
Theoretische Informatik II

Einheit 6.2

DasP–NP Problem

1. Nichtdeterministische L̈osbarkeit

2. SindNP-Probleme handhabbar?

3.NP-Vollständigkeit

4. Der Satz von Cook



THEORETISCHEINFORMATIK II §6.2: 1 DAS P–NP PROBLEM

WENN EIN PROBLEM NICHT EFFEKTIV LÖSBAR ZU SEIN SCHEINT

Nicht zu empfehlende Vorgehensweise
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Extrem schwierig nachzuweisen, wenn̈uberhaupt möglich
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Vielleicht der einzig mögliche Weg
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Welche Art von Problemen betrifft dies?

• Travelling Salesman(TSP) (Message Routing)

Gibt es eine Rundreise zwischenn Sẗadten mit minimalen KostenB?

• Cliquen-Problem (CLIQUE)
HatG einen vollsẗandig verbundenen Teilgraphen der Größek?

• Erf üllbarkeitsproblem (SAT)
Ist eine aussagenlogische Formel in KNF der Größen erfüllbar?

• Multiprozessor-Scheduling
Könnenn Prozesse derart auf eine Menge von Prozessoren verteilt
werden, daß alle in Zeitt abgearbeitet sind?

• Binpacking
Könnenn verschieden große Gegenstände in maximalk
Verpackungsbeḧaltern untergebracht werden?

Keine polynomielle Lösung bekannt
Beste L̈osung ist Durchsuchen aller M̈oglichkeiten
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... aber Erfolg der Suche ist leicht zu testen

• Travelling Salesman: Für eine gegebeneRundreisei1..in können
die Kostenci1i2 + .. + cini1 in linearer Zeit berechnet und mit der
Kostenbeschr̈ankungB verglichen werden

• Cliquen-Problem: Ein gegebener Teilgraph der Größek kann in
polynomieller Zeit aufVollständigkeitüberpr̈uft werden

• Erf üllbarkeitsproblem: Man kann in polynomieller Zeit testen,
ob einegegebene Belegung der Variablen eine Formel erfüllt

• Multiprozessor-Scheduling
Man kann in polynomieller Zeit testen, ob einegegebene Verteilung von
Prozessen ein Ressourcenlimit einhält.

• Binpacking: Man kann in polynomieller Zeit testen, ob eine
gegebene Verteilung der Gegenstände ink Verpackungsbeḧalter paßt

• Zusammengesetztheitstest: Man kann in quadratischer Zeit
testen, ob einegegebene Zahl Teiler vonx (alsox keine Primzahl) ist
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• Orakel-Turingmaschinen (Raten und Verifizieren)
1. Bei Eingabe vonw ∈Σ erzeugtOrakel einen L̈osungsvorschlagx
2. VerifiziererV überpr̈uft w, x deterministisch
OTM akzeptiertw, wenn es einx mit w, x ∈L(V ) gibt



THEORETISCHEINFORMATIK II §6.2: 4 DAS P–NP PROBLEM

Welches Modell kann diesen Effekt beschreiben?

Der Zeitaufwand liegt in der Suche, nicht im Test

• Orakel-Turingmaschinen (Raten und Verifizieren)
1. Bei Eingabe vonw ∈Σ erzeugtOrakel einen L̈osungsvorschlagx
2. VerifiziererV überpr̈uft w, x deterministisch
OTM akzeptiertw, wenn es einx mit w, x ∈L(V ) gibt

• Berechnungsaufwand einer OTMbei Eingabew
MaximaleRechenzeit f̈ur die Pr̈ufungeinesLösungsvorschlags für w

= Ein Schritt f̈ur das Raten einer L̈osung
+ Konventionelle Rechenzeitdefinition für Überpr̈ufung vonw, x
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• OTM Modell ist äquivalent zu NTMs §4.1

– NTM M akzeptiert, wennein Lösungswegzum Erfolg f̈uhrt
– tM(w) ist maximale Zahl der Konfigurationsüberg̈angebis Terminierung

• Polynomielle “Lösung” vieler schwerer Probleme
– Aber: deterministische Simulation von OTMs/NTMs wäre exponentiell
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Komplexität von Sprachen /Problemen

• Zeitkomplexit ät: (deterministisch & nichtdeterministisch)
– Eine SpracheL hat deterministische Zeitkomplexität O(f),

falls es eine DTMM mit TM ∈O(f) undL = L(M) gibt
– L hat nichtdeterministische Zeitkomplexität O(f), falls

es eine NTMM (oder eine OTM) mitTM ∈O(f) undL = L(M) gibt

– TIME( f ) = {L |L hat deterministische ZeitkomplexitätO(f)}

NTIME( f ) = {L |L hat nichtdeterministische ZeitkomplexitätO(f)}

– Statt “Sprache L” wird oft auch “Problem P ” oder “Menge M ” benutzt
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NTIME( f ) = {L |L hat nichtdeterministische ZeitkomplexitätO(f)}

