP} = \{ (g_1..g_n, a_1..a_n, G, A) \mid \exists J \subseteq \{1..n\}. \ \Sigma_{i \in J} g_i \leq G \land \Sigma_{i \in J} a_i \geq A \}$$

_ THEORETISCHE INFORMATIK II §6.5: ________ 2 ______ HIERARCHIE VON KOMPLEXITÄTSKLASSEN

$$\mathbf{KP} = \{ (g_1..g_n, a_1..a_n, G, A) \mid \exists J \subseteq \{1..n\}. \ \Sigma_{i \in J} g_i \leq G \land \Sigma_{i \in J} a_i \geq A \}$$

- Betrachte Subprobleme KP(k,g) (g und k fest)
 - Verwende Gegenstände 1, ..., k und Maximalgewicht $g \le G$
 - Definiere optimalen Nutzen N(k, g)
 - N(k,0) = 0 für alle k
 - $\cdot N(0,g) = 0$ für alle g
 - $N(k,g) = max\{N(k-1,g-g_k) + a_k, N(k-1,g)\}$

$$\mathbf{KP} = \{ (g_1..g_n, a_1..a_n, G, A) \mid \exists J \subseteq \{1..n\}. \ \Sigma_{i \in J} g_i \leq G \land \Sigma_{i \in J} a_i \geq A \}$$

- Betrachte Subprobleme KP(k,g) (g und k fest)
 - Verwende Gegenstände 1, ..., k und Maximalgewicht $g \leq G$
 - Definiere optimalen Nutzen N(k, g)
 - N(k,0) = 0 für alle k
 - $\cdot N(0,g) = 0$ für alle g
 - $N(k,g) = max\{N(k-1,g-g_k) + a_k, N(k-1,g)\}$

• Löse Rucksackproblem KP iterativ

- $-\operatorname{Es\ gilt\ }(g_1..g_n,\ a_1..a_n,\ G,\ A)\in KP\ \Leftrightarrow\ N(n,G){\geq}A$
- Gleichungen beschreiben rekursiven Algorithmus für N(n,G)
- Tabellarischer Algorithmus bestimmt alle N(k,g) mit $k \le n$, $g \le G$
- Laufzeit ist $\mathcal{O}(n * G)$

$$\mathbf{KP} = \{ (g_1..g_n, a_1..a_n, G, A) \mid \exists J \subseteq \{1..n\}. \ \Sigma_{i \in J} g_i \leq G \land \Sigma_{i \in J} a_i \geq A \}$$

- Betrachte Subprobleme KP(k,g) (g und k fest)
 - Verwende Gegenstände 1, ..., k und Maximalgewicht $g \leq G$
 - Definiere optimalen Nutzen N(k, g)
 - N(k,0) = 0 für alle k
 - $\cdot N(0,g) = 0$ für alle g
 - $N(k,g) = max\{N(k-1,g-g_k) + a_k, N(k-1,g)\}$

• Löse Rucksackproblem KP iterativ

- Es gilt $(g_1..g_n, a_1..a_n, G, A) \in KP \Leftrightarrow N(n, G) \ge A$
- Gleichungen beschreiben rekursiven Algorithmus für N(n,G)
- Tabellarischer Algorithmus bestimmt alle N(k, g) mit $k \le n, g \le G$
- Laufzeit ist $\mathcal{O}(n * G)$

$$(g_1..g_n,a_1..a_n,\ G,A)\in KP$$
 ist in $\mathcal{O}(n*G)$ Schritten lösbar

Liegt das Rucksackproblem KP etwa in $\mathcal P$?

Liegt das Rucksackproblem KP etwa in $\mathcal P$?

- Lösung für KP ist nicht wirklich polynomiell
 - -n*G kann exponentiell wachsen relativ zur Größe der Eingabe
 - Größe von $(g_1..g_n, a_1..a_n, G, A)$ ist $\mathcal{O}(n * (logG + logA))$

Liegt das Rucksackproblem KP etwa in $\mathcal P$?

• Lösung für KP ist nicht wirklich polynomiell

- -n*G kann exponentiell wachsen relativ zur Größe der Eingabe
- Größe von $(g_1..g_n, a_1..a_n, G, A)$ ist $\mathcal{O}(n * (logG + logA))$

• KP ist ein Zahlproblem

 $-L\subseteq \Sigma^*$ ist **Zahlproblem**, wenn MAX(w), die größte in einer Eingabe w codierte Zahl, nicht durch ein Polynom beschränkt werden kann

Liegt das Rucksackproblem KP etwa in $\mathcal P$?

• Lösung für KP ist nicht wirklich polynomiell

- -n*G kann exponentiell wachsen relativ zur Größe der Eingabe
- Größe von $(g_1..g_n, a_1..a_n, G, A)$ ist $\mathcal{O}(n * (logG + logA))$

• KP ist ein Zahlproblem

- $-L\subseteq\Sigma^*$ ist **Zahlproblem**, wenn MAX(w), die größte in einer Eingabe w codierte Zahl, nicht durch ein Polynom beschränkt werden kann
- Weitere Zahlprobleme: PARTITION, BPP, TSP, MSP, ...
- Keine Zahlprobleme: CLIQUE, VC, IS, SGI, LCS, DHC, HC, GC,...

