Theoretische Informatik II

Einheit 5

Theorie der Berechenbarkeit

- 1. Turing-Berechenbarkeit
- 2. Rekursive Funktionen
- 3. Funktionale und logische Programme
- 4. Elementare Berechenbarkeitstheorie
- 5. Unlösbare Probleme

KERNFRAGEN ZUR BERECHENBARKEIT

• Welche Berechnungsmethoden sind denkbar?

- Es gibt weit mehr Modelle als nur die Standard PC Architektur
 - · Lisp Maschinen, Parallelrechner, Neuronale Netze, (Quantencomputer)
- Sind die Modelle miteinander vergleichbar?

KERNFRAGEN ZUR BERECHENBARKEIT

• Welche Berechnungsmethoden sind denkbar?

- Es gibt weit mehr Modelle als nur die Standard PC Architektur
 - · Lisp Maschinen, Parallelrechner, Neuronale Netze, (Quantencomputer)
- Sind die Modelle miteinander vergleichbar?

• Welche allgemeingültigen Zusammenhänge gibt es?

- Eigenschaften, die nicht vom Berechnungsmodell abhängen?
- Beweismethoden wie Abschlußeigenschaften und Problemtransformation

KERNFRAGEN ZUR BERECHENBARKEIT

• Welche Berechnungsmethoden sind denkbar?

- Es gibt weit mehr Modelle als nur die Standard PC Architektur
 - · Lisp Maschinen, Parallelrechner, Neuronale Netze, (Quantencomputer)
- Sind die Modelle miteinander vergleichbar?

• Welche allgemeingültigen Zusammenhänge gibt es?

- Eigenschaften, die nicht vom Berechnungsmodell abhängen?
- Beweismethoden wie Abschlußeigenschaften und Problemtransformation

• Gibt es Grenzen für den Einsatz von Computern?

- Funktionen, die prinzipiell nicht berechenbar sind?
- Eigenschaften, die unentscheidbar sind?
- Sprachen, die nicht vollständig aufgezählt werden können?

Mit welchen Techniken kann man dies beweisen?

Es gibt viele Modelle für Berechenbarkeit ... SCHON LANGE VOR DEN ERSTEN COMPUTERN

• Turingmaschine*

(Rechnen mit Papier und Bleistift)

• Nichtdeterministische Turingmaschine* (Parallelismus/Quantenrechner)

• μ -rekursive Funktionen*

(Mathematisches Rechnen)

• λ-Kalkiil*

(Funktionale Sprachen, LISP)

• Logische Repräsentierbarkeit*

(Logikprogrammierung, PROLOG)

• Markov-Algorithmen (Typ-0 Grammatiken) (Regelbasierte Sprachen)

Abakus

(Das älteste mechanische Hilfsmittel)

PASCAL-reduziert

(Imperative höhere Sprachen)

Registermaschine

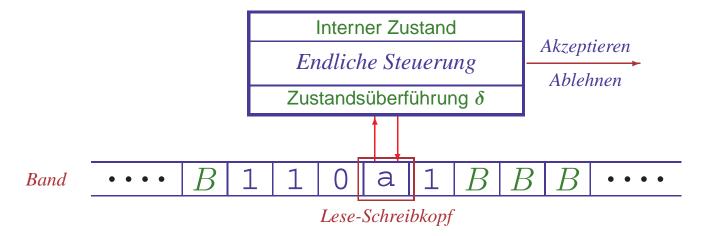
(Assembler-/Maschinenprogrammierung)

Viele Formalisierungen eines intuitiven Begriffes

Theoretische Informatik II

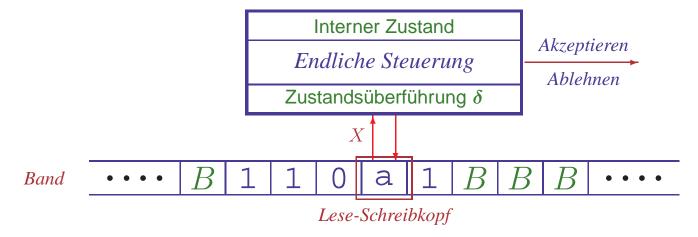
Einheit 5.1

- 1. Rückblick: Turingmaschinen und Sprachen
- 2. Turing-berechenbare Funktionen
- 3. Berechnen vs. Akzeptieren



Endlicher Automat + lineares Band

- Endliche Steuerung liest Bandsymbol unter Lese-Schreibkopf
- Keine separate Eingabe: Eingabewort steht zu Anfang auf Band