– Statt “Sprache L” wird oft auch “Problem P ” oder “Menge M ” benutzt

• Platzkomplexität
– L hat (nicht-)deterministische Platzkomplexiẗat O(f), falls

L = L(M) für eine DTM (bzw. NTM oder OTM)M mit SM ∈O(f)

SPACE(f ) = {L |L hat PlatzkomplexiẗatO(f)}

NSPACE(f ) = {L |L hat nichtdeterministische PlatzkomplexitätO(f)}

Begriffe für abstrakte Algorithmen analog
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Wichtige Komplexitätsklassen

•P =
⋃

k TIME(nk)

– Klasse derin polynomieller Zeit (̂= effizient) lösbarenProbleme

– z.B. Arithmetische Operationen, Sortieren, Matrixmultiplikation, . . .
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k NTIME(nk)

– Nichtdeterministisch in polynomieller Zeit lösbareProbleme

– z.B. TSP, CLIQUE, SAT, Multiprozessor-Scheduling, Binpacking, . . .

• Weitere Klassen und ihre Hierarchie
LOGSPACE ⊆ NLOGSPACE

⊆ P ⊆ NP ⊆ PSPACE = NPSPACE

⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆ . . .

– Es wird vermutet, daß alle Inklusionen echt sind

Probleme inP sind effizient lösbar (handhabbar)
Was wissen wirüber Probleme inNP ?
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Das P–NP Problem

Sind NP Probleme effizient l̈osbar?

• Gilt P=NP oder P6=NP ?
– Eines der wichtigsten offenen Probleme der TI

– Seit mehr als 30 Jahren ungeklärt, möglicherweise unl̈osbar
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– LogischeProbleme (Erf̈ullbarkeit,. . . )7→ Model Checking, Hardwareverifikation

– Zahlenprobleme (Primfaktorisierung, . . . ) 7→ Kryptographie, IT Sicherheit

• Indizien sprechen gegenP=NP
– Zu vieleNP-Problemeohne bekannte polynomielle Lösung

– Über1000äquivalente Problemein ‘schwerster Teilklasse’ vonNP
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Wie analysiert man “P=NP oder P6=NP”?

• Untersuche die “schwierigsten”NP-Probleme
– Kann man eines davon effizient lösen?

– Wennja, dann giltP=NP

– Wennnein, dann gibt es ein Beispiel für P6=NP
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– Entsprichtfunktionaler Reduzierbarkeitmit Laufzeitbedingungen
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– Entsprichtfunktionaler Reduzierbarkeitmit Laufzeitbedingungen

• Formales Konzept:Polynomielle Reduzierbarkeit
– L′≤pL (L′ polynomiell reduzierbar auf L), falls L′=f−1(L)

für eine totale,in polynomieller Zeit berechenbareFunktionf

f transformiert Eingabenx ∈L′ in f(x) ∈L, aber das L̈osungsverfahren für L rückwärts(!) aufL′
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Polynomielle Reduktion auf Graphenproblemen

• Cliquen Problem
– Gegeben ein GraphG = (V, E) der Gr̈oßen und eine Zahlk≤|V |

– Gibt es inG eine Clique (vollsẗandig verbundene
KnotenmengeV ′⊆V ) der Mindestgr̈oßek?

CLIQUE = { (G, k) | G=(V, E) Graph ∧ (∃Vc⊆V. |Vc|≥k

∧ Vc Clique inG) }
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• Cliquen Problem
– Gegeben ein GraphG = (V, E) der Gr̈oßen und eine Zahlk≤|V |

– Gibt es inG eine Clique (vollsẗandig verbundene
KnotenmengeV ′⊆V ) der Mindestgr̈oßek?

CLIQUE = { (G, k) | G=(V, E) Graph ∧ (∃Vc⊆V. |Vc|≥k

∧ Vc Clique inG) }

• Vertex Cover Problem
– Gegeben ein GraphG = (V, E) der Gr̈oßen und eine Zahlk≤|V |

– Gibt es eine TeilmengeV ′⊆V mit höchstensk Elementen,
so daß aus jeder Kante inG mindestens eine Ecke inV ′ liegt?