Liegt das Rucksackproblem KP etwa in $\mathcal P$?

• Lösung für KP ist nicht wirklich polynomiell

- -n*G kann exponentiell wachsen relativ zur Größe der Eingabe
- Größe von $(g_1..g_n, a_1..a_n, G, A)$ ist $\mathcal{O}(n * (logG + logA))$

• KP ist ein Zahlproblem

- $-L\subseteq\Sigma^*$ ist **Zahlproblem**, wenn MAX(w), die größte in einer Eingabe w codierte Zahl, nicht durch ein Polynom beschränkt werden kann
- Weitere Zahlprobleme: PARTITION, BPP, TSP, MSP, ...
- Keine Zahlprobleme: CLIQUE, VC, IS, SGI, LCS, DHC, HC, GC,...

• KP hat pseudopolynomielle Lösung

– Algorithmen für ein Zahlproblem $L \subseteq \Sigma^*$ sind **pseudopolynomiell**, wenn ihre Rechenzeit durch ein Polynom in |w| und MAX(w) beschränkt ist

• Pseudopolynomiell $\hat{=}$ effizient bei kleinen Zahlen

- Ist $L{\subseteq}\Sigma^*$ pseudopolynomiell lösbar, so ist für jedes Polynomp

$$\mathbf{L_p} \equiv \{w \in L \mid MAX(w) \leq p(|w|)\} \in \mathcal{P}$$

– Die Restriktion von KP auf polynomiell große Gewichte liegt in \mathcal{P}

• Pseudopolynomiell $\hat{=}$ effizient bei kleinen Zahlen

- Ist $L \subseteq \Sigma^*$ pseudopolynomiell lösbar, so ist für jedes Polynom p $L_p \equiv \{w \in L \mid MAX(w) \leq p(|w|)\} \in \mathcal{P}$
- Die Restriktion von KP auf polynomiell große Gewichte liegt in \mathcal{P}
- Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

• Pseudopolynomiell $\hat{=}$ effizient bei kleinen Zahlen

– Ist $L \subseteq \Sigma^*$ pseudopolynomiell lösbar, so ist für jedes Polynom p $L_p \equiv \{w \in L \mid MAX(w) \leq p(|w|)\} \in \mathcal{P}$

- Die Restriktion von KP auf polynomiell große Gewichte liegt in \mathcal{P}
- Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

• TSP ohne pseudopolynomielle Lösung

(falls $\mathcal{P} \neq \mathcal{N}\mathcal{P}$)

- Der Reduktionsbeweis $HC \leq_p TSP$ zeigt $HC \leq_p TSP_n$
- Eine Restriktion von TSP auf kleine Zahlen bleibt \mathcal{NP} -vollständig

• Pseudopolynomiell $\hat{=}$ effizient bei kleinen Zahlen

- Ist $L \subseteq \Sigma^*$ pseudopolynomiell lösbar, so ist für jedes Polynom p $\boldsymbol{L_p} \equiv \{w \in L \mid MAX(w) \leq p(|w|)\} \in \mathcal{P}$
- Die Restriktion von KP auf polynomiell große Gewichte liegt in \mathcal{P}
- Hat jedes Zahlproblem eine pseudopolynomielle Lösung?

• TSP ohne pseudopolynomielle Lösung

(falls $\mathcal{P} \neq \mathcal{N}\mathcal{P}$)

- Der Reduktionsbeweis $HC \leq_p TSP$ zeigt $HC \leq_p TSP_n$
- Eine Restriktion von TSP auf kleine Zahlen bleibt \mathcal{NP} -vollständig
- ullet TSP ist stark \mathcal{NP} -vollständig
 - $-L\subseteq\Sigma^*$ stark \mathcal{NP} -vollständig $\equiv L_p \mathcal{NP}$ -vollständig für ein Polynom p
 - -L stark \mathcal{NP} -vollständig $\Rightarrow L$ hat keine pseudopolynomielle Lösung

Es gibt weitere wichtige Komplexitätsklassen

- ullet co– \mathcal{NP}
 - Probleme mit Komplement in \mathcal{NP}
 - Problem muß nicht notwendigerweise selbst in \mathcal{NP} liegen

ES GIBT WEITERE WICHTIGE KOMPLEXITÄTSKLASSEN

ullet co– \mathcal{NP}

- Probleme mit Komplement in \mathcal{NP}
- Problem muß nicht notwendigerweise selbst in \mathcal{NP} liegen

• PSPACE

- Platzverbrauch polynomiell relativ zur Größe der Eingabe

ES GIBT WEITERE WICHTIGE KOMPLEXITÄTSKLASSEN

ullet co– \mathcal{NP}

- Probleme mit Komplement in \mathcal{NP}
- Problem muß nicht notwendigerweise selbst in \mathcal{NP} liegen

