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Einheit 5

Theorie der Berechenbarkeit

1. Turing-Berechenbarkeit

2. Rekursive Funktionen

3. Funktionale und logische Programme

4. Elementare Berechenbarkeitstheorie

5. Unlösbare Probleme
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Kernfragen zur Berechenbarkeit

•Welche Berechnungsmethoden sind denkbar?
– Es gibt weit mehr Modelle als nur die Standard PC Architektur

· Lisp Maschinen, Parallelrechner, Neuronale Netze, (Quantencomputer)

– Sind die Modelle miteinander vergleichbar?

•Welche allgemeing̈ultigen Zusammenḧange gibt es?
– Eigenschaften, die nicht vom Berechnungsmodell abhängen?

– Beweismethoden wie Abschlußeigenschaften und Problemtransformation

•Gibt es Grenzen f̈ur den Einsatz von Computern?
– Funktionen, die prinzipiellnicht berechenbarsind?

– Eigenschaften, dieunentscheidbarsind?

– Sprachen, die nicht vollständigaufgez̈ahlt werden k̈onnen?

Mit welchen Techniken kann man dies beweisen?
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Es gibt viele Modelle für Berechenbarkeit

... schon lange vor den ersten Computern

• Turingmaschine∗ (Rechnen mit Papier und Bleistift)

• Nichtdeterministische Turingmaschine∗ (Parallelismus/Quantenrechner)

• µ-rekursive Funktionen∗ (Mathematisches Rechnen)

• λ-Kalk ül∗ (Funktionale Sprachen, LISP)

• Logische Repr̈asentierbarkeit∗ (Logikprogrammierung, PROLOG)

•Markov-Algorithmen (Typ-0 Grammatiken) (Regelbasierte Sprachen)

• Abakus (Das älteste mechanische Hilfsmittel)

• PASCAL-reduziert (Imperative höhere Sprachen)

• Registermaschine (Assembler-/Maschinenprogrammierung)

Viele Formalisierungen eines intuitiven Begriffes
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Einheit 5.1

Turing-Berechenbarkeit

1. Rückblick: Turingmaschinen und Sprachen

2. Turing-berechenbare Funktionen

3. Berechnen vs. Akzeptieren
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Rückblick: Turingmaschinen

DAS EINFACHSTE IMPERATIVECOMPUTERMODELL

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung -
Akzeptieren
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• Endlicher Automat + lineares Band
– Endliche Steuerungliest BandsymbolunterLese-Schreibkopf
– Keine separate Eingabe: Eingabewort steht zu Anfang auf Band

• Einfacher Verarbeitungsmechanismus
– BandsymbolX wird gelesen
– InternerZustandq wird zu q′ ver̈andert
– NeuesSymbolY wird auf das Band geschrieben
– Kopf wird in eine RichtungD (rechts oder links)bewegt
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Rückblick: Turingmaschinen mathematisch

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung -Akzeptieren

Ablehnen

6
?

X YD
. . . . B 1 1 0 a 1 B B B . . . .

Lese-Schreibkopf
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DeterministischeTuringmaschine: 7-TupelM = (Q, Σ, Γ, δ, q0,B, F )

• Q nichtleere endlicheZustandsmenge

• Σ endlichesEingabealphabet

• Γ⊇Σ endlichesBandalphabet

• δ:Q×Γ→ Q×Γ×{L,R} (partielle)Überführungsfunktion

• q0
∈Q Startzustand

• B ∈Γ\Σ Leersymbol des Bands (“blank”)

• F⊆Q Menge vonakzeptierenden(End-)Zuständen

NTM analog mit mengenwertigemδ:Q×Γ→Pe(Q×Γ×{L,R})
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Rückblick: Beschreibung von Turingmaschinen