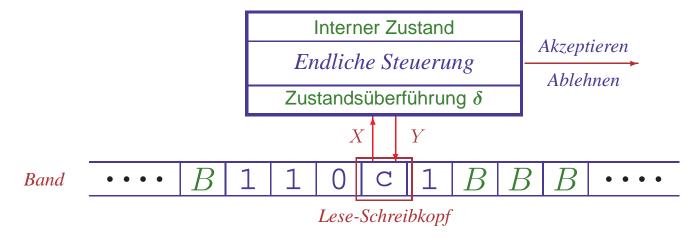


Endlicher Automat + lineares Band

- Endliche Steuerung liest Bandsymbol unter Lese-Schreibkopf
- Keine separate Eingabe: Eingabewort steht zu Anfang auf Band

• Einfacher Verarbeitungsmechanismus

Bandsymbol X wird gelesen

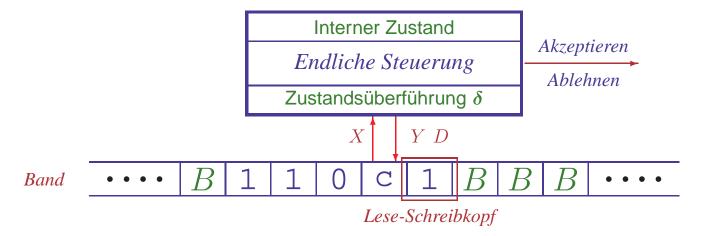


Endlicher Automat + lineares Band

- Endliche Steuerung liest Bandsymbol unter Lese-Schreibkopf
- Keine separate Eingabe: Eingabewort steht zu Anfang auf Band

• Einfacher Verarbeitungsmechanismus

- Bandsymbol X wird gelesen
- Interner Zustand q wird zu q' verändert
- Neues Symbol Y wird auf das Band geschrieben



Endlicher Automat + lineares Band

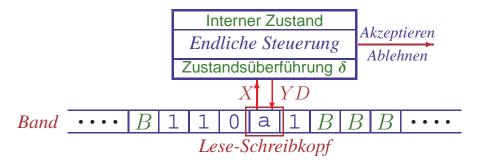
- Endliche Steuerung liest Bandsymbol unter Lese-Schreibkopf
- Keine separate Eingabe: Eingabewort steht zu Anfang auf Band

• Einfacher Verarbeitungsmechanismus

- Bandsymbol X wird gelesen
- Interner Zustand q wird zu q' verändert
- Neues Symbol Y wird auf das Band geschrieben
- Kopf wird in eine Richtung *D* (rechts oder links) bewegt

		T	4	 	S
111	TEODETICCHE	Informatik II §5	1.	TIDING_	BERECHENBARKEI

RÜCKBLICK: TURINGMASCHINEN MATHEMATISCH



Deterministische Turingmaschine: 7-Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ endliches **Eingabealphabet**
- $\Gamma \supseteq \Sigma$ endliches **Bandalphabet**
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ (partielle) Überführungsfunktion
- $q_0 \in Q$ Startzustand
- $B \in \Gamma \setminus \Sigma$ Leersymbol des Bands

("blank")

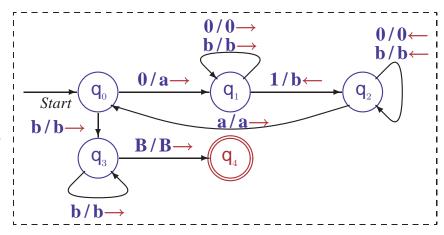
• $F \subseteq Q$ Menge von akzeptierenden (End-)Zuständen

NTM analog mit mengenwertigem $\delta: Q \times \Gamma \to \mathcal{P}_e(Q \times \Gamma \times \{L, R\})$

Rückblick: Beschreibung von Turingmaschinen

• Übergangsdiagramme

- Zustände durch Knoten dargestellt
- $-q_0$ markiert durch *Start*-Pfeil, Endzustände durch doppelte Kreise
- Für $\delta(q, X) = (p, Y, D)$ hat das Diagramm eine Kante $q \xrightarrow{X/YD} p$



 $-\Sigma$ und Γ implizit durch Diagramm bestimmt, Leersymbol heißt B

• Übergangstabellen

- Funktionstabelle für δ
 - heißt " δ nicht definiert"
- Pfeil \rightarrow kennzeichnet q_0
- Stern * kennzeichnet F
- $-\Sigma$, Γ und B implizit bestimmt

• **Konvention:** $\delta(q,X)$ undefiniert für Endzustände $q \in F$

Rückblick: Arbeitsweise von Turingmaschinen

ullet Konfiguration $\hat{=}$ Zustand + Bandinhalt + Kopfposition

- Formal dargestellt als Tripel $K = (u,q,v) \in \Gamma^* \times Q \times \Gamma^+$
 - $\cdot u$, v: String links/rechts vom Kopf q Zustand
- Nur der bereits 'besuchte' Teil des Bandes wird betrachtet
 Blanks am Anfang von u oder am Ende von v entfallen, wo möglich
 Achtung: im Buch wird das Tripel als ein (!) String uqv geschrieben

ullet Konfigurationsübergangsrelation \vdash^*

$$-(\boldsymbol{u}\boldsymbol{Z},\boldsymbol{q},\boldsymbol{X}\boldsymbol{v}) \vdash (\boldsymbol{u},\boldsymbol{p},\boldsymbol{Z}\boldsymbol{Y}\boldsymbol{v}),$$
 falls $\delta(q,X) = (p,Y,L)$
 $-(\boldsymbol{u},\boldsymbol{q},\boldsymbol{X}\boldsymbol{v}) \vdash (\boldsymbol{u}\boldsymbol{Y},\boldsymbol{p},\boldsymbol{v}),$ falls $\delta(q,X) = (p,Y,R)$