• PSPACE

– Platzverbrauch polynomiell relativ zur Größe der Eingabe

Klassen mit großer theoretischer Bedeutung

- $-\sum_{i=1}^{p}$: Sprachen von OTMs, deren Orakel ein \mathcal{NP} -Problem entscheidet
- $-\Pi_2^p$: Sprachen von OTMs, deren Orakel ein $co-\mathcal{NP}$ -Problem entscheidet
- $-\sum_{i}^{p}/\prod_{i}^{p}$: Sprachen von OTMs mit Orakel in $\prod_{i=1}^{p}/\sum_{i=1}^{p}$
- LOGSPACE: logarithmischer Platzverbrauch der Berechnung (!)
- **EXPTIME** / **EXPSPACE**: exponentieller Zeit-/Platzbedarf Rechenzeit und Platzverbrauch sind nicht mehr handhabbar

$$oldsymbol{co-\mathcal{C}} := \set{L | \overline{L} \in \mathcal{C}}$$

$$co-\mathcal{C}:=\set{L\mid \overline{L}\in\mathcal{C}}$$

• Interessant für nichtdeterministische Klassen

- Für deterministische Komplexitätsklassen gilt C = co CAkzeptieren/Verwerfen einer DTM ist vertauschbar
- Nichtdeterministisches Akzeptieren ist komplizierter:
 OTM akzeptiert, wenn Orakel einen akzeptablen Lösungsvorschlag machen kann

$$co-\mathcal{C}:=\set{L\mid \overline{L}\in\mathcal{C}}$$

• Interessant für nichtdeterministische Klassen

- Für deterministische Komplexitätsklassen gilt C = co CAkzeptieren/Verwerfen einer DTM ist vertauschbar
- Nichtdeterministisches Akzeptieren ist komplizierter:
 OTM akzeptiert, wenn Orakel einen akzeptablen Lösungsvorschlag machen kann

• Beispiele für Probleme in $co-\mathcal{NP}$:

- Menge der allgemeingültigen Formeln (Komplement von SAT)
- Das Primzahlproblem (Komplement von Zusammengesetztheit)

$$co-\mathcal{C}:=\set{L\mid \overline{L}\in\mathcal{C}}$$

• Interessant für nichtdeterministische Klassen

- Für deterministische Komplexitätsklassen gilt $\mathcal{C}=co-\mathcal{C}$ Akzeptieren/Verwerfen einer DTM ist vertauschbar
- Nichtdeterministisches Akzeptieren ist komplizierter:
 OTM akzeptiert, wenn Orakel einen akzeptablen Lösungsvorschlag machen kann

• Beispiele für Probleme in $co-\mathcal{NP}$:

- Menge der allgemeingültigen Formeln (Komplement von SAT)
- Das Primzahlproblem (Komplement von Zusammengesetztheit)
- ullet Bisherige Erkenntnisse deuten auf $co-\mathcal{NP}
 eq \mathcal{NP}$
 - Wenn $\mathcal{P} = \mathcal{NP}$, dann $co \mathcal{NP} = co \mathcal{P} = \mathcal{P} = \mathcal{NP}$

$$co-\mathcal{C}:=\set{L\mid \overline{L}\in\mathcal{C}}$$

• Interessant für nichtdeterministische Klassen

- Für deterministische Komplexitätsklassen gilt C = co CAkzeptieren/Verwerfen einer DTM ist vertauschbar
- Nichtdeterministisches Akzeptieren ist komplizierter:
 OTM akzeptiert, wenn Orakel einen akzeptablen Lösungsvorschlag machen kann

• Beispiele für Probleme in $co-\mathcal{NP}$:

- Menge der allgemeingültigen Formeln (Komplement von SAT)
- Das Primzahlproblem (Komplement von Zusammengesetztheit)

ullet Bisherige Erkenntnisse deuten auf $co-\mathcal{NP} eq \mathcal{NP}$

- Wenn $\mathcal{P} = \mathcal{NP}$, dann $co \mathcal{NP} = co \mathcal{P} = \mathcal{P} = \mathcal{NP}$
- $-\mathcal{NP} = co \mathcal{NP} \iff \mathcal{NPC} \cap co \mathcal{NP} \neq \emptyset$
 - \Rightarrow : offensichtlich, da $\mathcal{NPC} \neq \emptyset$
 - $\Leftarrow : \mathsf{Ist}\ L \in \mathcal{NPC} \cap co \mathcal{NP} \mathsf{\ so\ gilt\ } \overline{L'} \leq_p \!\! L \mathsf{\ für\ jedes\ } L' \in co \mathcal{NP} \mathsf{\ also\ } L' \leq_p \!\! \overline{L} \in \!\! \mathcal{NP}$

PSPACE: POLYNOMIELLER PLATZVERBRAUCH

- $ullet \mathcal{NP} \subseteq PSPACE$
 - Eine Maschine kann in polynomieller Zeit nur polynomiell viele Speicherzellen verwenden

PSPACE: POLYNOMIELLER PLATZVERBRAUCH

- $ullet \mathcal{NP} \subseteq PSPACE$
 - Eine Maschine kann in polynomieller Zeit nur polynomiell viele Speicherzellen verwenden
- ullet $NSPACE(f(n)) \subseteq SPACE(f(n)^2)$ (Satz von Savitch)
 - Simulation mit Speicherung der Alternativen (§4.1) zu platzaufwendig