• Übergangsdiagramme

-
Start

q
0

-0 / a→

?b / b→

q
1

R

0 / 0→
b / b→

-1 / b← q
2

Y
a / a→ I

0 / 0←
b / b←

q
3

I

b / b→

-B / B→ q
4

– Zusẗande durchKnotendargestellt
– q0 markiert durchStart-Pfeil,

Endzusẗande durchdoppelte Kreise
– Für δ(q,X) = (p, Y,D) hat das

Diagramm eineKante q
X/YD
−→ p

– Σ undΓ implizit durch Diagramm bestimmt,LeersymbolheißtB

• Übergangstabellen Q \Γ 0 1 a b B
→ q0 (q1,a,R) — — (q3,b,R) —

q1 (q1,0,R)(q2,b,L) — (q1,b,R) —
q2 (q2,0,L) — (q0,a,R) (q2,b,L) —
q3 — — — (q3,b,R)(q4,B,R)

* q4 — — — — —

– Funktionstabellefür δ
— heißt “δ nicht definiert”

– Pfeil→ kennzeichnetq0
– Stern* kennzeichnetF
– Σ, Γ undB implizit bestimmt

•Konvention: δ(q,X) undefiniert f̈ur Endzusẗandeq ∈F
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Rückblick: Arbeitsweise von Turingmaschinen

•Konfiguration =̂ Zustand + Bandinhalt + Kopfposition
– Formal dargestellt als TripelK = (u,q,v) ∈ Γ∗×Q×Γ+

· u, v: String links/rechts vom Kopfq Zustand
– Nur der bereits ‘besuchte’ Teil des Bandes wird betrachtet

Blanksam Anfang vonu oder am Ende vonv entfallen, wo m̈oglich
Achtung: im Buch wird das Tripel als ein (!) String uqv geschrieben

•Konfigurationsübergangsrelation ⊢
∗

– (uZ, q,Xv) ⊢ (u, p,ZY v), falls δ(q,X) = (p, Y, L)
– (u, q,Xv) ⊢ (uY , p, v), falls δ(q,X) = (p, Y, R)
Sonderf̈alle für Verhalten am Bandende
– (ǫ, q,Xv) ⊢ (ǫ, p,BY v), falls δ(q,X) = (p, Y, L)

– (uZ, q,X) ⊢ (u, p,Z), falls δ(q,X) = (p,B, L)

– (u, q,X) ⊢ (uY , p,B), falls δ(q,X) = (p, Y,R)

– (ǫ, q,Xv) ⊢ (ǫ, p, v), falls δ(q,X) = (p,B,R)

K1 ⊢
∗
K2, fallsK1=K2 oder es gibt einK mit K1 ⊢ K undK ⊢

∗
K2

Definition analog f̈ur nichtdeterministische Maschinen
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Rückblick: Sprache einer Turingmaschine

• Akzeptierte Sprache
– Menge der Eingaben, für die ⊢

∗
zu akzeptierendem Zustand führt

L(M) = {w ∈Σ∗ | ∃p ∈F.∃u, v ∈Γ∗. (ǫ, q0, w) ⊢
∗
(u, p, v)}

– Bei Einhalten der Konvention hältM im akzeptierenden Zustand an

Definition identisch f̈ur nichtdeterministische Maschinen
DTMs akzeptieren dieselben Sprachen wie NTMs(exponentielle Simulation)

• Semi-entscheidbare Sprache=̂ Typ-0 Sprache
– Sprache, dievon einer TuringmaschineM akzeptiert wird

– Alternative Bezeichnung:(rekursiv) aufzählbare Sprache

• Entscheidbare Sprache (auch:rekursive Sprache)
– Sprache, die von einer TuringmaschineM akzeptiert wird,

diebei jeder Eingabe terminiert
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RÜCKBLICK : PROGRAMMIERTECHNIKEN FÜR TURINGMASCHINEN

•Datenregister speichern Werte aus Menge∆
– Simulation durch erweiterteZustandsmengeQ′ := Q × ∆k

