Theoretische Informatik Il

Einheit 6.2
DasP-N"P Problem |
%,

1. Nichtdeterministische dsbarkeit
2. Sind N"P-Probleme handhabbar?
3. N'P-Vollstandigkeit

4. Der Satz von Cook



WENN EIN PROBLEM NICHT EFFEKTIV LOSBAR ZU SEIN SCHEINT I

““I can’t find an efficient algorithm, [ gucss I'm just too dumb.

Nicht zu empfehlende Vorgehensweise

THEORETISCHEINFORMATIK Il §6.2: 1 DAS P-NP PROBLEM




WENN EIN PROBLEM NICHT EFFEKTIV LOSBAR ZU SEIN SCHEINT I

“I can’t find an efficient algorithm, because no such algorithm is possible!™

Extrem schwierig nachzuweisen, wenmniberhaupt moglich
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WENN EIN PROBLEM NICHT EFFEKTIV LOSBAR ZU SEIN SCHEINT I
AL L L

> N
1 —J L

“1 can't find an efficient algorithm, but ncither can all these famous people.

—D

Vielleicht der einzig mogliche Weg
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WELCHE ART VON PROBLEMEN BETRIFFT DIES? I

e Travelling Salesman(TSP) (Message Routing)
Gibt es eine Rundreise zwischersStadten mit minimalen Kostes?

e Cliguen-Problem (CLIQUE)

Hat GG einen vollsndig verbundenen Teilgraphen deioGek?

e Erf Ullbarkeitsproblem (SAT)
Ist eine aussagenlogische Formel in KNF deolRan erfullbar?

e Multiprozessor-Scheduling
Konnenn Prozesse derart auf eine Menge von Prozessoren vertellt
werden, dal} alle in Zettabgearbeitet sind?

e Binpacking
Konnenn verschieden grol3e Gegedistle in maximak
Verpackungsbeditern untergebracht werden?

Keine polynomielle Losung bekannt
Beste Losung ist Durchsuchen aller Moglichkeiten
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... ABER ERFOLG DER SUCHE IST LEICHT ZU TESTEN I

e Travelling Salesman Fir eine gegeben@undreise; .., konnen
die Kostenc;,;, + .. + ¢;,;, In linearer Zeit berechnet und mit der
KostenbesclankungB verglichen werden

e Cliguen-Problem: Ein gegebener Teilgraph der &3ek kann in
polynomieller Zeit auivollstandigkeituberpiift werden

e Erf Ullbarkeitsproblem: Man kann in polynomieller Zeit testen,
ob einegegebene Belegung der Variablen eine Formellkerf

e Multiprozessor-Scheduling
Man kann in polynomieller Zeit testen, ob eigegebene Verteilung von
Prozessen ein Ressourcenlimit eatth

e Binpacking: Man kann in polynomieller Zeit testen, ob eine
gegebene Verteilung der Gegetrsdle ink Verpackungsbedkiter pafldt

e ZUsammengesetztheitstesMan kann in quadratischer Zeit
testen, ob eingegebene Zahl Teiler van(alsox keine Primzal)list
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WELCHES MODELL KANN DIESEN EFFEKT BESCHREIBEN? I

Der Zeitaufwand liegt in der Suche, nicht im Test
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WELCHES MODELL KANN DIESEN EFFEKT BESCHREIBEN? I

Der Zeitaufwand liegt in der Suche, nicht im Test

e Orakel-Turingmaschinen (Raten und Verifizieren)
1. Bei Eingabe vomw <X erzeugtOrakel einen bBsungsvorschlag
2. VerifiziererV Uberpift w, x deterministisch
OTM akzeptiertw, wenn es ein: mit w, z < L(V) gibt
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WELCHES MODELL KANN DIESEN EFFEKT BESCHREIBEN? I

Der Zeitaufwand liegt in der Suche, nicht im Test

e Orakel-Turingmaschinen (Raten und Verifizieren)
1. Bei Eingabe vom <X erzeugtOrakel einen bsungsvorschlag
2. \VerifiziererV Uberpiift w, x deterministisch
OTM akzeptiertw, wenn es eirr mit w, z < L(V') gibt

e Berechnungsaufwand einer OTMbel Eingabew
MaximaleRechenzeitir die PifungeinesLosungsvorschlagsif w
= Ein Schritt ir das Raten einerdsung

+ Konventionelle RechenzeitdefinitioiifUberpiifung vonw, z
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WELCHES MODELL KANN DIESEN EFFEKT BESCHREIBEN? I

Der Zeitaufwand liegt in der Suche, nicht im Test

e Orakel-Turingmaschinen (Raten und Verifizieren)
1. Bei Eingabe vom <X erzeugtOrakel einen bsungsvorschlag
2. \VerifiziererV Uberpiift w, x deterministisch
OTM akzeptiertw, wenn es eirr mit w, z < L(V') gibt

e Berechnungsaufwand einer OTMbel Eingabew
MaximaleRechenzeitir die PifungeinesLosungsvorschlagsif w
= Ein Schritt ir das Raten einerdsung

+ Konventionelle RechenzeitdefinitioiifUberpiifung vonw, z

e OTM Modell ist aquivalent zu NTMs 54.1
— NTM M akzeptiert, wenmin Losungswegum Erfolg tihrt
—ty(w) istmaximale Zahl der Konfiguratiofibergingebis Terminierung
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WELCHES MODELL KANN DIESEN EFFEKT BESCHREIBEN? I

Der Zeitaufwand liegt in der Suche, nicht im Test

e Orakel-Turingmaschinen (Raten und Verifizieren)
1. Bei Eingabe vom <X erzeugtOrakel einen bsungsvorschlag
2. \VerifiziererV Uberpiift w, x deterministisch
OTM akzeptiertw, wenn es eirr mit w, z < L(V') gibt

e Berechnungsaufwand einer OTMbel Eingabew
MaximaleRechenzeitir die PifungeinesLosungsvorschlagsif w
= Ein Schritt ir das Raten einerdsung

+ Konventionelle RechenzeitdefinitioiifUberpiifung vonw, z

e OTM Modell ist aquivalent zu NTMs 54.1
— NTM M akzeptiert, wenmin Losungswegum Erfolg tihrt
—ty(w) istmaximale Zahl der Konfiguratiofibergingebis Terminierung

e Polynomielle “Losung” vieler schwerer Probleme
— Aber: deterministische Simulation von OTMs/NTM&m& exponentiell
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KOMPLEXITAT VON SPRACHEN / PROBLEMEN |

e Zeitkomplexitat: (deterministisch & nichtdeterministisch)
— Eine Sprachd. hat deterministische Zeitkomplexitt O(f),
falls es eine DTMM mit T, c O(f) und L = L(M) gibt

— L hat nichtdeterministische Zeitkomplexitat O( f), falls
es eine NTMM (oder eine OTM) mitl,; cO(f) und L = L(M) gibt