PSPACE: Polynomieller Platzverbrauch

- $ullet \mathcal{NP} \subseteq PSPACE$
 - Eine Maschine kann in polynomieller Zeit nur polynomiell viele Speicherzellen verwenden
- ullet $NSPACE(f(n)) \subseteq SPACE(f(n)^2)$ (Satz von Savitch)
 - Simulation mit Speicherung der Alternativen (§4.1) zu platzaufwendig
 - Teste $\kappa_{\alpha} \vdash^{t} \kappa_{\omega}$ (für maximales $t=2^{c*f(n)}$) durch "binäre Tiefensuche"
 - Platzverbrauch des Rekursionsstacks ist $\mathcal{O}(f(n)^2)$ (falls $f(n) \ge \log n$)
 - Zeitaufwand der Simulation ist exponentiell höher als bei der NTM

PSPACE: Polynomieller Platzverbrauch

- $ullet \mathcal{NP} \subseteq PSPACE$
 - Eine Maschine kann in polynomieller Zeit nur polynomiell viele Speicherzellen verwenden
- ullet $NSPACE(f(n)) \subseteq SPACE(f(n)^2)$ (Satz von Savitch)
 - Simulation mit Speicherung der Alternativen (§4.1) zu platzaufwendig
 - Teste $\kappa_{\alpha} \vdash^{t} \kappa_{\omega}$ (für maximales $t=2^{c*f(n)}$) durch "binäre Tiefensuche"
 - Platzverbrauch des Rekursionsstacks ist $\mathcal{O}(f(n)^2)$ (falls $f(n) \ge \log n$)
 - Zeitaufwand der Simulation ist exponentiell höher als bei der NTM
- ullet PSPACE = NPSPACE

HMU §11.2.3

- Folgt direkt aus dem Satz von Savitch

PSPACE: Polynomieller Platzverbrauch

$ullet \mathcal{NP} \subseteq PSPACE$

 Eine Maschine kann in polynomieller Zeit nur polynomiell viele Speicherzellen verwenden

ullet $NSPACE(f(n)) \subseteq SPACE(f(n)^2)$ (Satz von Savitch)

- Simulation mit Speicherung der Alternativen (§4.1) zu platzaufwendig
- Teste $\kappa_{\alpha} \vdash^{t} \kappa_{\omega}$ (für maximales $t=2^{c*f(n)}$) durch "binäre Tiefensuche"
- Platzverbrauch des Rekursionsstacks ist $\mathcal{O}(f(n)^2)$ (falls $f(n) \ge \log n$)
- Zeitaufwand der Simulation ist exponentiell höher als bei der NTM

ullet PSPACE = NPSPACE

HMU §11.2.3

Folgt direkt aus dem Satz von Savitch

ullet $PSPACE \subseteq EXPTIME$

- Eine terminierende Maschine, die maximal f(n) Bandzellen aufsucht, terminiert nach maximal $|\Gamma|^{f(n)} * |Q| * f(n)$ Schritten
- -Zahl der Konfigurationen = Bandinhalte * Zustände * Kopfpositionen $NPSPACE \subseteq NEXPTIME$ gilt aus dem gleichen Grund

PSPACE-Vollständigkeit

- C-Vollständigkeit allgemein
 - -L ist C-vollständig, falls $L \in C$ und $L' \leq_p L$ für alle $L' \in C$

PSPACE-Vollständigkeit

- C-Vollständigkeit allgemein
 - -L ist C-vollständig, falls L ∈ C und $L' ≤_p L$ für alle L' ∈ C
- Wie zeigt man *PSPACE*-Vollständigkeit?
 - Codiere Berechnungen von DTMs, die polynomiellen Platz brauchen
 - Sprache: komplexer als SAT, aber mit deterministischer Natur
 - Kandidat: Wahrheit geschlossener quantifizierter boolescher Formeln

PSPACE-VOLLSTÄNDIGKEIT

• C-Vollständigkeit allgemein

-L ist C-vollständig, falls L ∈ C und $L' ≤_p L$ für alle L' ∈ C

• Wie zeigt man *PSPACE*-Vollständigkeit?

- Codiere Berechnungen von DTMs, die polynomiellen Platz brauchen
- Sprache: komplexer als SAT, aber mit deterministischer Natur
- Kandidat: Wahrheit geschlossener quantifizierter boolescher Formeln

• Erweitere Aussagenlogik um boolesche Quantoren

- Ausagenlogische Variablen P, Q, R, ..., Konstante t und f
- -Formeln $\neg F$, $E \land F$, $E \lor F$, $E \Rightarrow F$, $(\forall P)F$, $(\exists P)F$
- Wert von $(\forall P)F$ entspricht dem von $F[t/P] \land F[f/P]$
- Wert von $(\exists P)F$ entspricht dem von $F[t/P] \lor F[f/P]$
- Wert anderer Formeln wie in gewöhnlicher Aussagenlogik

PSPACE-VOLLSTÄNDIGKEIT

• C-Vollständigkeit allgemein

-L ist C-vollständig, falls L ∈ C und $L' ≤_p L$ für alle L' ∈ C

• Wie zeigt man *PSPACE*-Vollständigkeit?