Sonderfälle für Verhalten am Bandende

$$\begin{array}{lll} -\left(\boldsymbol{\epsilon},\boldsymbol{q},\boldsymbol{X}\boldsymbol{v}\right) & \vdash \left(\boldsymbol{\epsilon},\boldsymbol{p},\boldsymbol{B}\boldsymbol{Y}\boldsymbol{v}\right), & \text{falls } \delta(q,X) = \left(p,Y,L\right) \\ -\left(\boldsymbol{u}\boldsymbol{Z},\boldsymbol{q},\boldsymbol{X}\right) & \vdash \left(\boldsymbol{u},\boldsymbol{p},\boldsymbol{Z}\right), & \text{falls } \delta(q,X) = \left(p,B,L\right) \\ -\left(\boldsymbol{u},\boldsymbol{q},\boldsymbol{X}\right) & \vdash \left(\boldsymbol{u}\boldsymbol{Y},\boldsymbol{p},\boldsymbol{B}\right), & \text{falls } \delta(q,X) = \left(p,Y,R\right) \\ -\left(\boldsymbol{\epsilon},\boldsymbol{q},\boldsymbol{X}\boldsymbol{v}\right) & \vdash \left(\boldsymbol{\epsilon},\boldsymbol{p},\boldsymbol{v}\right), & \text{falls } \delta(q,X) = \left(p,B,R\right) \end{array}$$

 $K_1 \vdash^* K_2$, falls $K_1 = K_2$ oder es gibt ein K mit $K_1 \vdash K$ und $K \vdash^* K_2$

Definition analog für nichtdeterministische Maschinen

RÜCKBLICK: SPRACHE EINER TURINGMASCHINE

• Akzeptierte Sprache

- Menge der Eingaben, für die $\stackrel{*}{\vdash}$ zu akzeptierendem Zustand führt $m{L}(m{M}) = \{ m{w} \in \Sigma^* \mid \exists m{p} \in m{F}. \ \exists m{u}, m{v} \in \Gamma^*. \ (m{\epsilon}, m{q}_0, m{w}) \ \vdash^* (m{u}, m{p}, m{v}) \}$
- Bei Einhalten der Konvention hält M im akzeptierenden Zustand an Definition identisch für nichtdeterministische Maschinen DTMs akzeptieren dieselben Sprachen wie NTMs (exponentielle Simulation)

• Semi-entscheidbare Sprache $\hat{=}$ Typ-0 Sprache

- Sprache, die von einer Turingmaschine M akzeptiert wird
- Alternative Bezeichnung: (rekursiv) aufzählbare Sprache

• Entscheidbare Sprache (auch: rekursive Sprache)

- Sprache, die von einer Turingmaschine M akzeptiert wird, die bei jeder Eingabe terminiert

RÜCKBLICK: PROGRAMMIERTECHNIKEN FÜR TURINGMASCHINEN

ullet Datenregister speichern Werte aus Menge Δ

– Simulation durch erweiterte Zustandsmenge $Q' := Q \times \Delta^k$

• Mehrspur-Maschinen mit k Datenspuren

– Simulation durch erweitertes Bandalphabet $\Sigma' := \Sigma^k$

• Mehrband-Maschinen mit k unabhängigen Bändern

- Simulation mit 2k+1 Spuren: Inhalt, Kopfmarker + Endmarker

• Unterprogramme

- Simulation wie bei Unterprogrammen in Assemblersprachen

• Beschränkte Modelle für Beweise

- Halbseitig unendliches Band kann beidseitiges Band simulieren
- Binäres Bandalphabet $\Gamma = \{1, B\}$ kann jedes Alphabet codieren
- 2 Stacks können jede Konfiguration einer Turingmaschine simulieren

Genauso leistungsfähig wie konventionelle Computer

Neu: Zeit- und Platzbedarf von Turingmaschinen

- Rechenzeit $t_{M}(w)$
 - Anzahl der Konfigurationsübergänge bis M bei Eingabe \boldsymbol{w} anhält

Neu: Zeit- und Platzbedarf von Turingmaschinen

- Rechenzeit $t_{M}(w)$
 - Anzahl der Konfigurationsübergänge bis M bei Eingabe w anhält
- Speicherbedarf $s_{M}(w)$
 - Anzahl der Bandzellen, die ${\cal M}$ während der Berechnung aufsucht