V C = { (G, k) | G Graph ∧ (∃V ′⊆V. |V ′|≤k

∧ V ′ Knoten̈uberdeckung vonG) }

Probleme sind aufeinander reduzierbar
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Reduzierbarkeit: Clique ≤p Vertex Cover

• Analyse der Eigenschaften
Vc ist Clique inG = (V, E)

⇔ ∀v, v′ ∈Vc. v 6=v′⇒{v, v′} ∈E (Definition)

⇔ ∀{v, v′} 6∈E. v 6=v′⇒ v 6∈Vc ∨ v′ 6∈Vc (Kontraposition)

⇔ ∀{v, v′} ∈Ec. v ∈V −Vc ∨ v′ ∈V −Vc (Positive Formulierung)

⇔ V −Vc Knoten̈uberdeckung des KomplementgraphenGc = (V, Ec)
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– Reduzierek bis der Test erfolgreich istund gebekopt := k aus
– Zusatzaufwand linear in|V |
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CLIQUE2: Bestimme eine CliqueC⊆G mit maximaler Gr̈oßek

– Bestimmekopt für G und beginne mitEc := E

– Wähle Kantee ∈E und teste, ob esin (V, Ec−{e}) einekopt-Cliquegibt
· Ist dies der Fall, so setzeEc := Ec−{e}

– Wiederhole dies iterativ für alle Kanten ausE
– Das EndergebnisEc und die zugeḧorigen Knoten bilden diekopt-Clique
– Zusatzaufwand linear in|E|
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• Löse Optimierungsproblem mit Entscheidung
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– Reduzierek bis der Test erfolgreich istund gebekopt := k aus
– Zusatzaufwand linear in|V |

• Löse Berechnungsproblem mit Optimierung
CLIQUE2: Bestimme eine CliqueC⊆G mit maximaler Gr̈oßek

– Bestimmekopt für G und beginne mitEc := E

– Wähle Kantee ∈E und teste, ob esin (V, Ec−{e}) einekopt-Cliquegibt
· Ist dies der Fall, so setzeEc := Ec−{e}

– Wiederhole dies iterativ für alle Kanten ausE
– Das EndergebnisEc und die zugeḧorigen Knoten bilden diekopt-Clique
– Zusatzaufwand linear in|E|

Es reicht, Entscheidungsprobleme zu analysieren
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NP-Vollständigkeit

• Reduzierbarkeit bedeutet geringere Komplexiẗat
– L≤pL

′ ∧ L′ ∈P ⇒ L ∈P
– L≤pL

′ ∧ L′ ∈NP ⇒ L ∈NP
Beweis analog zu allgemeiner Reduzierbarkeit:

– χ
L
(x)=1 ⇔ x ∈L ⇔ f(x) ∈L′ ⇔ χ

L′
(f(x))=1 ⇔ (χ

L′
◦f )(x)=1

– χ
L′
◦f ist in polynomieller Zeit berechenbar, wenn dies f̈ur χ

L′
gilt
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L′
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•NP-hart : nicht leichter als NP
– L′ ist NP-hart , genau dann wennL≤pL

′ für alleL ∈NP gilt

•NP-vollständig: schwierigste Teilklassein NP
– L′ ist NP-vollständig, wennL′ NP-hartundL′ ∈NP

– Schreibweise:L ∈NPC
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• Alle NP-vollständigen Probleme sindäquivalent
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′

•NP-vollständige Probleme entscheiden ‘P ?
= NP ’

– P=NP ⇔ ∃L ∈NPC.L ∈P ⇔ ∀L ∈NPC.L ∈P Satz 10.5

Ist P=NP dann sindalleNP-vollständigen Probleme inP

– P6=NP ⇔ ∃L ∈NPC.L 6∈P ⇔ ∀L ∈NPC.L 6∈P
Ist P6=NP dann sindalleNP-vollständigen Probleme nicht inP
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• Alle NP-vollständigen Probleme sindäquivalent
– L, L′ ∈NPC ⇒ L′≤pL ∧ L≤pL

′

•NP-vollständige Probleme entscheiden ‘P ?
= NP ’

– P=NP ⇔ ∃L ∈NPC.L ∈P ⇔ ∀L ∈NPC.L ∈P Satz 10.5

Ist P=NP dann sindalleNP-vollständigen Probleme inP

– P6=NP ⇔ ∃L ∈NPC.L 6∈P ⇔ ∀L ∈NPC.L 6∈P
Ist P6=NP dann sindalleNP-vollständigen Probleme nicht inP

•NP-Vollständigkeit ist leicht nachweisbar, wenn ein
NP-vollständiges Problem bekannt ist
– L ∈NPC ⇔ L ∈NP ∧ ∃L′ ∈NPC. L′≤pL Satz 10.4

– L ∈NPC ⇔ ∃L′ ∈NPC. L′≤pL ∧ L≤pL
′

NP-Vollständigkeit muß einmal explizit gezeigt werden
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THEORETISCHEINFORMATIK II §6.2: 14 DAS P–NP PROBLEM

Wie zeigt man NP-Vollständigkeit?
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Wie zeigt man NP-Vollständigkeit?