•Mehrspur-Maschinen mit k Datenspuren
– Simulation durch erweitertes BandalphabetΣ’ := Σk

•Mehrband-Maschinenmit k unabhängigen B̈andern
– Simulation mit2k+1 Spuren: Inhalt, Kopfmarker + Endmarker

•Unterprogramme
– Simulation wie bei Unterprogrammen in Assemblersprachen

•Beschr̈ankte Modelle für Beweise
– Halbseitig unendliches Bandkann beidseitiges Band simulieren
– Binäres BandalphabetΓ = {1, B} kann jedes Alphabet codieren
– 2 Stackskönnen jede Konfiguration einer Turingmaschine simulieren

Genauso leistungsf̈ahig wie konventionelle Computer
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Neu: Zeit- und Platzbedarf von Turingmaschinen

•Rechenzeit tM(w)
– Anzahl der Konfigurations̈uberg̈angebisM bei Eingabew anḧalt

•Speicherbedarf sM(w)
– Anzahl der Bandzellen, dieM während der Berechnung aufsucht

•Komplexit ät: Bedarf relativ zur Gr öße
– TM(n) = max{tM(w) | |w|=n}

–SM(n) = max{sM(w) | |w|=n}
Maximaler Bedarf relativ zur L̈ange

eines Eingabewortes (worst-case)

– DieGrößenordnungder Funktionen (linear, quadratisch, kubisch,...)
ist aussagekr̈aftigerals die genauen Werte 7→ Komplexitätstheorie (§6)

•Komplexit ät der Turingmaschine für {0n1n|n≥1}

-
Start q

0
-0 / a→

?b / b→

q
1

R

0 / 0→
b / b→

-1 / b← q
2

Y
a / a→

Y

0 / 0←
b / b←

q
3

I

b / b→

-B / B→ q
4

– Zeitaufwand f̈ur Schleifeq0, q1, q2, q0: 2n

– GesamterZeitaufwand quadratisch(2n2)

– Platzbedarf nicht größer als die Eingabe
– Lineare Speicherplatzkomplexität
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Die berechnete Funktion einer Turingmaschine

• Turingmaschinen berechnen Funktionen aufΣ∗

– Eingabeder Funktion wirdaufs Band geschrieben
– Bandinhalt wird durch Abarbeitung des Programms verändert
– Wenn Maschine anhält, kannBandinhalt ausgegebenwerden
– Akzeptierende Endzustände werden irrelevant (üblicherweiseF = ∅)
Die urspr̈unglich vorgesehene Verwendung von Turingmaschinen

• Formale Beschreibung mittels Konfigurationen
– Anfangskonfiguration: α(w) := (ǫ,q0,w)

– Rechenzeit: tM(w) := max{j |α(w) ⊢
j
(u, q,Xv) ∧ δ(q,X) undefiniert}

Undefiniert falls dieses Maximum nicht existiert, d.h. M hält nicht

– Ausgabefunktion: ω(u, q, v) := v|
Σ

(längster Pr̈afix vonv, der zuΣ∗ geḧort)

Ausgabe beginnt unter dem Kopf bis ein Symbol nicht aus Σ erreicht wird

– Berechnete Funktion: fM(w) := {ω(κ) |α(w) ⊢
tM (w)

κ}

Genau dann definiert, wenn M auf w anhält

Für DTMs istfM(w) = ω(κ) für das eindeutig bestimmteκ mit α(w) ⊢
tM (w)

κ
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Berechnung mit Turing-Maschinen am Beispiel

•M1 = ({q0,q1,q2}, {1}, {1,B}, δ1, q0, B, {q2}) mit δ1 1 B
→ q0 (q0,1,R) (q1,1,L)

q1 (q1,1,L) (q2,B,R)
* q2 — —

Abarbeitungsbeispiel:(ǫ,q0,111) ⊢
8

(ǫ,q2,1111)