—TIME( f) ={L|L hatdeterministische ZeitkompleattO(f)}
NTIME( f) = {L | L hat nichtdeterministische ZeitkomplexitO(f)}
— Statt “Sprache L” wird oft auch “Problem P” oder “Menge M” benutzt
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KOMPLEXITAT VON SPRACHEN / PROBLEMEN |

e Zeitkomplexitat: (deterministisch & nichtdeterministisch)
— Eine Sprachd. hat deterministische Zeitkomplexitt O(f),
falls es eine DTMM mit T, c O(f) und L = L(M) gibt
— L hat nichtdeterministische Zeitkomplexitat O( f), falls
es eine NTMM (oder eine OTM) mitl,; cO(f) und L = L(M) gibt
—TIME( f) ={L|L hat deterministische Zeitkomple&ttO(f)}
NTIME( f) ={L | L hat nichtdeterministische ZeitkomplexitO(f)}
— Statt “Sprache L” wird oft auch “Problem P” oder “Menge M” benutzt

e Platzkomplexitat
— L hat (nicht-)deterministische Platzkomplexitt O( f), falls
L = L(M) fur eine DTM (bzw. NTM oder OTMWM mit S;; € O(f)

SPACE(f) ={L|L hatPlatzkomplexé@tO(f)}
NSPACE(f) = {L | L hat nichtdeterministische PlatzkompléiO( f)}

Begriffe flr abstrakte Algorithmen analog
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WICHTIGE KOMPLEXITATSKLASSEN I

o P =, TIME(n*)
— Klasse dem polynomieller Zeit & effizient) losbarerProbleme
— z.B. Arithmetische Operationen, Sortieren, Matrixnplikation, . ..
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WICHTIGE KOMPLEXITATSKLASSEN I

o P =, TIME(n*)
— Klasse dem polynomieller Zeit & effizient) losbarerProbleme
— z.B. Arithmetische Operationen, Sortieren, Matrixnplikation, . ..

o NP =|J, NTIME(n*)
— Nichtdeterministisch in polynomieller Zeib$bareProbleme
—z.B. TSP, CLIQUE, SAT, Multiprozessor-Scheduling, Biokiag, ...
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WICHTIGE KOMPLEXITATSKLASSEN I

o P =J, TIME(n*)
— Klasse dem polynomieller Zeit & effizient) losbarerProbleme
— z.B. Arithmetische Operationen, Sortieren, Matrixnplikation, . ..

o NP =, NTIME(nk)
— Nichtdeterministisch in polynomieller Zeib$bareProbleme
—z.B. TSP, CLIQUE, SAT, Multiprozessor-Scheduling, Biokiag, ...

e Weitere Klassen und ihre Hierarchie
LOGSPACE c NLOGSPACE

PcNP < PSPACE=NPSPACE

¢ EXPTIMECNEXPTIME ¢ EXPSPACFE c...
— Es wird vermutet, daf3 alle Inklusionen echt sind

1M

Probleme in P sind effizient losbar (handhabbar)
Was wissen wirliber Probleme in NP ?
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DAS P-NP PROBLEM I

Sind NP Probleme effizient bsbar?
e Gilt P=NP oder PANP ?

— Eines der wichtigsten offenen Probleme der Tl
— Seit mehr als 30 Jahren ungak| noglicherweise uridsbar
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DAS P-NP PROBLEM I

Sind NP Probleme effizient bsbar?
e Gilt P=NP oder PANP ?

— Eines der wichtigsten offenen Probleme der Tl
— Seit mehr als 30 Jahren ungak| noglicherweise uridsbar

e Mehr als 1000 algorithmische Probleme betroffen
— Suclprobleme (Travelling Salesman, ...)
— Reihenfolgaprobleme (Scheduling, Binpacking, ...)
— Grapheprobleme (Clique, Vertex cover, ...) + Operations Research
— LogischeProbleme (Eiifillbarkett,. . . )— Model Checking, Hardwareverifikation
— Zahlerprobleme (Primfaktorisierung, ...) + Kryptographie, IT Sicherheit
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DAS P-NP PROBLEM I

Sind NP Probleme effizient bsbar?
e Gilt P=NP oder PANP ?

— Eines der wichtigsten offenen Probleme der Tl
— Seit mehr als 30 Jahren ungak| noglicherweise uridsbar

e Mehr als 1000 algorithmische Probleme betroffen
— Suclprobleme (Travelling Salesman, ...)
— Reihenfolgaprobleme (Scheduling, Binpacking, ...)
— Grapheprobleme (Clique, Vertex cover, ...) + Operations Research
— LogischeProbleme (Eiifillbarkett,. . . )— Model Checking, Hardwareverifikation
— Zahlerprobleme (Primfaktorisierung, ...) + Kryptographie, IT Sicherheit

e Indizien sprechen gegerP=N"P
— Zu viele N'P-Problemeohne bekannte polynomielledsung
— Uber1000&aquivalente Problemia ‘schwerster Teilklasse’ voN/ P
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WIE ANALYSIERT MAN “P=N"P ODER PH#ANP”’? I

e Untersuche die “schwierigsten”A/P-Probleme
— Kann man eines davon effizieritden?
— Wennja, dann giltP=N"P
— Wennnein, dann gibt es ein Beispielif P#N P
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WIE ANALYSIERT MAN “P=N"P ODER PH#ANP”’? I

e Untersuche die “schwierigsten” A/ P-Probleme
— Kann man eines davon effizieritden?
— Wennja, dann giltP=N"P
— Wennnein, dann gibt es ein Beispielif P#N P

e Was heil3t “L ist schwierigstesN/P-Problem™?
— Jedes andet® P-ProblemL’ ist nicht schwerer alg
— Losungeniir L konntenin Losungeniir L' umgewandelt werden
— Transformation der isungen muf3 effizient sein
— Entsprichfunktionaler Reduzierbarkemit Laufzeitbedingungen
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WIE ANALYSIERT MAN “P=N"P ODER PH#ANP”’? I

e Untersuche die “schwierigsten” A/ P-Probleme
— Kann man eines davon effizieritden?
— Wennja, dann giltP=N"P
— Wennnein, dann gibt es ein Beispielif P#N P

e Was heil3t “L ist schwierigstesN/P-Problem™?
— Jedes andet® P-ProblemL’ ist nicht schwerer alg
— Losungeniir L konntenin Losungeniir L' umgewandelt werden
— Transformation der isungen muf3 effizient sein
— Entsprichfunktionaler Reduzierbarkemit Laufzeitbedingungen

e Formales Konzept: Polynomielle Reduzierbarkeit
— L'<,L (L’ polynomiell reduzierbar auf L), falls L'=f~'(L)
fur eine totalein polynomieller Zeit berechenbaFaunktion f

f transformiert Eingabem< L' in f(z) € L, aber das bsungsverfahreriif L rickwarts(!) aufL’
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POLYNOMIELLE REDUKTION AUF (GRAPHENPROBLEMEN I

e Cliguen Problem
— Gegeben ein Graphl = (V, E') der GdR3en und eine Zahk<|V|

— Gibt es InGG eine Clique (vollsindig verbundene
Knotenmengéd/’'cV) der Mindestgol3ek?