NEU: ZEIT- UND PLATZBEDARF VON TURINGMASCHINEN

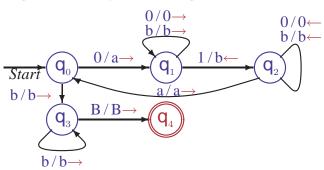
- Rechenzeit $t_{M}(w)$
 - Anzahl der Konfigurationsübergänge bis M bei Eingabe w anhält
- Speicherbedarf $s_{M}(w)$
 - Anzahl der Bandzellen, die M während der Berechnung aufsucht
- Komplexität: Bedarf relativ zur Größe
 - $-T_{M}(n) = \max\{t_{M}(w) \mid |w|=n\}$ Maximaler Bedarf relativ zur Länge $-S_{M}(n) = \max\{s_{M}(w) \mid |w|=n\}$ eines Eingabewortes (worst-case)

NEU: ZEIT- UND PLATZBEDARF VON TURINGMASCHINEN

- Rechenzeit $t_{M}(w)$
 - Anzahl der Konfigurationsübergänge bis M bei Eingabe w anhält
- ullet Speicherbedarf $s_{M}(w)$
 - Anzahl der Bandzellen, die M während der Berechnung aufsucht
- Komplexität: Bedarf relativ zur Größe
 - $-T_{M}(n) = \max\{t_{M}(w) \mid |w|=n\}$
 - $-S_{M}(n) = \max\{s_{M}(w) \mid |w|=n\}$

Maximaler Bedarf relativ zur Länge eines Eingabewortes (worst-case)

- ullet Komplexität der Turingmaschine für $\{0^n1^n|n{\ge}1\}$
 - Zeitaufwand für Schleife q_0, q_1, q_2, q_0 : 2n
 - Gesamter Zeitaufwand quadratisch $(2n^2)$
 - Platzbedarf nicht größer als die Eingabe
 - Lineare Speicherplatzkomplexität



DIE BERECHNETE FUNKTION EINER TURINGMASCHINE

ullet Turingmaschinen berechnen Funktionen auf Σ^*

- Eingabe der Funktion wird aufs Band geschrieben
- Bandinhalt wird durch Abarbeitung des Programms verändert
- Wenn Maschine anhält, kann Bandinhalt ausgegeben werden
- Akzeptierende Endzustände werden irrelevant (üblicherweise $F=\emptyset$) Die ursprünglich vorgesehene Verwendung von Turingmaschinen

DIE BERECHNETE FUNKTION EINER TURINGMASCHINE

ullet Turingmaschinen berechnen Funktionen auf Σ^*

- Eingabe der Funktion wird aufs Band geschrieben
- Bandinhalt wird durch Abarbeitung des Programms verändert
- Wenn Maschine anhält, kann Bandinhalt ausgegeben werden
- Akzeptierende Endzustände werden irrelevant (üblicherweise $F = \emptyset$) Die ursprünglich vorgesehene Verwendung von Turingmaschinen

• Formale Beschreibung mittels Konfigurationen

- Anfangskonfiguration: $\alpha(w) := (\epsilon, q_0, w)$
- Rechenzeit: $t_{\mathbf{M}}(\mathbf{w}) := \max\{j \mid \alpha(\mathbf{w}) \mid^j (u, q, Xv) \land \delta(q, X) \text{ undefiniert}\}$ Undefiniert falls dieses Maximum nicht existiert, d.h. M hält nicht
- Ausgabefunktion: $\omega(u, q, v) := v|_{\Sigma}$ (längster Präfix von v, der zu Σ^* gehört) Ausgabe beginnt unter dem Kopf bis ein Symbol nicht aus Σ erreicht wird
- Berechnete Funktion: $f_{M}(w) := \{\omega(\kappa) \mid \alpha(w) \mid t^{t_{M}(w)} \kappa\}$ Genau dann definiert, wenn M auf w anhält Für DTMs ist $f_M(w) = \omega(\kappa)$ für das eindeutig bestimmte κ mit $\alpha(w) \vdash^{t_M(w)} \kappa$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\}) \text{ mit } \begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1, R) & (q_1, 1, L) \\ q_1 & (q_1, 1, L) & (q_2, B, R) \\ \hline & * q_2 & - & - \end{array}$$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111)$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\})$$
 mit $\begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1, R) & (q_1, 1, L) \\ q_1 & (q_1, 1, L) & (q_2, B, R) \\ \hline & * q_2 & - & - \end{array}$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111)$ $\vdash^1 (1, q_0, 11)$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\}) \text{ mit } \begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1, R) & (q_1, 1, L) \\ q_1 & (q_1, 1, L) & (q_2, B, R) \\ \hline & * q_2 & - & - \end{array}$$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{2}{\vdash} (11, q_0, 1)$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\}) \text{ mit } \begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1, R) & (q_1, 1, L) \\ q_1 & (q_1, 1, L) & (q_2, B, R) \\ \hline & * q_2 & - & - \end{array}$$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{3}{\vdash} (111, q_0, B)$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\}) \text{ mit } \begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1, R) & (q_1, 1, L) \\ q_1 & (q_1, 1, L) & (q_2, B, R) \\ \hline & * q_2 & - & - \end{array}$$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (11, q_1, 11)$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\}) \text{ mit } \begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1, R) & (q_1, 1, L) \\ q_1 & (q_1, 1, L) & (q_2, B, R) \\ \hline & * q_2 & - & - \end{array}$$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \vdash^5 (1, q_1, 111)$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\}) \text{ mit } \begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1, R) & (q_1, 1, L) \\ q_1 & (q_1, 1, L) & (q_2, B, R) \\ \hline & * q_2 & - & - \end{array}$$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \vdash^6 (\epsilon, q_1, 1111)$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1, B\}, \delta_1, q_0, B, \{q_2\}) \text{ mit } \begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1, R) & (q_1, 1, L) \\ q_1 & (q_1, 1, L) & (q_2, B, R) \\ \hline & * q_2 & - & - \end{array}$$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111)$ $\vdash^7 (\epsilon, q_1, B1111)$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\}) \text{ mit } \begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1, R) & (q_1, 1, L) \\ q_1 & (q_1, 1, L) & (q_2, B, R) \\ \hline & * q_2 & - & - \end{array}$$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{8}{\vdash} (\epsilon, q_2, 1111)$