BeweiseNP-Vollständigkeit explizit f ür eine SpracheL

• Codiere Berechnungen beliebiger NTMs inL
– Codierung soll zu SpracheL geḧoren, wenn MaschineM akzeptiert

– Codierung soll nicht zuL geḧoren, wennM nicht akzeptiert

– Codierung ‘polynomieller NTMs’ muß in polynomieller Zeitgeschehen

Damit istL(M)≤pL für jede polynomielle NTMM , d.h.L istNP-hart

• SpracheL muß selbst inNP liegen
– Ergibt zusammen mit dem obigen dieNP-Vollständigkeit vonL

• Welches Sprache ist ausdrucksstark genug?
– Idee: codiere m̈oglicheZustands̈uberg̈ange durch logische Formeln

– Problemstellung:Können Zustands̈uberg̈ange so kombiniert werden,
daß eine terminierende Berechnung codiert wird?

– Erfüllbarkeitsproblem der (Aussagen-)logik ist Kandidatfür NPC
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Das Erfüllbarkeitsproblem

Ist eine aussagenlogische Formel in KNF erf̈ullbar?
Gegebenm Klauselnk1, .., km übern Variablenx1, .., xn. Gibt es eine

Belegunga1, .., an ∈{0, 1} der Variablenxi, welche alle Klauseln erfüllt?

• Klausel über den Variablen x1, ..xn

– Disjunktion einigerLiteraleder Formxi bzw.xi

• Belegunga1, ..., an ∈ {0, 1} erfüllt Klausel kj

– Auswertung vonkj untera1, ..., an ergibt den Booleschen Wert1

•SAT = {k1, ..km | ki Klausel über x1, ..xn

∧ (∃a1, ..an ∈ {0,1}.

∀j≤m. a1, ..an erfüllt kj)}
Codierbar als Teilmenge der Sprache der Aussagenlogik
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– Setzex3=0, x2=1, x1 beliebig, z.B.x1=0

– Auswertung:(0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1

x1 ∧ x1



THEORETISCHEINFORMATIK II §6.2: 16 DAS P–NP PROBLEM

Beispiele von Formeln in KNF

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3 erfüllbar
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– Auswertung:(0+1) ∗ (0+1+0) ∗ 0 = (1+1) ∗ (0+0+1) ∗ 1 = 1 ∗ 1 ∗ 1 = 1
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THEORETISCHEINFORMATIK II §6.2: 17 DAS P–NP PROBLEM
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SAT = {k1..km| ki Klauselüberx1..xn ∧ ∃a1..an ∈{0,1}.a1..an erfüllt k1..km}
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– Laufzeit ist in O(2n)



THEORETISCHEINFORMATIK II §6.2: 17 DAS P–NP PROBLEM

Lösungen für das Erfüllbarkeitsproblem

SAT = {k1..km| ki Klauselüberx1..xn ∧ ∃a1..an ∈{0,1}.a1..an erfüllt k1..km}

• Deterministische Lösung
– Werte Klauselnfür alle m̈oglichen Belegungen der Variablenaus

bis erf̈ullende Belegung gefunden ist

– Es gibt2n möglichen Belegungenvonx1, ..xn

– Auswertung linearin Größe der FormelO(m ∗ n)

– Laufzeit ist in O(2n)

• Nichtdeterministisch: Raten und Verifizieren
– Orakelerzeugt erf̈ullende Belegungder Variablen (falls es eine gibt)

– Prüfe Belegungdurch Auswertung der Formel inpolynomieller Zeit

⇓
SAT ∈ NP
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– Codierung darf von KenntnissenüberL(M) abḧangen
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SAT ist NP-vollständig (SATZ VON COOK)

• Gegeben: NTM M , die in polynomieller Zeit terminiert

• Ziel: Codiere Berechnung vonM bei Eingabew durch
KNF-Formel, die erfüllbar ist, g.d.w. w ∈L(M)

– Codierung muß in polynomieller Zeit(relativ zu|w|) berechenbar sein

– Codierung darf von KenntnissenüberL(M) abḧangen

• Vorgehen: Beschreibe m̈ogliche Konfigurationsübergänge
von M durch aussagenlogische Klauseln

– CodiereZustand, Kopfposition und Bandzellendurch Literale

– Es werden nurpolynomiell viele Literale und Klauselnben̈otigt

– Formel isterfüllbar, wenn Konfigurations̈uberg̈angezu akzeptierender
Berechnung zusammengesetzt werden können

Aufwendiger Beweis mit sehr vielen Details
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ZeigeL≤pSAT für jede SpracheL ∈ NP

•L wird von NTM M akzeptiert
– M = (Q, Σ, Γ, δ, q0, B, F ) mit Q={q0, .., qk}, Γ={X1, .., Xm}