CLIQUE ={ (G,k) | G=(V, FE) Graphr (3V.cV. |V.|>k
r V. Clique inG) }
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POLYNOMIELLE REDUKTION AUF (GRAPHENPROBLEMEN I

e Cliguen Problem
— Gegeben ein Graphl = (V, E') der GdR3en und eine Zahk<|V|

— Gibt es InGG eine Clique (vollsindig verbundene
Knotenmengéd/’'cV) der Mindestgol3ek?

CLIQUE ={ (G,k) | G=(V, E) Graphr (3V.cV. |V.|>k
r V. Clique inG) }
e \Vertex Cover Problem

— Gegeben ein Graph = (V, E') der Gl3en und eine Zahk<|V|
— Gibt es eine Teilmeng&’cV mit hochsteng: Elementen,

so dal3 aus jeder Kante (4 mindestens eine Ecke i liegt?
VC={(G, k)| GGraphn @V'<V.|V'|<k
» V' Knoterilberdeckung voir) }

Probleme sind aufeinander reduzierbar
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REDUZIERBARKEIT: CLIQUE <, VERTEX COVER I

e Analyse der Eigenschaften
V.ist Clique inG = (V, F)

< Yo, v’ eV v = {v,v'} e E (Definition)
s V{u,v'}¢E. vA = veV. v u' ¢V, (Kontraposition)
= V{U, U’} eFEC ve V—VC v v e V—VC (Positive Formulierung)

< V=V, Knoterilberdeckung des Komplementgrapli¢n= (V, E°)
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REDUZIERBARKEIT: CLIQUE <, VERTEX COVER I

e Analyse der Eigenschaften
V.ist Clique inG = (V, F)

< Yo, v’ eV v = {v,v'} e E (Definition)
s V{u,v'}¢E. vA = veV. v u' ¢V, (Kontraposition)
= V{U, U’} eFEC ve V—VC v v e V—VC (Positive Formulierung)

< V=V, Knoterilberdeckung des Komplementgrapli¢n= (V, E°)

e Transformation der Probleme
Wahlef(G, k) .= (G, |V|—k)
Dann istf in polynomieller ZeitO(|V]?) berechenbannd es gilt
(G,k)eCLIQUE
< G hat CliqueV, der Mindestgol3ek
& G hat Knoterniiberdeckund”’ = V —V, der Maximalgdl3e|V |—k
s (G |V |=k)eVC
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REDUZIERBARKEIT: CLIQUE <, VERTEX COVER I

e Analyse der Eigenschaften
V.ist Clique inG = (V, F)

< Yo, v’ eV v = {v,v'} e E (Definition)
s V{u,v'}¢E. vA = veV. v u' ¢V, (Kontraposition)
= V{U, U’} eFEC ve V—VC v v e V—VC (Positive Formulierung)

< V=V, Knoterilberdeckung des Komplementgrapli¢n= (V, E°)

e Transformation der Probleme

Wahlef(G, k) .= (G, |V|—k)

Dann istf in polynomieller ZeitO(|V]?) berechenbannd es gilt
(G,k)eCLIQUE

< G hat CliqueV, der Mindestgol3ek

& G hat Knoterniiberdeckund”’ = V —V, der Maximalgdl3e|V |—k

s (G |V |=k)eVC

also CLIQUE = f~1(vVC) V
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ENTSCHEIDUNG, BERECHNUNG ODER OPTIMIERUNG?

PROBLEMVARIANTEN SIND GEGENSEITIG*REDUZIERBAR’
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ENTSCHEIDUNG, BERECHNUNG ODER OPTIMIERUNG?

PROBLEMVARIANTEN SIND GEGENSEITIG*REDUZIERBAR’

e L 0se Optimierungsproblem mit Entscheidung
CLIQUE,,: Bestimme die Gif3ek einer maximalen Clique i6r
— Beginne mitk := |V/| und teste ob es ity = (V, ') einek-Clique gibt
— Reduzieré; bis der Test erfolgreich istnd gebé,,; := £k aus
— Zusatzaufwand linear i1/
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ENTSCHEIDUNG, BERECHNUNG ODER OPTIMIERUNG?
PROBLEMVARIANTEN SIND GEGENSEITIG*REDUZIERBAR”

e L 0se Optimierungsproblem mit Entscheidung
CLIQUE,,: Bestimme die Gif3ek einer maximalen Clique i6r
— Beginne mitk := |V/| und teste ob es ity = (V, ') einek-Clique gibt
— Reduzieré; bis der Test erfolgreich istnd gebé,,; := £k aus
— Zusatzaufwand linear i1/

¢ L 0se Berechnungsproblem mit Optimierung
CLIQU E5: Bestimme eine Cligu€<G mit maximaler Gol3ek
— Bestimmek,,; fur G und beginne mitz, := £
— Wahle Kante: € £ und teste, ob eis (V, E.—{e}) einek,,-Cliquegibt
- Ist dies der Fall, so setzé. .= E.—{e}
— Wiederhole dies iterativif alle Kanten aug’
— Das Endergebnif, und die zugebrrigen Knoten bilden di&,,-Clique
— Zusatzaufwand linear if¥|
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ENTSCHEIDUNG, BERECHNUNG ODER OPTIMIERUNG?
PROBLEMVARIANTEN SIND GEGENSEITIG“REDUZIERBAR"

e L 0se Optimierungsproblem mit Entscheidung
CLIQUE,,: Bestimme die Gif3ek einer maximalen Clique i6r
— Beginne mitk := |V/| und teste ob es ity = (V, ') einek-Clique gibt
— Reduzieré; bis der Test erfolgreich istnd gebé,,; := £k aus
— Zusatzaufwand linear i1/

¢ L 0se Berechnungsproblem mit Optimierung
CLIQU E5: Bestimme eine Cligu€<G mit maximaler Gol3ek
— Bestimmek,,; fur G und beginne mitz, := £
— Wahle Kante: € £ und teste, ob eis (V, E.—{e}) einek,,-Cliquegibt
- Ist dies der Fall, so setzé. .= E.—{e}
— Wiederhole dies iterativif alle Kanten aug’
— Das Endergebnif, und die zugebrrigen Knoten bilden di&,,-Clique
— Zusatzaufwand linear if¥|

Es reicht, Entscheidungsprobleme zu analysieren
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NP-VOLLSTANDIGKEIT I

e Reduzierbarkeit bedeutet geringere Komplexiat
—L<, L' AL'eP = LeP
—L<, L’ N\L'eNP = LeNP
Bewels analog zu allgemeiner Reduzierbarkeit:
~x, (@)l & wel & f@)el  x,(f@)=1 & (x,°f)(@)=1
—X,,©f istin polynomieller Zeit berechenbavenn diesir y , gilt
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NP-VOLLSTANDIGKEIT I

e Reduzierbarkeit bedeutet geringere Komplexiat
—L<, L' AL'eP = LeP
—L<, L’ N\L'eNP = LeNP
Bewels analog zu allgemeiner Reduzierbarkeit:
~x, (@)l & wel & f@)el  x,(f@)=1 & (x,°f)(@)=1
—X,,©f istin polynomieller Zeit berechenbavenn diesir y , gilt

e N'P-hart: nicht leichter als NP
— L’ ist N"P-hart, genau dann wenh<,L’ fur alle L e NP gilt
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NP-VOLLSTANDIGKEIT I

e Reduzierbarkeit bedeutet geringere Komplexiat
—L<, L' AL'eP = LeP
—L<, L’ N\L'eNP = LeNP
Bewels analog zu allgemeiner Reduzierbarkeit:
~x, (@)l & wel & f@)el  x,(f@)=1 & (x,°f)(@)=1
—X,,©f istin polynomieller Zeit berechenbavenn diesir y , gilt

e N'P-hart: nicht leichter als NP
— L’ ist N"P-hart, genau dann wenh<,L’ fur alle L e NP gilt

o NP-vollstandig: schwierigste Teilklassén NP
— L' ist N"P-vollstandig, wennL’ N'P-hartund L' e N'P
— Schreibweisel. e N'PC