- Codiere Berechnungen von DTMs, die polynomiellen Platz brauchen
- Sprache: komplexer als SAT, aber mit deterministischer Natur
- Kandidat: Wahrheit geschlossener quantifizierter boolescher Formeln

• Erweitere Aussagenlogik um boolesche Quantoren

- Ausagenlogische Variablen P, Q, R, ..., Konstante t und f
- -Formeln $\neg F$, $E \land F$, $E \lor F$, $E \Rightarrow F$, $(\forall P)F$, $(\exists P)F$
- Wert von $(\forall P)F$ entspricht dem von $F[t/P] \land F[f/P]$
- Wert von $(\exists P)F$ entspricht dem von $F[t/P] \lor F[f/P]$
- Wert anderer Formeln wie in gewöhnlicher Aussagenlogik $(\forall P)(\exists Q) [(P \lor Q) \land (\neg P \lor \neg Q)]$ ist wahr (Wert 1) $(\exists Q)(\forall P) [(P \lor Q) \land (\neg P \lor \neg Q)]$ ist falsch (Wert 0)

PSPACE-VOLLSTÄNDIGKEIT

C-Vollständigkeit allgemein

-L ist C-vollständig, falls L ∈ C und $L' ≤_p L$ für alle L' ∈ C

• Wie zeigt man *PSPACE*-Vollständigkeit?

- Codiere Berechnungen von DTMs, die polynomiellen Platz brauchen
- Sprache: komplexer als SAT, aber mit deterministischer Natur
- Kandidat: Wahrheit geschlossener quantifizierter boolescher Formeln

• Erweitere Aussagenlogik um boolesche Quantoren

- Ausagenlogische Variablen P, Q, R, ..., Konstante t und f
- -Formeln $\neg F$, $E \land F$, $E \lor F$, $E \Rightarrow F$, $(\forall P)F$, $(\exists P)F$
- Wert von $(\forall P)F$ entspricht dem von $F[t/P] \land F[f/P]$
- Wert von $(\exists P)F$ entspricht dem von $F[t/P] \lor F[f/P]$
- Wert anderer Formeln wie in gewöhnlicher Aussagenlogik $(\forall P)(\exists Q) [(P \lor Q) \land (\neg P \lor \neg Q)]$ ist wahr (Wert 1) $(\exists Q)(\forall P) [(P \lor Q) \land (\neg P \lor \neg Q)]$ ist falsch (Wert 0)

QBF ist die Menge der geschlossenen QB-Formeln mit Wert 1

QBF ist PSPACE-vollständig

ullet $QBF \in PSPACE$

- Auswerten aussagenlogischer Formeln braucht linearen Platz
- $-(\forall P)F = F[t/P] \land F[f/P]$ und $(\exists P)F = F[t/P] \lor F[f/P]$ werden kaskadisch ausgewertet
- Gesamtbedarf, einschließlich Zwischenspeicherung, ist quadratisch

QBF ist PSPACE-vollständig

ullet $QBF \in PSPACE$

- Auswerten aussagenlogischer Formeln braucht linearen Platz
- $-(\forall P)F = F[t/P] \land F[f/P]$ und $(\exists P)F = F[t/P] \lor F[f/P]$ werden kaskadisch ausgewertet
- Gesamtbedarf, einschließlich Zwischenspeicherung, ist quadratisch
- ullet Für alle $L \in PSPACE$ gilt $L \leq_p QBF$ HMU $\S 11.3.4$
 - Codiere Bandzellen und Konfigurationen wie im Satz von Cook
 - Beschreibe Formeln $F_{\kappa_1,\kappa_2,t}$ für die Aussage $\kappa_1 \vdash^t \kappa_2$
 - Zielformel ist $F_{\kappa_{\alpha},\kappa_{\omega},2^{c*p(n)}}$, wobei κ_{α} Anfangskonfiguration, κ_{ω} Endkonfiguration, p(n) Platzverbrauch, c Alternativen pro Zelle

QBF ist PSPACE-vollständig

ullet $QBF \in PSPACE$

- Auswerten aussagenlogischer Formeln braucht linearen Platz
- $-(\forall P)F = F[t/P] \land F[f/P]$ und $(\exists P)F = F[t/P] \lor F[f/P]$ werden kaskadisch ausgewertet
- Gesamtbedarf, einschließlich Zwischenspeicherung, ist quadratisch

ullet Für alle $L \in PSPACE$ gilt $L \leq_p QBF$ HMU $\S 11.3.4$

- Codiere Bandzellen und Konfigurationen wie im Satz von Cook
- Beschreibe Formeln $F_{\kappa_1,\kappa_2,t}$ für die Aussage $\kappa_1 \vdash^t \kappa_2$
- Zielformel ist $F_{\kappa_{\alpha},\kappa_{\omega},2^{c*p(n)}}$, wobei κ_{α} Anfangskonfiguration, κ_{ω} Endkonfiguration, p(n) Platzverbrauch, c Alternativen pro Zelle
- Setze $F_{\kappa_1,\kappa_1,0}$ und beschreibe $F_{\kappa_1,\kappa_2,1}$ passend zur Tabelle von δ
- Beschreibe $F_{\kappa_1,\kappa_2,t}$ durch eine Darstellung für $(\exists \kappa) F_{\kappa_1,\kappa,t \div 2} \land F_{\kappa,\kappa_2,t \div 2}$, die das Entstehen exponentiell großer Formeln vermeidet

$$(\exists \kappa)(\forall \kappa_3)(\forall \kappa_4)[(\kappa_3 \Leftrightarrow \kappa_1 \land \kappa_4 \Leftrightarrow \kappa) \lor (\kappa_3 \Leftrightarrow \kappa \land \kappa_4 \Leftrightarrow \kappa_2)] \Rightarrow F_{\kappa_3,\kappa_4,t \div 2}$$