•M zeitbeschr̈ankt durch Polynom p(n)

– tM(w)≤p(n) für jedes Wortw ∈Σ∗ mit |w|=n

– Es sindgenaup(n) Berechnungsschritteals Formel zu codieren
o.B.d.A.:M ‘verharrt’ in den Endzuständenanstatt abzubrechen

d.h.(u,q,v) ⊢ (u,q,v) für q ∈F

•M ist auch platzbeschr̈ankt durch p(n)

– M kann ẅahrend der Berechnungmaximalp(n) Bandzellenaufsuchen
o.B.d.A.:M arbeitet mithalbseitig unendlichem Band

Es reicht, genau die Bandzellen1..p(n) zu modellieren

–Schreibe Konfiguration(u,q,v) als StringuqvBj der Längep(n)+1
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• Übergangsbedingungen
– Zu jedem Zeitpunktt steht der Kopf an einer Stellej und

ver̈andert Bandinhalt und Zustand entsprechend der Tabelle vonδ

• Endbedingung
– Nachp(n) Schritten befindet sichM in einemEndzustandqf ∈F

– Endkonfiguration hat die FormX0..Xj−1qfXj+1..Xp(n) für einj



THEORETISCHEINFORMATIK II §6.2: 20 DAS P–NP PROBLEM

Satz von Cook: zu codierende Aussagen

• Anfangsbedingungenbei Eingabew
– M startet imZustandq0 und derKopf ist über Bandzelle 0
– Anfangskonfiguration istq0w1..wnBp(n)−(n+1)
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• Anfangsbedingungenbei Eingabew
– M startet imZustandq0 und derKopf ist über Bandzelle 0
– Anfangskonfiguration istq0w1..wnBp(n)−(n+1)

• Übergangsbedingungen
– Zu jedem Zeitpunktt steht der Kopf an einer Stellej und
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• Endbedingung
– Nachp(n) Schritten befindet sichM in einemEndzustandqf ∈F

– Endkonfiguration hat die FormX0..Xj−1qfXj+1..Xp(n) für einj

• Randbedingungenfür eindeutiges Verhalten
– Zu jedem Zeitpunktt befindet sichM in genau einer Konfiguration

X0..Xj−1qXj+1..Xp(n)

Summe der Aussagen codiert NTM-Berechnung
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“Nacht Schrittensteht an deri-ten Stelleder Konfiguration einA”

• Codiere Aussagen durch KNF-FormelnA, Ü ,E,R
– Jede Teilformel ist in der ZeitO(p(n)3) konstruierbar (Details im Anhang)

• Setzeα(M ,w) ≡ A ∧ Ü ∧ E ∧ R
– α(M ,w) ist in KNF , da jede der Teilformeln ist in KNF

– α(M ,w) ist in polynomieller Zeit konstruierbar
– w ∈L ⇒ α(M ,w) ∈SAT

Für w ∈L gibt es eine akzeptierende BerechnungK0,..,Kp(n).

Setze:yt,i,A:=1, falls A dasi-te Symbol vonKt ist, yt,i,A:=0, sonst.

Per Konstruktion erf̈ullt dies die Formelα(M ,w), alsoα(M ,w) ∈SAT .

– α(M ,w) ∈SAT ⇒ w ∈L

Ist α(M ,w) erfüllbar, so kann mitÜ die Belegung der Variablen in eine

KonfigurationsfolgeK0,..,Kp(n) umgerechnet werden. WegenR gibt es

genau einesolche Konfigurationsfolge. WegenA undE repr̈asentiert diese

Konfigurationsfolge eine akzeptierende Berechnung für w. Also gilt w ∈L.
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– Formelα(M ,w) codiert Berechnung der NTMM bei Eingabew

– α(M ,w) ist in polynomieller Zeit berechenbar(relativ zu|w|)

– Es giltw ∈L(M) ⇔ α(M ,w) ∈SAT

– Es folgt L(M)≤pSAT
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•SAT ist selbst inNP
– Belegungen k̈onnen leicht als erfüllendüberpr̈uft werden
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Satz von Cook: Zusammenfassung

• Aufwendige Codierung von Berechnungen
– Formelα(M ,w) codiert Berechnung der NTMM bei Eingabew

– α(M ,w) ist in polynomieller Zeit berechenbar(relativ zu|w|)

– Es giltw ∈L(M) ⇔ α(M ,w) ∈SAT

– Es folgt L(M)≤pSAT

• Konstruktion ist uniform f ür polynomielle NTMs
– Es folgt L≤pSAT für jedesL ∈NP

•SAT ist selbst inNP
– Belegungen k̈onnen leicht als erfüllendüberpr̈uft werden

⇓
SAT ist NP-vollständig
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ANHANG
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Details der Codierung: Anfangsbedingungen