THEORETISCHEINFORMATIK Il §6.2: 12 DAS P-NP PROBLEM




KONSEQUENZEN VON NP-VOLLSTANDIGKEIT I

e Alle NP-vollstandigen Probleme sindaquivalent
—L,L'e NPC = L'<,L n L, L’
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KONSEQUENZEN VON NP-VOLLSTANDIGKEIT I

e Alle NP-vollstandigen Probleme sindaquivalent
—L,L'e NPC = L'<,L n L, L’

o NP-vollstandige Probleme entscheidenP = NP’

—P=NP < ALeNPC.LecP & VLeNPC.LecP
Ist P=N"P dann sindcalle N"P-vollstandigen Probleme i®

—PANP < ILeNPC.Le¢P < VLeNPC.LeP
Ist P£NP dann sindalle N"P-vollstandigen Probleme nicht iR
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KONSEQUENZEN VON NP-VOLLSTANDIGKEIT I

e Alle NP-vollstandigen Probleme sindaquivalent
—L,L'e NPC = L'<,L n L, L’

o NP-vollstandige Probleme entscheidenP = NP’

—P=NP < ALeNPC.LecP & VLeNPC.LecP
Ist P=N"P dann sindcalle N"P-vollstandigen Probleme i®

—PANP < ILeNPC.Le¢P < VLeNPC.LeP
Ist P£NP dann sindalle N"P-vollstandigen Probleme nicht iR

o N P-Vollstandigkeit ist leicht nachweisbar, wenn ein
N P-vollstandiges Problem bekannt ist
—LeNPC & LGN’PAEIL’GNPC.L’SPL
—LeNPC & AL eNPC.L'<,L rn L, L/

N P-Vollstandigkeit muR einmal explizit gezeigt werden
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WIE ZEIGT MAN NP-VOLLSTANDIGKEIT? I

BeweiseN P-Vollstandigkeit explizit fir eine SpracheL
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WIE ZEIGT MAN NP-VOLLSTANDIGKEIT? I

BeweiseN P-Vollstandigkeit explizit fir eine SpracheL

e Codiere Berechnungen beliebiger NTMs inL
— Codierung soll zu Sprachiegelbren, wenn Maschiné/ akzeptiert
— Codierung soll nicht z geloren, wenn\/ nicht akzeptiert
— Codierung ‘polynomieller NTMs’ mul3 in polynomieller Zgjeschehen
Damit ist L(M )<, L fur jede polynomielle NTMV/, d.h. L ist N"P-hart
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WIE ZEIGT MAN NP-VOLLSTANDIGKEIT? I
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WIE ZEIGT MAN NP-VOLLSTANDIGKEIT? I

BeweiseN P-Vollstandigkeit explizit fir eine SpracheL

e Codiere Berechnungen beliebiger NTMs inL
— Codierung soll zu Sprachiegelbren, wenn Maschiné/ akzeptiert
— Codierung soll nicht z geloren, wenn\/ nicht akzeptiert
— Codierung ‘polynomieller NTMs’ mul3 in polynomieller Zgjeschehen
Damit ist L(M )<, L fur jede polynomielle NTMV/, d.h. L ist N"P-hart

e Sprache L muR selbst inA/P liegen
— Ergibt zusammen mit dem obigen diéP-\ollstandigkeit vonL

¢ \Welches Sprache ist ausdrucksstark genug?
— Idee: codiere riglicheZustand&bergange durch logische Formeln

— ProblemstellungKonnen Zustandsergnge so kombiniert werden,
daf} eine terminierende Berechnung codiert wird?

— Erfullbarkeitsproblem der (Aussagen-)logik ist Kanditiat N/ PC
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DAS ERFULLBARKEITSPROBLEM I

Ist eine aussagenlogische Formel in KNF edilbar?

Gegebenn Klauselnk;, .., k,, Ubern Variablenzy, .., x,,. Gibt es eine
Belegunguy, .., a, {0, 1} der Variablenz;, welche alle Klauseln eiiflt?

e Klausel Uber den Variablen 1, ..z,
— Disjunktion einigelL_iteraleder Formz; bzw. z;

e Belegungay, ..., an € {0, 1} erflllt Klausel k;
— Auswertung vork; untera, ..., a,, ergibt den Booleschen Wert

e SAT ={kq,..km | k; KlauselUber x1,..xp
A (Faq,..an €{0,1}.
Vj<m.aq,..an erfillt k;)}

Codierbar als Teilmenge der Sprache der Aussagenlogik
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BEISPIELE VON FORMELN IN KNF I

(T1VvE2) A (TIVT2IVT3) A T3
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BEISPIELE VON FORMELN IN KNF I

(x1Vvax2) A (L1 VIX2VE3) A T3 erfilllbar
— Setzer;=0, =1, x; beliebig z.B. x1=0
— Auswertungi0+1) * (0+1+0) * 0= (14+1) * (0+-0+1) x 1=1* 1% 1=1
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r1 N 1 nicht erfillbar
— Jede Belegung ergibt den Wert O

(x1Vvax2) A (T1VE2) erfullbar, Belegung: (1,0)
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(x1Vvax2) A (T1VE2) erfullbar, Belegung: (1,0)

(T1vE2) A (T1VEZ) A (TTVE2) A (T1VT2)
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BEISPIELE VON FORMELN IN KNF I

(x1Vvax2) A (L1 VIX2VE3) A T3 erfilllbar
— Setzer;=0, =1, x; beliebig z.B. x1=0
— Auswertungi0+1) * (0+1+0) * 0= (14+1) * (0+-0+1) x 1=1* 1% 1=1

r1 N 1 nicht erfillbar
— Jede Belegung ergibt den Wert O

(x1Vvax2) A (T1VE2) erfullbar, Belegung: (1,0)

(T1vE2) A (T1VE2) A (T1VE2) A (T1VT2)
nicht ertullbar

(x1vE2VaE3) A (TTVE2VEL) A (TTVE2VE3)
erfullbar, Belegung: (1,1,0,0)
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LLOSUNGEN FUR DAS ERFULLBARKEITSPROBLEM I

SAT ={ky..k,| k; Klauseluberzy..z, A Ja;y..a, €{0,1}.a1..a, erflllt ky..k,,}
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LLOSUNGEN FUR DAS ERFULLBARKEITSPROBLEM I