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\})$$
 mit $\begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1,R) & (q_1, 1,L) \\ q_1 & (q_1, 1,L) & (q_2, B,R) \\ \hline & * q_2 & - & - \end{array}$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{8}{\vdash} (\epsilon, q_2, 1111)$

Fügt am Ende eines Wortes $w \in \{1\}^*$ eine 1 an ("Bierdeckelmaschine")

•
$$M_1 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_1, q_0, B, \{q_2\})$$
 mit $\begin{array}{c|c} \delta_1 & 1 & B \\ \hline \rightarrow q_0 & (q_0, 1,R) & (q_1, 1,L) \\ \hline q_1 & (q_1, 1,L) & (q_2, B,R) \\ \hline & * q_2 & - & - \end{array}$

Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{8}{\vdash} (\epsilon, q_2, 1111)$

Fügt am Ende eines Wortes $w \in \{1\}^*$ eine 1 an ("Bierdeckelmaschine")

• Mathematische Analyse:

– Anfangskonfiguration:
$$\alpha(1^n) = (\epsilon, \mathbf{q}_0, 1^n)$$

- Nachfolgekonfigurationen:
$$\alpha(1^n) \vdash (1, q_0, 1^{n-1}) \vdash^{n-1} (1^n, q_0, B)$$

$$\vdash (1^{n-1}, q_1, 11) \vdash^{n} (\epsilon, q_1, B1^{n+1}) \vdash (\epsilon, q_2, 1^{n+1})$$

- Terminierung:
$$\max\{j \mid \alpha(w) \vdash^j (u, q, Xv) \land \delta(q, X) \text{ undefiniert}\}$$

$$= 2n+2$$

- Ergebnis:
$$\alpha(1^n) \vdash^{2n+2} (\epsilon, \mathbf{q}_2, 1^{n+1})$$

- Ausgabe funktion:
$$\omega(\epsilon, \mathbf{q}_2, 1^{n+1}) = \mathbf{1}^{n+1}$$

$$f_{M_1}(1^n) = 1^{n+1}$$
 für alle n , Definitionsbereich $\{1\}^*$, Wertebereich $\{1\}^+$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1,B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1,B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1,B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|cccc} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \\ \hline \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{1}{\vdash} (\epsilon, q_0, 11)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1,B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|cccc} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ & \star q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{?}{\vdash} (\epsilon, q_0, 1)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1,B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|cccc} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \\ \hline \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{3}{\vdash} (\epsilon, q_0, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1,B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|cccc} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \\ \hline \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1,B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|cccc} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ & & q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_3 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_3, q_0, B, \{q_2\})$$

mit $\begin{array}{c|c} \delta_3 & 1 & B \\ \hline \rightarrow q_0 & (q_1, 1, R) & (q_2, B, R) \\ q_1 & (q_0, 1, R) & (q_1, B, R) \\ \star q_2 & - & - \end{array}$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_3 = (\{q_0, q_1, q_2\}, \{1\}, \{1,B\}, \delta_3, q_0, B, \{q_2\})$$

mit $\begin{array}{c|cccc}
\delta_3 & 1 & B \\
\hline
& + q_0 & (q_1, 1, R) & (q_2, B, R) \\
& - q_1 & (q_0, 1, R) & (q_1, B, R) \\
& + q_2 & - & -
\end{array}$ Abarbeitungsbeispiele: $(\epsilon, q_0, 1111) \stackrel{5}{\vdash} (1111B, q_2, B)$
 $(\epsilon, q_0, 1111) \stackrel{6}{\vdash} (1111BBB, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