Anfangskonfiguration ist q0w1..wnBp(n)−(n+1)
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Details der Codierung: Anfangsbedingungen

Anfangskonfiguration ist q0w1..wnBp(n)−(n+1)

• VerwendeKonfigurationsvariablen yt,i,A

– Zeit t und Zellei sind Zahlen zwischen 0 undp(n)

– A ist ein Symbol ausΓ oder ein Zustand(A ∈{X1, .., Xm, q0, .., qk})



THEORETISCHEINFORMATIK II §6.2: 24 DAS P–NP PROBLEM

Details der Codierung: Anfangsbedingungen

Anfangskonfiguration ist q0w1..wnBp(n)−(n+1)

• VerwendeKonfigurationsvariablen yt,i,A

– Zeit t und Zellei sind Zahlen zwischen 0 undp(n)

– A ist ein Symbol ausΓ oder ein Zustand(A ∈{X1, .., Xm, q0, .., qk})

• Codiere Anfangsbedingungen als FormelA mit

A ≡ y0,0,q0 ∧ y0,1,w1 ∧ .. ∧ y0,n,wn

∧ y0,n+1,B ∧ .. ∧ y0,p(n),B
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Details der Codierung: Anfangsbedingungen

Anfangskonfiguration ist q0w1..wnBp(n)−(n+1)

• VerwendeKonfigurationsvariablen yt,i,A

– Zeit t und Zellei sind Zahlen zwischen 0 undp(n)

– A ist ein Symbol ausΓ oder ein Zustand(A ∈{X1, .., Xm, q0, .., qk})

• Codiere Anfangsbedingungen als FormelA mit

A ≡ y0,0,q0 ∧ y0,1,w1 ∧ .. ∧ y0,n,wn

∧ y0,n+1,B ∧ .. ∧ y0,p(n),B

•A ist in KNF Rein konjunktive Formel

• Größe:O(p(n)) p(n)+1 Variablen

• Berechnungsaufwand:O(p(n)) Bestimmung vonp(n)
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Details der Codierung: Übergangsbedingungen

Konfigurationsübergänge sind verträglich mit δ

Definiere Formeln Ü(t, i) für Zeit t und Stellei

– Falls M an Stellei steht, kann sich der Bereichi−1..i+1 ändern

(yt,i−1,Z ∧ yt,i,q ∧ yt,i+1,X)

⇒ (yt+1,i−1,p1 ∧ yt+1,i,Z ∧ yt+1,i+1,Y1)
∨ .. ∨ (yt+1,i−1,pl

∧ yt+1,i,Z ∧ yt+1,i+1,Yl
)

∨ (yt+1,i−1,Z ∧ yt+1,i,Y ′
1

∧ yt+1,i+1,p′
1
)

∨ .. ∨ (yt+1,i−1,Z ∧ yt+1,i,Y ′
r

∧ yt+1,i+1,p′
r
)

für jedesZ ∈Γ, falls δ(q, X) = {(p1, Y1, L),..,(pl, Yl, L), (p′
1, Y ′

1 , R),..,(p′
r, Y ′

r , R)}
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Details der Codierung: Übergangsbedingungen

Konfigurationsübergänge sind verträglich mit δ

Definiere Formeln Ü(t, i) für Zeit t und Stellei

– Falls M an Stellei steht, kann sich der Bereichi−1..i+1 ändern

(yt,i−1,Z ∧ yt,i,q ∧ yt,i+1,X)

⇒ (yt+1,i−1,p1 ∧ yt+1,i,Z ∧ yt+1,i+1,Y1)
∨ .. ∨ (yt+1,i−1,pl

∧ yt+1,i,Z ∧ yt+1,i+1,Yl
)

∨ (yt+1,i−1,Z ∧ yt+1,i,Y ′
1

∧ yt+1,i+1,p′
1
)

∨ .. ∨ (yt+1,i−1,Z ∧ yt+1,i,Y ′
r

∧ yt+1,i+1,p′
r
)

für jedesZ ∈Γ, falls δ(q, X) = {(p1, Y1, L),..,(pl, Yl, L), (p′
1, Y ′

1 , R),..,(p′
r, Y ′

r , R)}

– Falls M nicht im Bereichi−1..i+1 steht, bleibt Stellei unver̈andert

(yt,i−1,q0 ∧ .. ∧ yt,i−1,qk
∧ yt,i,q0 ∧ .. ∧ yt,i,qk

∧ yt,i+1,q0 ∧ .. ∧ yt,i+1,qk
)

⇒ (yt,i,X1 ∧ yt+1,i,X1) ∨ .. ∨ (yt,i,Xm ∧ yt+1,i,Xm)
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Konfigurationsübergänge sind verträglich mit δ
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Details der Codierung: Übergangsbedingungen (II)

