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1. Turing-Berechenbarkeit

2. Rekursive Funktionen

3. Funktionale und logische Programme
4. Elementare Berechenbarkeitstheorie
5. Unlosbare Probleme



KERNFRAGEN ZUR BERECHENBARKEIT I

¢ \Welche Berechnungsmethoden sind denkbar?
— Es gibt weit mehr Modelle als nur die Standard PC Architektu
- Lisp MaschinenParallelrechneMNeuronale Netzg Quantencomputegr
— Sind die Modelle miteinander vergleichbar?

¢ \Welche allgemeingiltigen Zusammenhange gibt es?
— Eigenschaften, die nicht vom Berechnungsmodelbaglen?
— Beweismethoden wie Abschluf3eigenschaften und Proldesformation

¢ Gibt es Grenzen fir den Einsatz von Computern?
— Funktionen, die prinzipiekicht berechenbasind?
— Eigenschaften, dienentscheidbasind?
— Sprachen, die nicht vol&nhdigaufgeahltwerden lbnnen?

Mit welchen Techniken kann man dies beweisen?
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Es GIBT VIELE MODELLE FUR BERECHENBARKEIT
... SCHON LANGE VOR DEN ERSTEN COMPUTERN

e Turingmaschine* (Rechnen mit Papier und Bleistift)

e Nichtdeterministische Turingmaschin€ (Parallelismus/Quantenrechner)

e u-rekursive Funktionen® (Mathematisches Rechnen)
o \-Kalk tl* (Funktionale Sprachen, LISP)
e Logische Rep@asentierbarkeit* (Logikprogrammierung, PROLOG)

e Markov-Algorithmen (Typ-0 Grammatiken)  (Regelbasierte Sprachen)

e Abakus (Das &lteste mechanische Hilfsmittel)
e PASCAL-reduziert (Imperative hohere Sprachen)
e Registermaschine (Assembler-/Maschinenprogrammierung)

Viele Formalisierungen eines intuitiven Begriffes
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1. Ruckblick: Turingmaschinen und Sprachen
2. Turing-berechenbare Funktionen

3. Berechnen vs. Akzeptieren



RUCKBLICK: TURINGMASCHINEN

DAS EINFACHSTE IMPERATIVECOMPUTERMODELL

Interner Zustand
] Akzeptieren
Endliche Steuerung i -
Ablehnen
Zustandsuberfuhrung o
x| | vp
Bad ----|RB|{1]1|/0|C|1|B|B|B
Lese-Schrei bkopf

e Endlicher Automat + lineares Band
— Endliche Steuerunigest BandsymbolnterLese-Schreibkopf
— Keine separate EingabEingabewort steht zu Anfang auf Band

e Einfacher Verarbeitungsmechanismus
— BandsymbolX wird gelesen
— InternerZustandy wird zu ¢’ verandert
— NeuesSymbolY wird auf das Band geschrieben
— Kopf wird in eine RichtungD (rechts oder linksheweqgt
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RUCKBLICK: TURINGMASCHINEN MATHEMATISCH I

Interner Zustand
Endliche Seuerung
Zustandsuberfuhrung 4

Xt lyD
Band ----|B|1|12|0|a||l|B|B|B|----
Lese-Schreibkopf

Deterministischduringmaschine: 7-TupelM = (Q, X, T', 9, qo, B, F)
e () nichtleere endlich&@ustandsmenge
e >, endlichestingabealphabet
e ['2) endlichesBandalphabet
0 5:QxI' — QxI'x{L, R} (partielle)Uberfuihrungsfunktion
® g,c() Startzustand
e BeI'\X Leersymbol des Bands (“blank)
e F'c() Menge vonakzeptierenden(End-)Zustanden

Akzeptieren
Ablehnen

NTM analog mit mengenwertigem@ xI" — P.(QxI'x{L, R})
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RUCKBLICK: BESCHREIBUNG VON TURINGMASCHINEN

¢ Ubergangsdiagramme i 070~ 0/0—|
— Zustinde durclKnotendargestellt : 0/as 1/be T
— o markiert durchSart-Pfeil, Tsal\k N 12
, b/b—
Endzusénde durctdoppelte Kreise B/B_
—Fird(q, X)=(p,Y,D)hatdas ‘ ‘
Diagramm eindante qX—> D o b/lo—