SAT ={ky..k,| k; Klauseluberz;..z, » Jay..a, €{0,1}.a;..a, erfullt k;..k,,}

e Deterministische Losung

— Werte Klauselrur alle noglichen Belegungen der Variablens
bis erfillende Belegung gefunden ist

— Es gibt2"” moglichen Belegungewon x4, ..z,
— Auswertung lineam Grof3e der FormeD(m x n)
— Laufzeitistin O(2")
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LLOSUNGEN FUR DAS ERFULLBARKEITSPROBLEM I

SAT ={ky..k,| k; Klauseluberz;..z, » Jay..a, €{0,1}.a;..a, erfullt k;..k,,}

e Deterministische Losung

— Werte Klauselrur alle noglichen Belegungen der Variablens
bis erfillende Belegung gefunden ist

— Es gibt2"” moglichen Belegungewon x4, ..z,
— Auswertung lineam Grof3e der FormeD(m x n)
— Laufzeitistin O(2")

e Nichtdeterministisch: Raten und Verifizieren
— Orakelerzeugt erfillende Belegungler Variablen (falls es eine gibt)
— Prufe Belegungdurch Auswertung der Formel polynomieller Zeit

U
SAT e NP
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SAT 1ST N'P-VOLLSTANDIG (SATZ VON COOK) I

e GegebenNTM M, die in polynomieller Zeit terminiert
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SAT 1ST N'P-VOLLSTANDIG (SATZ VON COOK) I

e GegebenNTM M, die in polynomieller Zeit terminiert

e Ziel: Codiere Berechnung vonM bei Eingabew durch
KNF-Formel, die erfullbar ist, g.d.w. w € L(M)

— Codierung muf3 in polynomieller Z€(telativ zu|w|) berechenbar sein
— Codierung darf von Kenntnisséiber (M ) abrangen
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SAT 1ST N'P-VOLLSTANDIG (SATZ VON COOK) I

e GegebenNTM M, die in polynomieller Zeit terminiert

e Ziel: Codiere Berechnung vonM bei Eingabew durch
KNF-Formel, die erfullbar ist, g.d.w. w € L(M)

— Codierung muf3 in polynomieller Z€(telativ zu|w|) berechenbar sein
— Codierung darf von Kenntnisséiber (M ) abrangen

¢ \/orgehen Beschreibe nogliche Konfigurationsiibergange
von M durch aussagenlogische Klauseln

— CodiereZustand, Kopfposition und Bandzellelrch Literale
— Es werden nupolynomiell viele Literale und Klauselberbtigt

— Formel isterfullbar, wenn Konfigurationgbergaingezu akzeptierender
Berechnung zusammengesetzt werdénrien
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SAT 1ST N'P-VOLLSTANDIG (SATZ VON COOK) I

e GegebenNTM M, die in polynomieller Zeit terminiert

e Ziel: Codiere Berechnung vonM bei Eingabew durch
KNF-Formel, die erfullbar ist, g.d.w. w € L(M)

— Codierung muf3 in polynomieller Z€(telativ zu|w|) berechenbar sein
— Codierung darf von Kenntnisséiber (M ) abrangen

¢ \/orgehen Beschreibe nogliche Konfigurationsiibergange
von M durch aussagenlogische Klauseln

— CodiereZustand, Kopfposition und Bandzellelrch Literale
— Es werden nupolynomiell viele Literale und Klauselberbtigt

— Formel isterfullbar, wenn Konfigurationgbergaingezu akzeptierender
Berechnung zusammengesetzt werdénrien

Aufwendiger Beweis mit sehr vielen Details
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SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,S AT fur jede Sprache L e N'P
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SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,S AT fur jede Sprache L e N'P

o L wird von NT' M M akzeptiert
- M = (Q’ 21 F’ 51 q0, B’ F) mit Q:{QO, ) Qk}’ F:{Xla ) Xm}
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SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,S AT fur jede Sprache L e N'P

o L wird von NT' M M akzeptiert
- M = (Q’ 21 F’ 51 q0, B’ F) mit Q:{QO, ) Qk}’ F:{Xla ) Xm}

e M zeitbeschiankt durch Polynom p(n)
—ty(w)<p(n) fur jedes Wortw € X* mit |w|=n
— Es sindgenaup(n) Berechnungsschrittals Formel zu codieren

0.B.d.A.: M ‘verharrt’ in den Endzusindenanstatt abzubrechen
d.h.(u,q,v) F (u,qv) fUrqe F
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SATZ VON COOK: GRUNDANNAHMEN I

Zeige L<,S AT fur jede Sprache L e N'P

o L wird von NT' M M akzeptiert
- M = (Q’ 21 F’ 51 q0, B’ F) mit QZ{QO) e Qk}’ F:{Xla e Xm}

e M zeitbeschiankt durch Polynom p(n)
—ty(w)<p(n) fur jedes Wortw € X* mit |w|=n
— Es sindgenaup(n) Berechnungsschrittals Formel zu codieren

0.B.d.A.: M ‘verharrt’ in den Endzusindenanstatt abzubrechen
d.h.(u,q,v) F (u,qv) fUrqe F

e M ist auch platzbeschankt durch p(n)

— M kann wahrend der Berechnumgaximalp(n) Bandzelleraufsuchen
0.B.d.A.: M arbeitet mithalbseitig unendlichem Band

Es reicht, genau die Bandzelleri..p(n) zu modellieren
—Schreibe Konfiguratiofi,q,v) als Stringugv B’ der Langep(n)+1
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungerbei Eingabew
— M startet imZustandg, und derKopf ist Uber Bandzelle O
— Anfangskonfiguration istyyw ..w,, BP(™)~(+1)
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e Anfangsbedingungerbei Eingabew
— M startet imZustandg, und derKopf ist Uber Bandzelle O
— Anfangskonfiguration istyyw ..w,, BP(™)~(+1)

e Ubergangsbedingungen
— Zu jedem Zeitpunkt steht der Kopf an einer Stelleund
verandert Bandinhalt und Zustand entsprechend der Tabellé von
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e Endbedingung
— Nachp(n) Schritten befindet sich/ in einemEndzustand e F
— Endkonfiguration hat die ForoX.. X; _1q; X1 1.. X ) flreiny
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e Anfangsbedingungerbei Eingabew
— M startet imZustandg, und derKopf ist Uber Bandzelle O
— Anfangskonfiguration istyyw ..w,, BP(™)~(+1)

e Ubergangsbedingungen
— Zu jedem Zeitpunkt steht der Kopf an einer Stelleund
verandert Bandinhalt und Zustand entsprechend der Tabellé von

e Endbedingung
— Nachp(n) Schritten befindet sich/ in einemEndzustand e F
— Endkonfiguration hat die ForoX.. X; _1q; X1 1.. X ) flreiny

e Randbedingungenflr eindeutiges Verhalten
— Zu jedem Zeitpunkt befindet sich\/ in genau einer Konfiguration
XO--Xj—quj+1--Xp(n)
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SATZ VON COOK: ZU CODIERENDE AUSSAGEN I

e Anfangsbedingungerbei Eingabew
— M startet imZustandg, und derKopf ist Uber Bandzelle O
— Anfangskonfiguration istyyw ..w,, BP(™)~(+1)

e Ubergangsbedingungen
— Zu jedem Zeitpunkt steht der Kopf an einer Stelleund
verandert Bandinhalt und Zustand entsprechend der Tabellé von

e Endbedingung
— Nachp(n) Schritten befindet sich/ in einemEndzustand e F
— Endkonfiguration hat die ForoX.. X; _1q; X1 1.. X ) flreiny

e Randbedingungenflr eindeutiges Verhalten
— Zu jedem Zeitpunkt befindet sich\/ in genau einer Konfiguration
XO--Xj—quj+1--Xp(n)