•
$$M_2 = (\{q_0, q_1\}, \{1\}, \{1, B\}, \delta_2, q_0, B, \{q_1\})$$

mit $\begin{array}{c|c} \delta_2 & 1 & B \\ \hline \rightarrow q_0 & (q_0, B, R) & (q_1, B, L) \\ \hline & * q_1 & - & - \end{array}$ Abarbeitungsbeispiel: $(\epsilon, q_0, 111) \stackrel{4}{\vdash} (\epsilon, q_1, B)$

Löscht ein Wort vom Band: $f_{M_2}(w) = \epsilon$ für alle $w \in \{1\}^*$

Testet, ob Anzahl der Einsen in $w \in \{1\}^*$ gerade ist

$$f_{M_3}(1^n) = \begin{cases} \epsilon & \text{falls } n \text{ gerade,} \\ \bot & \text{sonst} \end{cases}$$
 (\bot steht für "undefiniert")

$$\begin{split} \bullet \ \boldsymbol{M}_4 &= (\{q_0,q_1,q_2,q_3,q_4\},\,\{1\},\,\{1,B\},\,\delta_4,\,q_0,\,B,\,\{q_4\}) \\ & \text{mit} \quad \frac{\delta_4}{} \quad \begin{array}{|c|c|c|c|c|} 1 & B \\ \hline \rightarrow q_0 & (q_0,1,R) & (q_1,B,L) \\ q_1 & (q_2,B,R) & (q_4,B,R) \\ q_2 & (q_2,1,R) & (q_3,1,L) \\ q_3 & (q_3,1,L) & (q_1,1,L) \\ & * q_4 & -- & -- \\ \end{split}$$

Abarbeitungsbeispiel:

$$(\epsilon, q_0, 11) \vdash^{10} (1, q_3, 11)$$

•
$$M_4 = (\{q_0, q_1, q_2, q_3, q_4\}, \{1\}, \{1,B\}, \delta_4, q_0, B, \{q_4\})$$
mit
$$\begin{array}{c|ccccc}
 & \delta_4 & 1 & B \\
\hline
 & \gamma_0 & (q_0, 1, R) & (q_1, B, L) \\
 & q_1 & (q_2, B, R) & (q_4, B, R) \\
 & q_2 & (q_2, 1, R) & (q_3, 1, L) \\
 & q_3 & (q_3, 1, L) & (q_1, 1, L)
\end{array}$$
Abarbeitu $(\epsilon, q_2, 11)$

Abarbeitungsbeispiel:

$$(\epsilon, q_0, 11) \vdash^{13} (\epsilon, q_1, B1111)$$

Verdoppelt Anzahl der Einsen: $f_{M_4}(1^n) = 1^{2n}$

$$\begin{split} \bullet \ M_5 &= (\{q_0,q_1,q_2,q_3\},\,\{0,1\},\,\{0,1,B\},\,\delta_5,\,q_0,\,B,\,\{q_3\}) \\ & \text{mit} \quad \frac{\delta_5 \mid 0 \quad 1 \quad B}{ \rightarrow q_0 \mid (q_0,0,R) \mid (q_0,1,R) \mid (q_1,B,L) \\ q_1 \mid (q_2,1,L) \mid (q_1,0,L) \mid (q_2,1,L) \\ \bullet \quad q_2 \mid (q_2,0,L) \mid (q_2,1,L) \mid (q_3,B,R) \\ \bullet \quad q_2 \mid q_2 \mid$$

Addiert 1 auf die Binärdarstellung einer natürlichen Zahl

TURING-BERECHENBARE FUNKTIONEN

- $f: \Sigma^* \rightarrow \Delta^*$ Turing-berechenbar
 - $-f=f_M$ für eine Turingmaschine $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ mit $\Delta\subseteq\Gamma$

T: Menge der Turing-berechenbaren Funktionen

TURING-BERECHENBARE FUNKTIONEN

- $f: \Sigma^* \rightarrow \Delta^*$ Turing-berechenbar
 - $-f=f_M$ für eine Turingmaschine $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ mit $\Delta\subseteq\Gamma$