— > undI" implizit durch Diagramm bestimmt,eersymboheil3t 5

e Ubergangstabellen oorl 0 1 a b B

— Funktionstabellétr o —q/)9,aR) — — (q,bR) —

— heif3t %6 nicht definiert” q,(9,0,R)(g,bL) — (g,bR) —

— Pfeil — kennzeichnet q,/(,0L) — (g9,a,R)(g,bL) —
— Stern* kennzeichnef” 9, — — — (@bR)(@,BR)

— ¥, ['und B implizit bestimmt "% — — — — —

e Konvention: &(q,X) undefiniert fir Endzusindeq € F
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RUCKBLICK: ARBEITSWEISE VON TURINGMASCHINEN I

e Konfiguration = Zustand + Bandinhalt + Kopfposition
— Formal dargestellt als TripeK = (u,q,v) € [*xQxI'"
- u, v: String links/rechts vom Kopf Zustand
— Nur der bereits ‘besuchte’ Teil des Bandes wird betrachtet

Blanksam Anfang von: oder am Ende von entfallen, wo naglich
Achtung: imBuch wird das Tripel alsein (!) Sring ugv geschrieben

e Konfigurationsubergangsrelation -

—(uZ,q, Xv) - (u,p, ZY v), falls 6(q, X) = (p,Y, L)
—(u,q, Xv) F (uY,p,v), falls (¢, X) = (p,Y, R)
Sonderélle fur Verhalten am Bandende

— (€, g, X ) - (e, p, BY v), falls 6(q, X) = (p,Y, L)
—(uZ,q,X) F (u,p, Z2), falls 6(q, X) = (p, B, L)
—(u, q, X) F (uY, p, B), falls 6(¢, X) = (p,Y, R)
— (€, g, X ) F (e, p, v), falls 6(q, X) = (p, B, R)

K, F K,, falls ;=K oder es gibt eirk mit K, - K und K F K,

Definition analog fir nichtdeterministische Maschinen
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RUCKBLICK: SPRACHE EINER TURINGMASCHINE I

e Akzeptierte Sprache
— Menge der Eingabeniif die - zu akzeptierendem Zustanihirt

L(M)={weX* | IpeF.3u,vel* (¢ qy,w) - (u,p,v)}
— Bel Einhalten der Konventiordit A/ im akzeptierenden Zustand an

Definition identisch fir nichtdeterministische Maschinen
DTMs akzeptieren dieselben Sprachen wie NT&&ponentielle Simulation)

e Semi-entscheidbare Sprache= Typ-0 Sprache
— Sprache, digon einer Turingmasching&/ akzeptiert wird
— Alternative Bezeichnundrekursiv) aufzahlbare Sprache

e Entscheidbare Sprache (auch:rekursive Sprache

— Sprache, die von einer Turingmaschitfeakzeptiert wird,
die bei jeder Eingabe terminiert
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RUCKBLICK: PROGRAMMIERTECHNIKEN FUR TURINGMASCHINEN I

e Datenregister speichern Werte aus Mengeé\
— Simulation durch erweitertéustandsmeng@’ := Q x AF

e Mehrspur-Maschinen mit k Datenspuren
— Simulation durch erweitertes Bandalphabet= »*

e Mehrband-Maschinenmit k unabhangigen Bandern
— Simulation mi2k+1 Spuren: Inhalt, Kopfmarker + Endmarker

e Unterprogramme
— Simulation wie bei Unterprogrammen in Assemblersprachen

e Beschiankte Modelle fur Beweise
— Halbseitig unendliches Bari@nn beidseitiges Band simulieren
— Binares Bandalphabét= {1, B} kann jedes Alphabet codieren
— 2 Stack«konnen jede Konfiguration einer Turingmaschine simulieren

Genauso leistungsihig wie konventionelle Computer

THEORETISCHEINFORMATIK Il §5.1: 6 TURING-BERECHENBARKEIT




NEU: ZEIT- UND PLATZBEDARF VON TURINGMASCHINEN

e Rechenzeitt s (w)
— Anzahl der Konfiguratiorigoergangebis M bei Eingabev anhalt

e Speicherbedarf sy (w)
— Anzahl der Bandzellerdie M wahrend der Berechnung aufsucht

e Komplexitat: Bedarf relativ zur Gr ol3e
—Th(n) = max{ty(w)| |w|=n} Maximaler Bedarf relativ zur &inge
— Sy(n) =maxX{ sy (w)| |w|=n} eines Eingabewortesvprst-casg
— Die Grol3enordnungler Funktionen (linear, quadratisch, kubisch,...)
Ist aussagelaftigerals die genauen Werte — Komplexitatstheorie (§6)
e Komplexitat der Turingmaschine fur {0"1"|n>1}

— Zeitaufwand @ir Schleifeqq, g1, o, qo: 2n Do 0/0—

— GesamteFeitaufwand quadratiscf2n?) ﬁw ?/}?/M
o N 076

— Platzbedarf nicht gif3er als die Eingabe ‘B,BH .