Summe der Aussagen codiert NTM-Berechnung
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D1E CODIERUNG UND IHRE KORREKTHEIT (SKIZZE)

e VerwendeKonfigurationsvariablen y; ; 4
“Nacht Schrittensteht an deii-ten Stelleder Konfiguration einA”
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D1E CODIERUNG UND IHRE KORREKTHEIT (SKIZZE)

e VerwendeKonfigurationsvariablen y; ; 4
“Nacht Schrittensteht an deii-ten Stelleder Konfiguration einA”

e Codiere Aussagen durch KNF-FormelnA, U, E, R
— Jede Teilformel ist in der Zei®(p(n)?) konstruierbar  (Details im Anhang)
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e Codiere Aussagen durch KNF-FormelnA, U, E, R
— Jede Teilformel ist in der Zei®(p(n)?) konstruierbar  (Details im Anhang)

o Setzea(M ,w) = AANUAEAR
— (M ,w) ist in KNF, da jede der Teilformeln ist in KNF
— (M ,w) ist in polynomieller Zeit konstruierbar
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e Codiere Aussagen durch KNF-FormelnA, U, E, R
— Jede Teilformel ist in der Zei®(p(n)?) konstruierbar  (Details im Anhang)

o Setzea(M ,w) = AANUAEAR
— (M ,w) ist in KNF, da jede der Teilformeln ist in KNF
— (M ,w) ist in polynomieller Zeit konstruierbar
—weLl = ao(M,w)eSAT
Furw < L gibt es eine akzeptierende Berechnung..,/<, ).
Setzey,,; 4:=1, falls A dasi-te Symbol vonk;, ist, v, 4:=0, sonst.
Per Konstruktion edllt dies die Formet (M ,w), alsoa(M,w)e SAT.
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D1E CODIERUNG UND IHRE KORREKTHEIT (SKIZZE)

e VerwendeKonfigurationsvariablen y; ; 4
“Nacht Schrittensteht an deii-ten Stelleder Konfiguration einA”

e Codiere Aussagen durch KNF-FormelnA, U, E, R
— Jede Teilformel ist in der Zei®(p(n)?) konstruierbar  (Details im Anhang)

o Setzea(M ,w) = AANUAEAR
— (M ,w) ist in KNF, da jede der Teilformeln ist in KNF

— (M ,w) ist in polynomieller Zeit konstruierbar
—weLl = ao(M,w)eSAT
Furw < L gibt es eine akzeptierende Berechnung..,/<, ).
Setzey,,; 4:=1, falls A dasi-te Symbol vonk;, ist, v, 4:=0, sonst.
Per Konstruktion eifllt dies die Formeb/(M ,w), alsoa(M ,w)e SAT.
—a(M,w)e SAT = welL
Ist (M ,w) erfilllbar, so kann mitJ die Belegung der Variablen in eine
KonfigurationsfolgeX, ..,k umgerechnet werden. Wegéngibt es
genau einsolche Konfigurationsfolge. Wegehund E reprasentiert diese
Konfigurationsfolge eine akzeptierende Berechnumgf Also gilt w e L.
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SATZ VON COOK: ZUSAMMENFASSUNG I

e Aufwendige Codierung von Berechnungen
— Formela/(M ,w) codiert Berechnung der NTM/ bel Eingabaw
— a(M,w) istin polynomieller Zeit berechenbdérelativ zu|w|)
—Esqitwe L(M) < a(M,w)eSAT
— Esfolgt L(M)<,SAT
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SATZ VON COOK: ZUSAMMENFASSUNG I

e Aufwendige Codierung von Berechnungen
— Formela/(M ,w) codiert Berechnung der NTM/ bel Eingabaw
— a(M,w) istin polynomieller Zeit berechenbdérelativ zu|w|)
—Esqitwe L(M) < a(M,w)eSAT
— Esfolgt L(M)<,SAT

e Konstruktion ist uniform f tr polynomielle NTMs
— Esfolgt LS, SAT fiurjedesL e NP

THEORETISCHEINFORMATIK Il §6.2: 22 DAS P-NP PROBLEM




SATZ VON COOK: ZUSAMMENFASSUNG I

e Aufwendige Codierung von Berechnungen
— Formela/(M ,w) codiert Berechnung der NTM/ bel Eingabaw
— a(M,w) istin polynomieller Zeit berechenbdérelativ zu|w|)
—Esqitwe L(M) < a(M,w)eSAT
— Esfolgt L(M)<,SAT

e Konstruktion ist uniform f tr polynomielle NTMs
— Esfolgt LS, SAT fiurjedesL e NP

e SAT ist selbst inNP

— Belegungen &nnen leicht als etlend tberpiift werden
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SATZ VON COOK: ZUSAMMENFASSUNG I

e Aufwendige Codierung von Berechnungen
— Formela/(M ,w) codiert Berechnung der NTM/ bel Eingabaw
— a(M,w) istin polynomieller Zeit berechenbdérelativ zu|w|)
—Esqitwe L(M) < a(M,w)eSAT
— Esfolgt L(M)<,SAT

e Konstruktion ist uniform f tr polynomielle NTMs
— Esfolgt LS, SAT fiurjedesL e NP

e SAT ist selbst inNP

— Belegungen &nnen leicht als etlend tberpiift werden

\
S AT ist N"P-vollstandig
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ANHANG

THEORETISCHEINFORMATIK Il §6.2: 23 DAS P-NP PROBLEM




DETAILS DER CODIERUNG: ANFANGSBEDINGUNGEN I

Anfangskonfiguration ist gowy..wy BP(™—(n+1)
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DETAILS DER CODIERUNG: ANFANGSBEDINGUNGEN I

Anfangskonfiguration ist gowy..wy BP(™—(n+1)

e VerwendeKonfigurationsvariablen y; ; 4
— Zeitt und Zellei sind Zahlen zwischen 0 undn)
— A ist ein Symbol au$’ oder ein Zustand(A<{X,, .., X,., ¢, ... @ })
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DETAILS DER CODIERUNG: ANFANGSBEDINGUNGEN I