Fügt am Ende eines Wortesw ∈{1}∗ eine 1 an (“Bierdeckelmaschine”)

•Mathematische Analyse:
– Anfangskonfiguration: α(1n) = (ǫ,q0,1

n)

– Nachfolgekonfigurationen: α(1n) ⊢ (1,q0,1
n−1) ⊢

n−1
(1n,q0,B)

⊢ (1n−1,q1,11) ⊢
n

(ǫ,q1,B1n+1) ⊢ (ǫ,q2,1
n+1)

– Terminierung: max{j | α(w) ⊢
j

(u, q,Xv) ∧ δ(q,X) undefiniert}

= 2n+2

– Ergebnis: α(1n) ⊢
2n+2

(ǫ,q2,1
n+1)

– Ausgabefunktion: ω(ǫ,q2,1
n+1) = 1n+1

fM1(1
n) = 1n+1 für allen, Definitionsbereich{1}∗, Wertebereich{1}+
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Beispiele für Turing-Maschinen

•M2 = ({q0,q1}, {1}, {1,B}, δ2, q0, B, {q1})

mit δ2 1 B
→ q0 (q0,B,R) (q1,B,L)

* q1 — —

Abarbeitungsbeispiel:

(ǫ,q0,111) ⊢
4

(ǫ,q1,B)

Löscht ein Wort vom Band:fM2(w) = ǫ für allew ∈{1}∗

•M3 = ({q0,q1,q2}, {1}, {1,B}, δ3, q0, B, {q2})

mit δ3 1 B
→ q0 (q1,1,R) (q2,B,R)

q1 (q0,1,R) (q1,B,R)
* q2 — —

Abarbeitungsbeispiele:

(ǫ,q0,1111)⊢
5

(1111B,q2,B)

(ǫ,q0,111) ⊢
n

(111BBB...BB,q1,B)

Testet, ob Anzahl der Einsen inw ∈{1}∗ gerade ist

fM3(1
n) =

{

ǫ falls n gerade,

⊥ sonst
(⊥ steht für “undefiniert”)
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Beispiele für Turing-Maschinen II

•M4 = ({q0,q1,q2,q3,q4}, {1}, {1,B}, δ4, q0, B, {q4})

mit δ4 1 B
→ q0 (q0,1,R) (q1,B,L)

q1 (q2,B,R) (q4,B,R)
q2 (q2,1,R) (q3,1,L)
q3 (q3,1,L) (q1,1,L)

* q4 — —

Abarbeitungsbeispiel:

(ǫ,q0,11) ⊢
14

(ǫ,q4,1111)

Verdoppelt Anzahl der Einsen:fM4(1
n) = 12n

•M5 = ({q0,q1,q2,q3}, {0,1}, {0,1,B}, δ5, q0, B, {q3})

mit δ5 0 1 B
→ q0 (q0,0,R) (q0,1,R) (q1,B,L)

q1 (q2,1,L) (q1,0,L) (q2,1,L)
q2 (q2,0,L) (q2,1,L) (q3,B,R)

* q3 — — —

Abarbeitungsbeispiel:

(ǫ,q0,10011)⊢
12

(ǫ,q3,10100)

Addiert 1 auf die Bin̈ardarstellung einer natürlichen Zahl



THEORETISCHEINFORMATIK II §5.1: 12 TURING-BERECHENBARKEIT

Turing-Berechenbare Funktionen

• f :Σ∗→∆∗ Turing-berechenbar
– f=fM für eine TuringmaschineM = (Q, Σ, Γ, δ, q0,B, F ) mit ∆⊆Γ

T : Menge der Turing-berechenbaren Funktionen

•Berechenbarkeit aufZahlen: f :N→N

=̂ Berechenbarkeit der Funktionfr:Σ∗→Σ∗ mit fr(w) = r(f(r−1(w)))

wobeir:N→Σ∗ injektive Repr̈asentationvon Zahlen durch Ẅorter

· unäreDarstellungru:N→{1}∗ mit ru(n) = 1n

· binäreCodierungrb:N→{0,1}∗ (ohne f̈uhrende Nullen)

f wird berechnet durchf(x) = r−1(fr(r(x)))