— Lineare Speicherplatzkompleait

b/b—
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DIE BERECHNETE FUNKTION EINER TURINGMASCHINE I

e Turingmaschinen berechnen Funktionen aufx*
— Eingabeder Funktion wirdaufs Band geschrieben
— Bandinhalt wird durch Abarbeitung des Programmsmdert
— Wenn Maschine ardit, kannBandinhalt ausgegebaverden
— Akzeptierende Endzustde werden irrelevaniiblicherweisel” = ()
Die urspiinglich vorgesehene Verwendung von Turingmaschinen

e Formale Beschreibung mittels Konfigurationen
— Anfangskonfigurationa(w) = (e,q0,w)
— Rechenzeitt ;s (w) := max{j | a(w) ¥ (u,q, Xv) » 6(q, X) undefiniert
Undefiniert falls dieses Maximum nicht existiert, d.h. M halt nicht
— Ausgabefunktionw(u, ¢, v) := vl (langster Pafix vonv, der zu* getbrt)
Ausgabe beginnt unter dem Kopf bis ein Symbol nicht aus X erreicht wird
— Berechnete Funktionfas(w) := {w(k) | a(w) " k)
Genau dann definiert, wenn M auf w anhalt
)

Fur DTMs ist fy;(w) = w(k) fr das eindeutig bestimmiemit a(w)
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BERECHNUNG MIT TURING-MASCHINEN AM BEISPIEL I

e Mi =({q,q,%}, {1}, {1,B}, 0, q, B,{q}) mit 4| 1 B
—q,|(,1,R) (9,1,L)

aq, | (q,1,L) (g9,B,R)

*q2 . .

Abarbeitungsbeispielr,q,111) - (6,9,1111)
Fugt am Ende eines Wortes< {1}* eine 1 an (“Bierdeckelmaschine”)

e Mathematische Analyse
— Anfangskonfiguration a(1") = (eq,,1")
— Nachfolgekonfigurationen (1) + (1,q,1°°%) F  (1%,q,B)
F (1" 4g,11) F (60,B1") F (6,0,1"M)

-1

— Terminierung max{j | a(w) ¥ (u,q, Xv) » d(q, X) undefiniert
= 2n—+2

— Ergebnis a(1) S (6,0,,1" ")

— Ausgabefunktion w(e,q,, 1"t = 17+

far, (™) =17+ fur allen, DefinitionsbereicH1}*, WertebereicH1}*
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BEISPIELE FUR TURING-MASCHINEN I

e M =({q,q}, {1}, {1,B}, 4, q, B, {q})

mt 4, 1 B Abarbeitungsbeispiel:
— qo (qO’B’R) (qu’L) 4
*q | — _ (€,9,111) = (€,9,B)

Loscht ein Wort vom Bandif;,(w) = e fur allew e {1}

o M3 = ({qO’ql’qQ}’ {1}’ {1’8}’ 53’ % B, {q?})

mit o, 1 B . o
~ 4. [@LR) (@.BR) Abarbeltungsbelsplele.
d, | (d,1.R) (9,B,R) (¢,9,1111)F (1111B,qB)
L — = (¢,q,111) " (111BBB...BB,gB)

Testet, ob Anzahl der Einsenine {1}* gerade ist

falls n gerad
fa(17) = ‘ no ¥ (L steht fur “undefiniert”)
1 sonst
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BEISPIELE FUR TURING-MASCHINEN 11 I

o M4 - ({q(pqpqz’qg’qZL}’ {1}’ {1’8}’ 54’ qO’ B’ {q4})
mit 6 1 B

—q, (Q,L.R) (a,B.L)
g, (g,B,R) (q,,B,R)

d, (9,L,R) (g,1,.L) Abarbeitungsbeispiel:
e[ I (60,11) P (6,1,1111)