Anfangskonfiguration ist gowy..wy BP(™—(n+1)

e VerwendeKonfigurationsvariablen y; ; 4
— Zeitt und Zellei sind Zahlen zwischen 0 undn)
— A ist ein Symbol au$’ oder ein Zustand(A<{X,, .., X,., ¢, ... @ })

e Codiere Anfangsbedingungen als FormeA mit
A = 90,0,qg0 N Y0,1,w1 N -+ AN YO,n,wn
N Yo,n+1,B N - N Yo,p(n),B
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e VerwendeKonfigurationsvariablen y; ; 4
— Zeitt und Zellei sind Zahlen zwischen 0 undn)
— A ist ein Symbol au$’ oder ein Zustand(A<{X,, .., X,., ¢, ... @ })

e Codiere Anfangsbedingungen als FormeA mit
A = 90,0,qg0 N Y0,1,w1 N -+ AN YO,n,wn
N Yo,n+1,B N - N Yo,p(n),B

e A istin KNF Rein konjunktive Formel
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DETAILS DER CODIERUNG: ANFANGSBEDINGUNGEN I

Anfangskonfiguration ist gowy..wy BP(™—(n+1)

e VerwendeKonfigurationsvariablen y; ; 4
— Zeitt und Zellei sind Zahlen zwischen 0 undn)
— A ist ein Symbol au$’ oder ein Zustand(A<{X,, .., X,., ¢, ... @ })

e Codiere Anfangsbedingungen als FormeA mit
A = 90,0,qg0 N Y0,1,w1 N -+ AN YO,n,wn
N Yo,n+1,B N - N Yo,p(n),B

e A istin KNF Rein konjunktive Formel

e Grole: (’)(p(n)) p(n)+1 Variablen
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DETAILS DER CODIERUNG: ANFANGSBEDINGUNGEN I

Anfangskonfiguration ist gowy..wy BP(™—(n+1)

e VerwendeKonfigurationsvariablen y; ; 4
— Zeitt und Zellei sind Zahlen zwischen 0 undn)
— A ist ein Symbol au$’ oder ein Zustand(A<{X,, .., X,., ¢, ... @ })

e Codiere Anfangsbedingungen als FormeA mit
A = 90,0,qg0 N Y0,1,w1 N -+ AN YO,n,wn
N Yo,n+1,B N - N Yo,p(n),B

e A istin KNF Rein konjunktive Formel
e Grole: (’)(p(n)) p(n)+1 Variablen

e Berechnungsaufwand:O(p(n)) Bestimmung vorp(n)
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DETAILS DER CODIERUNG: UBERGANGSBEDINGUNGEN

Konfigurationsubergange sind vertraglich mit
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DETAILS DER CODIERUNG: UBERGANGSBEDINGUNGEN

Konfigurationsubergange sind vertraglich mit

Definiere FormelnU(¢, 7) fur Zeit ¢ und Stelles

— Falls M an Stelle; steht, kann sich der Bereich-1..:+1 andern
(Yt,i—1,2z A Ytig N Yt i+1,X)
= (Yit+1,i—1p1 AN Yt+1,6,Z N Yi4+1,i41,Y7)
VoV (yt—|—1,i—1,pl N Yti+1,4,Z N yt—l—l,z’—i—l,Yl)
V (Ytt1,i-1,2 A Yt41,6,v] N yt—l—l,i—l—l,p’l)
\ZETENY (yt+1,z‘—1,Z N Yt+1,6,Y] A yt+1,z‘+1,p;)
fur jedesZ T, falls d(q, X) = {(p1, Y1, L),...(01, Y3, L), (P}, Y/, R),..,(p., Y, R)}
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DETAILS DER CODIERUNG: UBERGANGSBEDINGUNGEN

Konfigurationsubergange sind vertraglich mit

Definiere FormelnU(¢, 7) fur Zeit ¢ und Stelles

— Falls M an Stelle; steht, kann sich der Bereich-1..:+1 andern
(Yt,i—1,2z A Ytig N Yt i+1,X)
= (Yit+1,i—1p1 AN Yt+1,6,Z N Yi4+1,i41,Y7)
VoV (yt—|—1,i—1,pl N Yti+1,4,Z N yt—l—l,z’—i—l,Yl)
V (Ytt1,i-1,2 A Yt41,6,v] N yt—l—l,i—l—l,p’l)
\ZETENY (yt+1,z‘—1,Z N Yt+1,6,Y] A yt+1,z‘+1,p;)
fur jedesZ T, falls d(q, X) = {(p1, Y1, L),...(01, Y3, L), (P}, Y/, R),..,(p., Y, R)}

— Falls M nicht im Bereichi—1..:+1 steht, bleibt Stellé unveandert

(yt,i—l,qg NN Yti—1,q, N Ytige NN Ytiqe N Ytit+l,gg NN yt,i—l—l,qk)

= (yt,z’,Xl A yt+1,7:,X1) V.oV (yt,z’,Xm A yt—l—l,z’,Xm)
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DETAILS DER CODIERUNG: UBERGANGSBEDINGUNGEN (II)

Konfigurationstbergange sind vertraglich mit
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DETAILS DER CODIERUNG: UBERGANGSBEDINGUNGEN (II)

Konfigurationstbergange sind vertraglich mit

e Kombiniere Ubergangsbedingungen zu Formel
U= U(0,0) A..A U(0,p(n))

A U(p(n),0) A..A U(p(n),p(n))
Formeln werden zuvor in KNF transformiert (Standardveidai

THEORETISCHEINFORMATIK Il §6.2: 26 DAS P-NP PROBLEM




DETAILS DER CODIERUNG: UBERGANGSBEDINGUNGEN (II)

Konfigurationstbergange sind vertraglich mit

e Kombiniere Ubergangsbedingungen zu Formel
U= U(0,0) A..A U(0,p(n))
A U(p(n),0) A..A U(p(n),p(n))

Formeln werden zuvor in KNF transformiert (Standardveidai

eUistin KNF Alle U(t, i) wurden normalisiert
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DETAILS DER CODIERUNG: UBERGANGSBEDINGUNGEN (II)

Konfigurationstbergange sind vertraglich mit

e Kombiniere Ubergangsbedingungen zu Formel
U= U(0,0) A..A U(0,p(n))
A U(p(n),0) A..A U(p(n),p(n))

Formeln werden zuvor in KNF transformiert (Standardveidai
eUistin KNF Alle U(t, i) wurden normalisiert

e Grofe: O(p(n)z) p(n)* Komponentenformeln

Je Komponente nach Normalisierung maximalm * 32 + 3k = 2™ Symbole
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DETAILS DER CODIERUNG: UBERGANGSBEDINGUNGEN (II)

Konfigurationstbergange sind vertraglich mit

e Kombiniere Ubergangsbedingungen zu Formel
U= U(0,0) A..A U(0,p(n))

A U(p(n),0) A..A U(p(n),p(n))
Formeln werden zuvor in KNF transformiert (Standardveidai

eUistin KNF Alle U(t, i) wurden normalisiert

e Grofe: O(p(’n)z) p(n)* Komponentenformeln

Je Komponente nach Normalisierung maximalm * 3%7** + 3k « 2™ Symbole

e Berechnungsaufwand:©@ (p(n)?)
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DETAILS DER CODIERUNG: ENDBEDINGUNG I

Endkonfiguration hat Form Xo..X; _1q¢ X 41..Xp(p)
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DETAILS DER CODIERUNG: ENDBEDINGUNG I

Endkonfiguration hat Form Xo..X; _1q¢ X 41..Xp(p)

e SeiF={qr,..,qe}
Codiere Endbedingungen als FormelEZ mit

E= Ypn),0,qr V = V Yp(n),0,q¢)

M (yp(n),l,qr V.V yp(’n),l,qe)
\/ .