T: Menge der Turing-berechenbaren Funktionen

- Berechenbarkeit auf Zahlen: $f:\mathbb{N} \to \mathbb{N}$
 - $\hat{}$ Berechenbarkeit der Funktion $f_r: \Sigma^* \to \Sigma^*$ mit $f_r(w) = r(f(r^{-1}(w)))$ wobei $r: \mathbb{N} \to \Sigma^*$ injektive Repräsentation von Zahlen durch Wörter
 - · unäre Darstellung $r_u: \mathbb{N} \to \{1\}^*$ mit $r_u(n) = 1^n$
 - · binäre Codierung $r_b: \mathbb{N} \rightarrow \{0, 1\}^*$ (ohne führende Nullen)

f wird berechnet durch $f(x) = r^{-1}(f_r(r(x)))$

TURING-BERECHENBARE FUNKTIONEN

- $f: \Sigma^* \to \Delta^*$ Turing-berechenbar
 - $-f=f_M$ für eine Turingmaschine $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ mit $\Delta\subseteq\Gamma$

T: Menge der Turing-berechenbaren Funktionen

- Berechenbarkeit auf Zahlen: $f:\mathbb{N} \to \mathbb{N}$
 - $\hat{\boldsymbol{r}} = \mathbf{Berechenbarkeit} \ \mathbf{der} \ \mathbf{Funktion} \ \boldsymbol{f_r} : \boldsymbol{\Sigma^*} \longrightarrow \boldsymbol{\Sigma^*} \ \mathbf{mit} \ f_r(w) = r(f(r^{-1}(w)))$ wobei $r: \mathbb{N} \to \Sigma^*$ injektive Repräsentation von Zahlen durch Wörter
 - · unäre Darstellung $r_u: \mathbb{N} \to \{1\}^*$ mit $r_u(n) = 1^n$
 - · binäre Codierung $r_b: \mathbb{N} \rightarrow \{0, 1\}^*$ (ohne führende Nullen)

f wird berechnet durch $f(x) = r^{-1}(f_r(r(x)))$

Berechenbarkeit auf anderen Mengen analog

ullet Nachfolgerfunktion $s:\mathbb{N}{
ightarrow}\mathbb{N}$ mit $s(n)=n{+}1$

- ullet Nachfolgerfunktion $s{:}\mathbb{N}{\to}\mathbb{N}$ mit $s(n)=n{+}1$
 - Bei unärer Codierung: berechne $s_u:\{1\}^* \to \{1\}^*$ mit $s_u(1^n)=1^{n+1}$
 - · Turingmaschine muß eine 1 anhängen: $s_u = f_{M_1}$
 - Bei binärer Codierung: $s_b = f_{M_5}$
 - \cdot M muß Ziffern von rechts beginnend umwandeln, ggf. mit Übertrag

- ullet Nachfolgerfunktion $s{:}\mathbb{N}{\to}\mathbb{N}$ mit $s(n)=n{+}1$
 - Bei unärer Codierung: berechne $s_u:\{1\}^* \to \{1\}^*$ mit $s_u(1^n)=1^{n+1}$
 - · Turingmaschine muß eine 1 anhängen: $s_u = f_{M_1}$
 - Bei binärer Codierung: $s_b = f_{M_5}$
 - $\cdot M$ muß Ziffern von rechts beginnend umwandeln, ggf. mit Übertrag
- ullet Division durch 2: div_2 : $\mathbb{N} \to \mathbb{N}$ mit $div_2(n) = \lfloor n/2 \rfloor$

ullet Nachfolgerfunktion $s{:}\mathbb{N}{ o}\mathbb{N}$ mit $s(n)=n{+}1$

- Bei unärer Codierung: berechne $s_u:\{1\}^* \to \{1\}^*$ mit $s_u(1^n)=1^{n+1}$
 - · Turingmaschine muß eine 1 anhängen: $s_u = f_{M_1}$
- Bei binärer Codierung: $s_b = f_{M_5}$
 - \cdot M muß Ziffern von rechts beginnend umwandeln, ggf. mit Übertrag

ullet Division durch 2: div_2 : $\mathbb{N} \to \mathbb{N}$ mit $div_2(n) = \lfloor n/2 \rfloor$

- Bei unärer Codierung: M muß (analog zu M_4) je zwei Einsen löschen und eine neue hinter dem Ende des Wortes schreiben
- Bei binärer Codierung: M muß nur die letzte Ziffer löschen

- ullet Nachfolgerfunktion $s:\mathbb{N}{
 ightarrow}\mathbb{N}$ mit $s(n)=n{+}1$
 - Bei unärer Codierung: berechne $s_u:\{1\}^* \to \{1\}^*$ mit $s_u(1^n)=1^{n+1}$
 - · Turingmaschine muß eine 1 anhängen: $s_u = f_{M_1}$
 - Bei binärer Codierung: $s_b = f_{M_5}$
 - $\cdot M$ muß Ziffern von rechts beginnend umwandeln, ggf. mit Übertrag
- Division durch 2: div_2 : $\mathbb{N} \to \mathbb{N}$ mit $div_2(n) = |n/2|$
 - Bei unärer Codierung: M muß (analog zu M_4) je zwei Einsen löschen und eine neue hinter dem Ende des Wortes schreiben
 - Bei binärer Codierung: M muß nur die letzte Ziffer löschen

Komplexere arithmetische Operationen benötigen Programmiertechniken für Turingmaschinen

AKZEPTIEREN ODER BERECHNEN?