Weitere *PSPACE*-vollständige Probleme

• Strategische 2-Personen Spiele

- Viele konkrete Beispiele in Garey/Johnson Seite 254ff
- Spielentscheidungen entsprechen alternierenden QB Formeln
 Spieler gewinnt, wenn für jeden Zug des Gegners, ein Zug existiert, so daß für jeden Folgezug des Gegners, ... das Resultat einen Sieg darstellt
- QBF kann als strategisches Spiel beschrieben werden (und umgekehrt)

Weitere *PSPACE*-vollständige Probleme

• Strategische 2-Personen Spiele

- Viele konkrete Beispiele in Garey/Johnson Seite 254ff
- Spielentscheidungen entsprechen alternierenden QB Formeln
 Spieler gewinnt, wenn für jeden Zug des Gegners, ein Zug existiert, so daß für jeden Folgezug des Gegners, ... das Resultat einen Sieg darstellt
- QBF kann als strategisches Spiel beschrieben werden (und umgekehrt)

• Sprache regulärer Ausdrücke

 $-\operatorname{Ist} L(E) = \Sigma^*$ für einen beliebigen regulären Ausdruck über Σ ?

Weitere *PSPACE*-vollständige Probleme

• Strategische 2-Personen Spiele

- Viele konkrete Beispiele in Garey/Johnson Seite 254ff
- Spielentscheidungen entsprechen alternierenden QB Formeln
 Spieler gewinnt, wenn für jeden Zug des Gegners, ein Zug existiert, so daß für jeden Folgezug des Gegners, ... das Resultat einen Sieg darstellt
- QBF kann als strategisches Spiel beschrieben werden (und umgekehrt)

• Sprache regulärer Ausdrücke

- Ist $L(E) = \Sigma^*$ für einen beliebigen regulären Ausdruck über Σ ?

• In-Place Acceptance

Asteroth/Baier §4.5

– Kann eine gegebene DTM jedes Wort w ihrer Sprache mit Platzbedarf |w| akzeptieren?

• Isomorphie ungerichteter Graphen

 \mathcal{NP} , nicht vollständig

• Isomorphie ungerichteter Graphen

 \mathcal{NP} , nicht vollständig

- Zuverlässigkeit von Netzwerken
- \mathcal{NP} -hart, vermutlich nicht in \mathcal{NP}
- Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten

• Isomorphie ungerichteter Graphen

 \mathcal{NP} , nicht vollständig

- Zuverlässigkeit von Netzwerken
- \mathcal{NP} -hart, vermutlich nicht in \mathcal{NP}
- Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten
- Minimale äquivalente Schaltkreise

- Σ_2^p , also \mathcal{NP} -hart, nicht in \mathcal{NP}
- Bestimme optimale Größe einer Schaltung

• Isomorphie ungerichteter Graphen

 \mathcal{NP} , nicht vollständig

• Zuverlässigkeit von Netzwerken

 \mathcal{NP} -hart, vermutlich nicht in \mathcal{NP}

- Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten
- Minimale äquivalente Schaltkreise

 Σ_2^p , also \mathcal{NP} -hart, nicht in \mathcal{NP}

- Bestimme optimale Größe einer Schaltung
- $n \times n$ -Schach, Dame, Go

EXPTIME(-vollständig)

- Exponentiell viele Züge bis Spielende möglich

• Isomorphie ungerichteter Graphen

 \mathcal{NP} , nicht vollständig

• Zuverlässigkeit von Netzwerken

 \mathcal{NP} -hart, vermutlich nicht in \mathcal{NP}

- Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten
- Minimale äquivalente Schaltkreise

 Σ_2^p , also \mathcal{NP} -hart, nicht in \mathcal{NP}

- Bestimme optimale Größe einer Schaltung
- $n \times n$ -Schach, Dame, Go

EXPTIME(-vollständig)

- Exponentiell viele Züge bis Spielende möglich
- TSP*: Bestimmung aller Rundreisen mit gegebenen Kosten
 - Unrealistische Problemstellung: zu viele Lösungen

EXPSPACE

• Isomorphie ungerichteter Graphen

 \mathcal{NP} , nicht vollständig

• Zuverlässigkeit von Netzwerken

 \mathcal{NP} -hart, vermutlich nicht in \mathcal{NP}

- Wahrscheinlichkeit für fehlerfreie Verbindung zwischen zwei Knoten
- Minimale äquivalente Schaltkreise

 Σ_2^p , also \mathcal{NP} -hart, nicht in \mathcal{NP}

- Bestimme optimale Größe einer Schaltung
- $n \times n$ -Schach, Dame, Go

EXPTIME(-vollständig)

- Exponentiell viele Züge bis Spielende möglich
- TSP*: Bestimmung aller Rundreisen mit gegebenen Kosten
 - Unrealistische Problemstellung: zu viele Lösungen

EXPSPACE

- Äquivalenz regulärer Ausdrücke mit Iteration EXPSPACE-vollständig
 - Einfache Problemstellung mit sehr schwieriger Lösung
 - Ausdrücke dürfen $E^k = \underbrace{E \circ E ... \circ E}$ enthalten

• Welche der folgenden Inklusionen sind echt?