V- Upn),p(n)sar ¥V V Yp(n),p(n),qe)
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DETAILS DER CODIERUNG: ENDBEDINGUNG I

Endkonfiguration hat Form Xo..X; _1q¢ X 41..Xp(p)

e SeiF={qr,..,qe}
Codiere Endbedingungen als FormelEZ mit

E= Ypn),0,qr V = V Yp(n),0,q¢)

M (yp(n),l,qr V.V yp(’n),l,qe)
\/ .

V- Upn),p(n)sar ¥V V Yp(n),p(n),qe)

eistin KNF Einfache Klausel
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DETAILS DER CODIERUNG: ENDBEDINGUNG I

Endkonfiguration hat Form Xo..X; _1q¢ X 41..Xp(p)

e SeiF={qr,..,qe}
Codiere Endbedingungen als FormelEZ mit

E= Ypn),0,qr V = V Yp(n),0,q¢)

M (yp(n),l,qr V.V yp(’n),l,qe)
\/ .

V- Upn),p(n)sar ¥V V Yp(n),p(n),qe)

eistin KNF Einfache Klausel

e Grolie: (’)(p(n)) p(n) * (e—r) Variablen

THEORETISCHEINFORMATIK Il §6.2: 27 DAS P-NP PROBLEM




DETAILS DER CODIERUNG: ENDBEDINGUNG I

Endkonfiguration hat Form Xo..X; _1q¢ X 41..Xp(p)

e SeiF={qr,..,qe}
Codiere Endbedingungen als FormelEZ mit

E = (yp(n),O,qr ViV yp(n)909Qe)
\% (yp(n),l,qr VoV yp(n)919QG)

V

V Up(n),p(n).ar V -V Yp(n),p(n).ge)
eFistin KNF Einfache Klausel
e Grolie: (’)(p(n)) p(n) * (e—r) Variablen

e Berechnungsaufwand:O(p(n))
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DETAILS DER CODIERUNG: RANDBEDINGUNGEN I

19X j41--Xp(n)

Eindeutige Konfiguration Xg..X;_
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DETAILS DER CODIERUNG: RANDBEDINGUNGEN I

Eindeutige Konfiguration Xo..X;_19X;1..X,5)

e Codiere Randbedingungen als FormeR:

— Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
— Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
— Optimierungen raglich (“maximal eine Konfiguratidrreicht)
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DETAILS DER CODIERUNG: RANDBEDINGUNGEN I

Eindeutige Konfiguration Xo..X;_19X;1..X,5)

e Codiere Randbedingungen als FormeR:

— Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
— Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
— Optimierungen raglich (“maximal eine Konfiguratidrreicht)

R = 3(Y0,0,x15 5 Y0,0,q1) A -+ A (Upn),p(n),X15 ++s YUp(n),p(n),az)

A 3l(yoaoaql’ **9 yOvP(”)an) ANEEA 31(yp(n)909Q1’ **9 yp(n),p(n),qk)
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DETAILS DER CODIERUNG: RANDBEDINGUNGEN I

Eindeutige Konfiguration Xo..X;_19X;1..X,5)

e Codiere Randbedingungen als FormeR:
— Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
— Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
— Optimierungen raglich (“maximal eine Konfiguratidrreicht)
R = 3(Y0,0,x15 ++» Y0,0,g5) A -+ A (YUp(n),p(n), X1 ++> Yp(n),p(n),ai)
A 3(Y0,0,015 > Yo,p(n)sqr) A -+ A FYUp(n),0,a15 ++> YUp(n),p(n),ai)
Dabei stehtd (x4, .., x,,) fur “genau eines der; gilt’
(@1, s xi) = (T1v..vej) A (T1vT2) A A (T vE)

A\ (ZE’Q\/fg)/\../\(fg\/f]‘) ANTRA (f]‘_l\/f]‘)
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DETAILS DER CODIERUNG: RANDBEDINGUNGEN I

Eindeutige Konfiguration Xo..X;_19X;1..X,5)

e Codiere Randbedingungen als FormeR:
— Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
— Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
— Optimierungen raglich (“maximal eine Konfiguratidrreicht)
R = 3(Y0,0,x15 ++» Y0,0,g5) A -+ A (YUp(n),p(n), X1 ++> Yp(n),p(n),ai)
A 3(Y0,0,015 > Yo,p(n)sqr) A -+ A FYUp(n),0,a15 ++> YUp(n),p(n),ai)
Dabei stehtd (x4, .., x,,) fur “genau eines der; gilt’
(@1, s xi) = (T1v..vej) A (T1vT2) A A (T vE)
A (ZovT3) A A (Z2vEj) Awn (Tj—1 VT )

eRistin KNF Konjunktion von3 -Formeln
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DETAILS DER CODIERUNG: RANDBEDINGUNGEN I

Eindeutige Konfiguration Xo..X;_19X;1..X,5)

e Codiere Randbedingungen als FormeR:
— Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
— Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
— Optimierungen raglich (“maximal eine Konfiguratidrreicht)
R = 3(Y0,0,x15 ++» Y0,0,g5) A -+ A (YUp(n),p(n), X1 ++> Yp(n),p(n),ai)
A 3(Y0,0,015 > Yo,p(n)sqr) A -+ A FYUp(n),0,a15 ++> YUp(n),p(n),ai)
Dabei stehtd (x4, .., x,,) fur “genau eines der; gilt’
(@1, s xi) = (T1v..vej) A (T1vT2) A A (T vE)
A (ZovT3) A A (Z2vEj) Awn (Tj—1 VT )

eRistin KNF Konjunktion von3 -Formeln

e GroRe:O(p(n)?) p(n)? % (m+k)? + p(n) = (k % p(n))? Variablen
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DETAILS DER CODIERUNG: RANDBEDINGUNGEN I

Eindeutige Konfiguration Xo..X;_19X;1..X,5)

e Codiere Randbedingungen als FormeR:

— Zu jedem Zeitpunkt steht an jeder Stelle genau ein Symbol
— Zu jedem Zeitpunkt steht nur an einer Stelle ein Zustand
— Optimierungen raglich (“maximal eine Konfiguratidrreicht)

R = 3(Y0,0,x15 -+ Y0,0,0,) A -+ A I(YUp(n),p(n),X15 =s Yp(n),p(n)ai)
A 3(Y0,0,415 0> Yop(n)iar) A -+ A TWUp(n),0,a19 ++> Yp(n),p(n),ai,)

Dabei stehtd (x4, .., x,,) fur “genau eines der; gilt’

(@1, s xi) = (T1v..vej) A (T1vT2) A A (T vE)

A\ (ZE’Q\/fg)/\../\(fg\/f]‘) ANTRA (f]‘_l\/f]‘)

eRistin KNF Konjunktion von3 -Formeln
e GroRe:O(p(n)?) p(n)? % (m+k)? + p(n) = (k % p(n))? Variablen
e Berechnungsaufwand:O (p(n)?) Bestimmep(n)....
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