Konfigurationsübergänge sind verträglich mit δ

• Kombiniere Übergangsbedingungen zu Formel̈U

Ü ≡ Ü(0, 0) ∧ ..∧ Ü(0, p(n))

∧ Ü(p(n), 0) ∧ ..∧ Ü(p(n), p(n))

Formeln werden zuvor in KNF transformiert (Standardverfahren)
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Ü ≡ Ü(0, 0) ∧ ..∧ Ü(0, p(n))

∧ Ü(p(n), 0) ∧ ..∧ Ü(p(n), p(n))

Formeln werden zuvor in KNF transformiert (Standardverfahren)

• Ü ist in KNF Alle Ü(t, i) wurden normalisiert
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Details der Codierung: Übergangsbedingungen (II)

Konfigurationsübergänge sind verträglich mit δ

• Kombiniere Übergangsbedingungen zu Formel̈U

Ü ≡ Ü(0, 0) ∧ ..∧ Ü(0, p(n))

∧ Ü(p(n), 0) ∧ ..∧ Ü(p(n), p(n))

Formeln werden zuvor in KNF transformiert (Standardverfahren)

• Ü ist in KNF Alle Ü(t, i) wurden normalisiert

• Größe:O(p(n)2) p(n)2 Komponentenformeln

Je Komponente nach Normalisierung maximalk ∗ m ∗ 32m∗k + 3k ∗ 2m Symbole
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Details der Codierung: Übergangsbedingungen (II)

Konfigurationsübergänge sind verträglich mit δ

• Kombiniere Übergangsbedingungen zu Formel̈U

Ü ≡ Ü(0, 0) ∧ ..∧ Ü(0, p(n))

∧ Ü(p(n), 0) ∧ ..∧ Ü(p(n), p(n))

Formeln werden zuvor in KNF transformiert (Standardverfahren)

• Ü ist in KNF Alle Ü(t, i) wurden normalisiert

• Größe:O(p(n)2) p(n)2 Komponentenformeln

Je Komponente nach Normalisierung maximalk ∗ m ∗ 32m∗k + 3k ∗ 2m Symbole

• Berechnungsaufwand:O(p(n)2)
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Details der Codierung: Endbedingung

Endkonfiguration hat Form X0..Xj−1qfXj+1..Xp(n)
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Details der Codierung: Endbedingung

Endkonfiguration hat Form X0..Xj−1qfXj+1..Xp(n)

• SeiF ={qr, .., qe}
Codiere Endbedingungen als FormelE mit

E = (yp(n),0,qr
∨ .. ∨ yp(n),0,qe

)
∨ (yp(n),1,qr

∨ .. ∨ yp(n),1,qe
)

∨ ...
∨ (yp(n),p(n),qr

∨ .. ∨ yp(n),p(n),qe
)
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Details der Codierung: Endbedingung

Endkonfiguration hat Form X0..Xj−1qfXj+1..Xp(n)
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•E ist in KNF Einfache Klausel
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Details der Codierung: Endbedingung

Endkonfiguration hat Form X0..Xj−1qfXj+1..Xp(n)

• SeiF ={qr, .., qe}
Codiere Endbedingungen als FormelE mit

E = (yp(n),0,qr
∨ .. ∨ yp(n),0,qe

)
∨ (yp(n),1,qr

∨ .. ∨ yp(n),1,qe
)

∨ ...
∨ (yp(n),p(n),qr

∨ .. ∨ yp(n),p(n),qe
)

•E ist in KNF Einfache Klausel

• Größe:O(p(n)) p(n) ∗ (e−r) Variablen
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Details der Codierung: Endbedingung

Endkonfiguration hat Form X0..Xj−1qfXj+1..Xp(n)

• SeiF ={qr, .., qe}
Codiere Endbedingungen als FormelE mit

E = (yp(n),0,qr
∨ .. ∨ yp(n),0,qe

)
∨ (yp(n),1,qr

∨ .. ∨ yp(n),1,qe
)

∨ ...
∨ (yp(n),p(n),qr

∨ .. ∨ yp(n),p(n),qe
)

•E ist in KNF Einfache Klausel

• Größe:O(p(n)) p(n) ∗ (e−r) Variablen

• Berechnungsaufwand:O(p(n))
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Eindeutige Konfiguration X0..Xj−1qXj+1..Xp(n)
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Details der Codierung: Randbedingungen

Eindeutige Konfiguration X0..Xj−1qXj+1..Xp(n)

• Codiere Randbedingungen als FormelR:
– Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
– Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
– Optimierungen m̈oglich (“maximal eine Konfiguration” reicht)
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Details der Codierung: Randbedingungen

Eindeutige Konfiguration X0..Xj−1qXj+1..Xp(n)