 $LOGSPACE \subseteq NLOGSPACE$

- $\subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq PSPACE = NPSPACE$
- $\subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots$

• Welche der folgenden Inklusionen sind echt?

```
LOGSPACE \subseteq NLOGSPACE
\subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq PSPACE = NPSPACE
\subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots
```

- ullet Wie beweist man Unlösbarkeit in Platz/Zeit f
 - Diagonalisierung über alle Probleme, die in Komplexität f lösbar sind

• Welche der folgenden Inklusionen sind echt?

```
LOGSPACE \subseteq NLOGSPACE
\subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq PSPACE = NPSPACE
\subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots
```

- Wie beweist man Unlösbarkeit in Platz/Zeit f
 - Diagonalisierung über alle Probleme, die in Komplexität f lösbar sind
- Hilfsmittel: Konstruierbare Funktionen
 - Funktionen, deren Komplexität durch ihren Wert beschränkt ist

• Welche der folgenden Inklusionen sind echt?

```
LOGSPACE \subseteq NLOGSPACE
\subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq PSPACE = NPSPACE
\subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots
```

• Wie beweist man Unlösbarkeit in Platz/Zeit f

- Diagonalisierung über alle Probleme, die in Komplexität f lösbar sind

• Hilfsmittel: Konstruierbare Funktionen

- Funktionen, deren Komplexität durch ihren Wert beschränkt ist
- $-f: \mathbb{N} \rightarrow \mathbb{N}$ ist **platzkonstruierbar**, wenn \hat{f} in Platz $\mathcal{O}(f)$ berechenbar
- $-f: \mathbb{N} \to \mathbb{N}$ ist **zeitkonstruierbar**, wenn \hat{f} in **Zeit** $\mathcal{O}(f)$ berechenbar $\hat{f}: \{1\}^* \to \{0, 1, \}^*$ berechnet bei Eingabe 1^n die Binärdarstellung $r_b(f(n))$ von f(n) Rahmenbedingungen: $f(n) \ge \log n$ (Platz) bzw. $f(n) \ge n \log n$ (Zeit) für alle n
- $-\log n$, n^k , 2^n etc sind zeit- und platzkonstruierbar

• Welche der folgenden Inklusionen sind echt?

```
LOGSPACE \subseteq NLOGSPACE
\subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq PSPACE = NPSPACE
\subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots
```

ullet Wie beweist man Unlösbarkeit in Platz/Zeit f

- Diagonalisierung über alle Probleme, die in Komplexität f lösbar sind

• Hilfsmittel: Konstruierbare Funktionen

- Funktionen, deren Komplexität durch ihren Wert beschränkt ist
- $-f: \mathbb{N} \rightarrow \mathbb{N}$ ist **platzkonstruierbar**, wenn \hat{f} in Platz $\mathcal{O}(f)$ berechenbar
- $-f: \mathbb{N} \to \mathbb{N}$ ist **zeitkonstruierbar**, wenn \hat{f} in **Zeit** $\mathcal{O}(f)$ berechenbar $\hat{f}: \{1\}^* \to \{0, 1, \}^*$ berechnet bei Eingabe 1^n die Binärdarstellung $r_b(f(n))$ von f(n) Rahmenbedingungen: $f(n) \ge \log n$ (Platz) bzw. $f(n) \ge n \log n$ (Zeit) für alle n
- $-\log n$, n^k , 2^n etc sind zeit- und platzkonstruierbar

• Wichtiger formaler Begriff: Ordnung o(f)

- f als echte obere Schranke: $o(f) = \{g: \mathbb{N} \to \mathbb{R}^+ | \forall c > 0. \ g <_a c * f \}$

Für jede platzkonstruierbare Funktion f gibt es eine Sprache $L \in SPACE(f)$, deren Platzkomplexität nicht in o(f) liegt

Für jede platzkonstruierbare Funktion f gibt es eine Sprache $L \in SPACE(f)$, deren Platzkomplexität nicht in o(f) liegt

- Konstruiere L durch Diagonalisierung
 - Definiere L durch Konstruktion ihrer charakteristischen Funktion

Für jede platzkonstruierbare Funktion f gibt es eine Sprache $L \in SPACE(f)$, deren Platzkomplexität nicht in o(f) liegt

• Konstruiere L durch Diagonalisierung

– Definiere L durch Konstruktion ihrer charakteristischen Funktion

$$-\operatorname{Sei}\,h(n) = \left\{ \begin{array}{ll} 1 & \Phi_i(n) \leq 2^{f(n)} \wedge s_{M_i}(n) \leq^{**} f(n) \wedge \varphi_i(n) = 0 & \text{mit } i = \pi_1(n) \\ 0 & \text{sonst} \end{array} \right.$$