• Jede Funktion ist als Menge beschreibbar

$$- \operatorname{graph}(f) = \{(x, y) \mid f(x) = y\}$$

Akzeptierende Maschinen erkennen Graphen berechenbarer Funktionen

f berechenbar \Leftrightarrow graph(f) semi-entscheidbar

→ nächste Folie

AKZEPTIEREN ODER BERECHNEN?

• Jede Funktion ist als Menge beschreibbar

$$- \operatorname{graph}(f) = \{(x, y) \mid f(x) = y\}$$

Akzeptierende Maschinen erkennen Graphen berechenbarer Funktionen

f berechenbar \Leftrightarrow graph(f) semi-entscheidbar

→ nächste Folie

• Jede Menge ist als Funktion beschreibbar

$$-\chi_{L}(w) = \begin{cases} 1 & \text{falls } w \in L, \\ 0 & \text{sonst} \end{cases}$$
 Charakteristische Funktion der Sprache L

$$-\psi_L(w) = \begin{cases} 1 & \text{falls } w \in L, \\ \perp & \text{sonst} \end{cases}$$
 Partiell-charakteristische Funktion von L

Charakteristische Funktionen erkannter Sprachen sind berechenbar

L semi-entscheidbar $\Leftrightarrow \psi_{\scriptscriptstyle L}$ berechenbar

L entscheidbar $\Leftrightarrow \chi_{_L}$ berechenbar

→ nächste Folie

Simuliere Abarbeitung der jeweils anderen Maschine

Simuliere Abarbeitung der jeweils anderen Maschine

• f berechenbar \Leftrightarrow graph(f) semi-entscheidbar

```
\Rightarrow: Bei Eingabe (w, v) "teste" ob f(w) = v ergibt
```

 \Leftarrow : Bei Eingabe w suche das "erste" Wort v mit $(w, v) \in \text{graph}(f)$ Suche muß Werte für w,v und Rechenzeitgrenze simultan durchlaufen!!

Maschinen müssen nicht bei jeder Eingabe anhalten

Simuliere Abarbeitung der jeweils anderen Maschine

• f berechenbar \Leftrightarrow graph(f) semi-entscheidbar

 \Rightarrow : Bei Eingabe (w, v) "teste" ob f(w) = v ergibt

 \Leftarrow : Bei Eingabe w suche das "erste" Wort v mit $(w,v) \in \operatorname{graph}(f)$ Suche muß Werte für w,v und Rechenzeitgrenze simultan durchlaufen !!

Maschinen müssen nicht bei jeder Eingabe anhalten

ullet L semi-entscheidbar $\Leftrightarrow \psi_L$ berechenbar

 \Rightarrow : Bei Eingabe w "teste" ob w akzeptiert wird und gebe ggf. 1 aus

 \Leftarrow : Bei Eingabe w "teste" ob $\psi_L(w)=1$ ergibt

Maschinen müssen nicht bei jeder Eingabe anhalten

Simuliere Abarbeitung der jeweils anderen Maschine

• f berechenbar \Leftrightarrow graph(f) semi-entscheidbar

 \Rightarrow : Bei Eingabe (w, v) "teste" ob f(w) = v ergibt

 \Leftarrow : Bei Eingabe w suche das "erste" Wort v mit $(w, v) \in \operatorname{graph}(f)$ Suche muß Werte für w,v und Rechenzeitgrenze simultan durchlaufen!!

Maschinen müssen nicht bei jeder Eingabe anhalten

ullet L semi-entscheidbar $\Leftrightarrow \psi_L$ berechenbar

 \Rightarrow : Bei Eingabe w "teste" ob w akzeptiert wird und gebe ggf. 1 aus

 \Leftarrow : Bei Eingabe w "teste" ob $\psi_{\tau}(w) = 1$ ergibt

Maschinen müssen nicht bei jeder Eingabe anhalten

ullet L entscheidbar $\Leftrightarrow \chi_L$ berechenbar

– Wie oben, aber beide Maschinen müssen bei jeder Eingabe anhalten

Turingmaschinen im Rückblick

Allgemeinstes Automatenmodell

- Deterministischer endlicher Automat mit unendlichem Speicherband
- "Beliebiger" Zugriff auf Speicherzellen
- Erkennung von Wörtern durch Endzustand
- Berechnen von Werten durch Ausgabe nach Terminierung
- Beide Modelle sind gleich mächtig

• Nichtdeterministische Variante ist gleich stark

- Simulationsaufwand durch deterministische Maschine ist exponentiell
- NTM hilfreich für Nachweis der Äquivalenz zu Typ-0 Grammatiken

• Äquivalent zu realen Computern

- Register, mehrere Bänder, Unterprogramme, etc. simulierbar

Standardmodell für Untersuchung von Berechenbarkeit