• Codiere Randbedingungen als FormelR:
– Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
– Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
– Optimierungen m̈oglich (“maximal eine Konfiguration” reicht)

R ≡ ∃1(y0,0,X1, .., y0,0,qk
) ∧ . . . ∧ ∃1(yp(n),p(n),X1

, .., yp(n),p(n),qk
)

∧ ∃1(y0,0,q1, .., y0,p(n),qk
) ∧ . . . ∧ ∃1(yp(n),0,q1

, .., yp(n),p(n),qk
)
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Details der Codierung: Randbedingungen

Eindeutige Konfiguration X0..Xj−1qXj+1..Xp(n)

• Codiere Randbedingungen als FormelR:
– Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
– Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
– Optimierungen m̈oglich (“maximal eine Konfiguration” reicht)

R ≡ ∃1(y0,0,X1, .., y0,0,qk
) ∧ . . . ∧ ∃1(yp(n),p(n),X1

, .., yp(n),p(n),qk
)

∧ ∃1(y0,0,q1, .., y0,p(n),qk
) ∧ . . . ∧ ∃1(yp(n),0,q1

, .., yp(n),p(n),qk
)

Dabei steht∃1(x1, .., xm) für “genau eines derxi gilt’

∃1(x1, .., xj) ≡ (x1 ∨ .. ∨xj) ∧ (x̄1 ∨ x̄2) ∧ .. ∧ (x̄1 ∨ x̄j)

∧ (x̄2 ∨ x̄3) ∧ .. ∧ (x̄2 ∨ x̄j) ∧ ..∧ (x̄j−1 ∨ x̄j)
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Details der Codierung: Randbedingungen

Eindeutige Konfiguration X0..Xj−1qXj+1..Xp(n)

• Codiere Randbedingungen als FormelR:
– Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
– Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
– Optimierungen m̈oglich (“maximal eine Konfiguration” reicht)
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∧ (x̄2 ∨ x̄3) ∧ .. ∧ (x̄2 ∨ x̄j) ∧ ..∧ (x̄j−1 ∨ x̄j)

•R ist in KNF Konjunktion von∃
1
-Formeln
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Details der Codierung: Randbedingungen

Eindeutige Konfiguration X0..Xj−1qXj+1..Xp(n)

• Codiere Randbedingungen als FormelR:
– Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
– Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
– Optimierungen m̈oglich (“maximal eine Konfiguration” reicht)

R ≡ ∃1(y0,0,X1, .., y0,0,qk
) ∧ . . . ∧ ∃1(yp(n),p(n),X1

, .., yp(n),p(n),qk
)

∧ ∃1(y0,0,q1, .., y0,p(n),qk
) ∧ . . . ∧ ∃1(yp(n),0,q1

, .., yp(n),p(n),qk
)

Dabei steht∃1(x1, .., xm) für “genau eines derxi gilt’

∃1(x1, .., xj) ≡ (x1 ∨ .. ∨xj) ∧ (x̄1 ∨ x̄2) ∧ .. ∧ (x̄1 ∨ x̄j)

∧ (x̄2 ∨ x̄3) ∧ .. ∧ (x̄2 ∨ x̄j) ∧ ..∧ (x̄j−1 ∨ x̄j)

•R ist in KNF Konjunktion von∃
1
-Formeln

• Größe:O(p(n)3) p(n)2 ∗ (m+k)2 + p(n) ∗ (k ∗ p(n))2 Variablen
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Details der Codierung: Randbedingungen

Eindeutige Konfiguration X0..Xj−1qXj+1..Xp(n)

• Codiere Randbedingungen als FormelR:
– Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
– Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
– Optimierungen m̈oglich (“maximal eine Konfiguration” reicht)

R ≡ ∃1(y0,0,X1, .., y0,0,qk
) ∧ . . . ∧ ∃1(yp(n),p(n),X1

, .., yp(n),p(n),qk
)

∧ ∃1(y0,0,q1, .., y0,p(n),qk
) ∧ . . . ∧ ∃1(yp(n),0,q1

, .., yp(n),p(n),qk
)

Dabei steht∃1(x1, .., xm) für “genau eines derxi gilt’

∃1(x1, .., xj) ≡ (x1 ∨ .. ∨xj) ∧ (x̄1 ∨ x̄2) ∧ .. ∧ (x̄1 ∨ x̄j)

∧ (x̄2 ∨ x̄3) ∧ .. ∧ (x̄2 ∨ x̄j) ∧ ..∧ (x̄j−1 ∨ x̄j)

•R ist in KNF Konjunktion von∃
1
-Formeln

• Größe:O(p(n)3) p(n)2 ∗ (m+k)2 + p(n) ∗ (k ∗ p(n))2 Variablen

• Berechnungsaufwand:O(p(n)3) Bestimmep(n),. . .