 $s_{M_i}(n) \le **f(n) \equiv h$ benutzt zur Simulation von $\varphi_i(n)$ maximal Platz f(n). Benutzt die Simulation von $\varphi_i(n)$ Platz $d*s_{M_i}(n)$, so muß $s_{M_i}(n) \le f(n)/d$ gelten

- -h ist eine Entscheidungsfunktion, die in Platz $\mathcal{O}(f)$ berechenbar ist
- Definiere $L:=h^{-1}(\{1\})$ (also $\chi_L=h$), also $L\in SPACE(f)$

Für jede platzkonstruierbare Funktion f gibt es eine Sprache $L \in SPACE(f)$, deren Platzkomplexität nicht in o(f) liegt

• Konstruiere L durch Diagonalisierung

– Definiere L durch Konstruktion ihrer charakteristischen Funktion

$$-\operatorname{Sei}\,h(n) = \left\{ \begin{array}{ll} 1 & \Phi_i(n) \leq 2^{f(n)} \wedge s_{M_i}(n) \leq^{**} f(n) \wedge \varphi_i(n) = 0 & \text{mit } i = \pi_1(n) \\ 0 & \text{sonst} \end{array} \right.$$

 $s_{M_i}(n) \leq^{**} f(n) \equiv h$ benutzt zur Simulation von $\varphi_i(n)$ maximal Platz f(n). Benutzt die Simulation von $\varphi_i(n)$ Platz $d*s_{M_i}(n)$, so muß $s_{M_i}(n) \leq f(n)/d$ gelten

- -h ist eine Entscheidungsfunktion, die in Platz $\mathcal{O}(f)$ berechenbar ist
- Definiere $L:=h^{-1}(\{1\})$ (also $\chi_L=h$), also $L\in SPACE(f)$

ullet Die Platzkomplexität von L ist nicht in o(f)

- Falls L durch ein Programm mit Komplexität o(f) entschieden wird, so gilt $\chi_L = \varphi_k$ für ein k mit $s_{M_k}(n) < c * f(n)$ für alle $c > 0, n \ge n_0$
- Wähle $n:=\langle k,n_0\rangle$ (also $k{=}\pi_1(n)$) für das zu (1/d) passende n_0 Dann gilt $n \ge n_0$, also $s_{M_k}(n) < (1/d) * f(n)$ bzw $s_{M_i}(n) \le ** f(n)$
- Es folgt $n \in L \Leftrightarrow h(n)=1 \Leftrightarrow \varphi_k(n)=0 \land s_{M_i}(n) \leq^{**} f(n) \Leftrightarrow n \notin L$

Konsequenzen des Hierarchietheorems

• Platzkomplexität bildet eine echte Hierarchie

- $-SPACE(f) \subset SPACE(g)$ falls g platzkonstruierbar und $f \in o(g)$
- $-SPACE(n^{\epsilon}) \subset SPACE(n^{\epsilon'})$ für alle $0 \leq \epsilon < \epsilon'$
- $-NLOGSPACE \subseteq SPACE(\log^2 n) \subseteq SPACE(n) \subseteq PSPACE$
- $-NPSPACE \subset EXPSPACE$

Konsequenzen des Hierarchietheorems

• Platzkomplexität bildet eine echte Hierarchie

- $-SPACE(f) \subset SPACE(g)$ falls g platzkonstruierbar und $f \in o(g)$
- $-SPACE(n^{\epsilon}) \subseteq SPACE(n^{\epsilon'})$ für alle $0 \le \epsilon < \epsilon'$
- $-NLOGSPACE \subseteq SPACE(\log^2 n) \subseteq SPACE(n) \subseteq PSPACE$
- $-NPSPACE \subset EXPSPACE$

• Zeitkomplexität bildet eine echte Hierarchie

- Für jede zeitkonstruierbare Funktion f gibt es eine mSprache $L \in TIME(f)$ deren Zeitkomplexität nicht in $o(f/\log f)$ liegt
 - · Beweis analog zu Platzhierarchietheorem

Konsequenzen des Hierarchietheorems

• Platzkomplexität bildet eine echte Hierarchie

- $-SPACE(f) \subset SPACE(g)$ falls g platzkonstruierbar und $f \in o(g)$
- $-SPACE(n^{\epsilon}) \subseteq SPACE(n^{\epsilon'})$ für alle $0 \le \epsilon < \epsilon'$
- $-NLOGSPACE \subseteq SPACE(\log^2 n) \subseteq SPACE(n) \subseteq PSPACE$
- $-NPSPACE \subset EXPSPACE$

• Zeitkomplexität bildet eine echte Hierarchie

- Für jede zeitkonstruierbare Funktion f gibt es eine mSprache $L \in TIME(f)$ deren Zeitkomplexität nicht in $o(f/\log f)$ liegt
 - · Beweis analog zu Platzhierarchietheorem
- -TIME(f)
 $\subset TIME(g)$ falls g platzkonstruierbar und $f \in o(g/\log g)$
- $-TIME(n^{\epsilon})$ < $TIME(n^{\epsilon'})$ für alle $0 \le \epsilon < \epsilon'$
- $-\mathcal{P} \subset EXPTIME$

Komplexitätsklassenhierarchie