Berechenbarkeit auf anderen Mengen analog
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Berechenbarkeit arithmetischer Funktionen

•Nachfolgerfunktion s:N→N mit s(n) = n+1

– Bei un̈arer Codierung: berechnesu:{1}∗→{1}∗ mit su(1n) = 1n+1

· Turingmaschine muß eine 1 anhängen:su = fM1

– Bei bin̈arer Codierung:sb = fM5

·M muß Ziffern von rechts beginnend umwandeln, ggf. mitÜbertrag

•Division durch 2: div2:N→N mit div2(n)=⌊n/2⌋
– Bei un̈arer Codierung:M muß (analog zuM4) je zwei Einsen l̈oschen

und eine neue hinter dem Ende des Wortes schreiben

– Bei bin̈arer Codierung:M muß nur die letzte Ziffer l̈oschen

Komplexere arithmetische Operationen ben̈otigen
Programmiertechniken für Turingmaschinen
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Akzeptieren oder Berechnen?

• Jede Funktion ist als Menge beschreibbar
– graph(f ) = {(x, y) | f(x) = y}

Akzeptierende Maschinen erkennen Graphen berechenbarer Funktionen

f berechenbar⇔ graph(f ) semi-entscheidbar 7→ nächste Folie

• Jede Menge ist als Funktion beschreibbar

–χ
L
(w) =

{

1 fallsw ∈L,
0 sonst

Charakteristische Funktionder SpracheL

–ψ
L
(w) =

{

1 fallsw ∈L,
⊥ sonst

Partiell-charakteristische FunktionvonL

Charakteristische Funktionen erkannter Sprachen sind berechenbar

L semi-entscheidbar⇔ ψ
L

berechenbar

L entscheidbar⇔ χ
L

berechenbar 7→ nächste Folie
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Akzeptieren vs. Berechnen: Beweisideen

Simuliere Abarbeitung der jeweils anderen Maschine

• f berechenbar⇔ graph(f ) semi-entscheidbar
⇒ : Bei Eingabe(w, v) “teste” obf(w) = v ergibt

⇐ : Bei Eingabew suche das “erste” Wortv mit (w, v) ∈ graph(f )
Suche muß Werte fürw,v und Rechenzeitgrenze simultan durchlaufen !!

Maschinen m̈ussen nicht bei jeder Eingabe anhalten

•L semi-entscheidbar⇔ ψL berechenbar
⇒ : Bei Eingabew “teste” obw akzeptiert wirdund gebe ggf. 1 aus

⇐ : Bei Eingabew “teste” obψ
L
(w) = 1 ergibt

Maschinen m̈ussen nicht bei jeder Eingabe anhalten

•L entscheidbar⇔ χL berechenbar
– Wie oben, aberbeide Maschinen m̈ussen bei jeder Eingabe anhalten
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Turingmaschinen im Rückblick

•Allgemeinstes Automatenmodell
– Deterministischer endlicher Automat mit unendlichem Speicherband

– “Beliebiger” Zugriff auf Speicherzellen

– Erkennung von Ẅorterndurch Endzustand

– Berechnen von Wertendurch Ausgabe nach Terminierung

– Beide Modelle sind gleich m̈achtig

•Nichtdeterministische Variante ist gleich stark
– Simulationsaufwand durch deterministische Maschine istexponentiell

– NTM hilfreich für Nachweis der̈Aquivalenz zu Typ-0 Grammatiken

• Äquivalent zu realen Computern
– Register, mehrere B̈ander, Unterprogramme, etc. simulierbar

Standardmodell für Untersuchung von Berechenbarkeit