Verdoppelt Anzahl der Einsenf,,(1") = 1°"

e M;s = ({q,9,9,9;}, {0,1}, {0,1,B}, 4., q, B, {q,})
mit 5. O 1 B

—q, | (4,0,R) (q,L.R) (q,B.L) . .
q, | (a,1,L) (9,0,L) (g,1,L) Abarbeitungsbeispiel:

g @00 (@.1L) @BR) (4 10011)F (c,q,10100)

Addiert 1 auf die Biardarstellung einer natlichen Zahl
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TURING-BERECHENBARE FUNKTIONEN I

o f:3*— A* Turing-berechenbar
— f=fy fur eine Turingmasching’/ = (Q, >, I', 9, qu, B, F') mit Acl’

7 : Menge der Turing-berechenbaren Funktionen

e Berechenbarkeit aufZahlen: f:N—N
= Berechenbarkeit der Funktigfy:>*—3* mit f.(w) = r(f(r Hw)))
wobeir:N—X* injektive Repéasentatiorvon Zahlen durch Wrter
-unareDarstellungr,:N—{1}* mitr,(n)=1"
- binareCodierungr;,:N—{0, 1}* (ohne ftihrende Nullen)
f wird berechnet durchy (z) = 1(f.(r(2)))

Berechenbarkeit auf anderen Mengen analog
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BERECHENBARKEIT ARITHMETISCHER FUNKTIONEN I

e Nachfolgerfunktion s:N—N mit s(n) = n+41
— Bei urirer Codierung: berechne: {1}*—{1}* mit s,(1") = 1""!
- Turingmaschine muf} eine 1 anfgen: s, = fi,
— Bei birarer Codierungs;, = f1.
. M muf Ziffern von rechts beginnend umwandeln, ggf. btiertrag

e Division durch 2: div2:N—N mit diva(n)=|n/2|

— Bei urarer Codierung muf} (analog zW/,) je zwel Einsendschen
und eine neue hinter dem Ende des Wortes schreiben

— Bei bimarer Codierung muf3 nur die letzte Zifferdschen

Komplexere arithmetische Operationen beitigen
Programmiertechniken fur Turingmaschinen
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AKZEPTIEREN ODER BERECHNEN? I

¢ Jede Funktion ist als Menge beschreibbar
—graph(f) ={(z,y) | f(z) =y}
Akzeptierende Maschinen erkennen Graphen berechenhamnktiénen
f berechenbar < graph(f) semi-entscheidbar — nachste Folie

e Jede Menge ist als Funktion beschreibbar

—x, (w) = { (1) La:)llrlssztu L, Charakteristische Funktiaser Sprachd.
—, (w) = { i ;?)lf‘sflt” L, Partiell-charakteristische Funktimon L

Charakteristische Funktionen erkannter Sprachen sirethenbar
L semi-entscheidbar<> 1), berechenbar
L entscheidbar < x, berechenbar — nachste Folie
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AKZEPTIEREN VS. BERECHNEN: BEWEISIDEEN

Simuliere Abarbeitung der jewells anderen Maschine

e f berechenbar < graph(f) semi-entscheidbar
= : Bei Eingabgw, v) “teste” ob f(w) = v ergibt
< Bei Eingabew suche das “erste” Wort mit (w, v) € graph(f)
Suche muf3 Wertdlf w,v und Rechenzeitgrenze simultan durchlaufen !!

Maschinen rissen nicht bei jeder Eingabe anhalten

e L semi-entscheidbar< 1), berechenbar
= . Bel Eingabew “teste” obw akzeptiert wirdund gebe ggf. 1 aus
< : Bei Eingabew “teste” oby, (w) = 1 ergibt
Maschinen nissen nicht bei jeder Eingabe anhalten

e L entscheidbar < x,; berechenbar
— Wie oben, abebbeide Maschinen irssen bel jeder Eingabe anhalten
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TURINGMASCHINEN IM RUCKBLICK I

¢ Allgemeinstes Automatenmodell
— Deterministischer endlicher Automat mit unendlichem Sperband
— “Beliebiger” Zugriff auf Speicherzellen
— Erkennung von Wirterndurch Endzustand
— Berechnen von Wertedurch Ausgabe nach Terminierung
— Beide Modelle sind gleich &chtig

¢ Nichtdeterministische Variante ist gleich stark
— Simulationsaufwand durch deterministische Maschinexpbnentiell
— NTM hilfreich fur Nachweis deAquivalenz zu Typ-0 Grammatiken

e Aquivalent zu realen Computern
— Reqister, mehreredhder, Unterprogramme, etc. simulierbar

Standardmodell fur Untersuchung von Berechenbarkeit
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