Institutionelle Rahmenbedingungen für den Einsatz von Virtual Reality als Lerntechnologie

13. September 2021

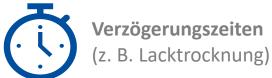
Andrea Schmitz, Zentralstelle für die Weiterbildung im Handwerk e. V.

Miriam Mulders, Universität Duisburg-Essen, Lehrstuhl für Mediendidaktik und Wissensmanagement

Handlungsorientiertes Lernen in der VR-Lackierwerkstatt (HandLeVR)

Ziele:

- Entwicklung einer VR-Anwendung für das handlungsorientierte Erlernen von verschiedenen Lackiertechniken und -verfahren
- VR-Anwendung dient als Untersuchungsgegenstand für
 - den Beitrag von VR-Technologien im handlungsorientierten Lernen,
 - die didaktische Gestaltung dieser Technologien, um Lernerfolge zu sichern, sowie
 - die Rahmenbedingungen für die strukturelle Einbindung von VR-Technologien in die berufliche Aus- und Weiterbildung


Bildungsanliegen: Herausforderungen in der Ausbildung zum*zur Fahrzeuglackierer*in

Umwelt verschmutzung

(z. B. Schadstoffentsorgung)

Kostenintensivität

(z. B. Kosten für Lacke + Werkstücke)

Lernszenario der VR-Lackierwerkstatt

Autorenwerkzeug

Erstellung der Lernaufgabe

Vorbereitung

VR-Trainingsanwendung

Durchführung des Lackierauftrags

Trainieren

Reflexionsanwendung

Nachbesprechung der Lernleistung

Nachbesprechen

Elemente der VR-Lackierwerkstatt

Aufgabensammlung nach mediendidaktischen Prinzipien aufbereitet

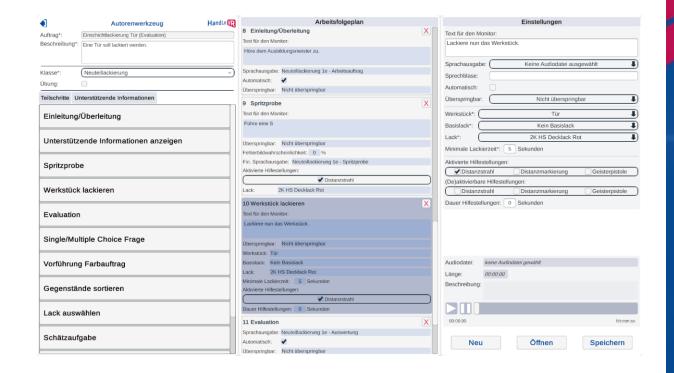
Unterstützende Informationen zur Vertiefung von Wissen

Variable Aufgabenbausteine zur Auffrischung von Wissenselementen

Bedarfsorientierte
Hilfestellungen bei der
Ausführung des

Lackierauftrags

Direktes Feedback zur Lackierleistung



Autorenwerkzeug

- computerbasierte Anwendung zur Erstellung und Bearbeitung von Lernaufgaben ohne Programmierkenntnisse
- Baukastensystem für die Elemente der VR-Lackierwerkstatt
- Elemente können per Drag-and-Drop im Arbeitsfolgeplan zusammengestellt und konfiguriert werden
- Verwendung von eigenen Texten, Audiospuren, Informationsmaterialien, Werkstücken und Lacken möglich

Reflexionsanwendung

- computerbasierte Anwendung zur Nachbesprechung der Lackierleistung
- Ansicht und Vergleich der in VR aufgenommenen Farbaufträge
- Auswertung der Erfolgskriterien während des Farbauftrags und Endresultat
- Ansicht der Schichtdicke (Heat Map), der Entfernung und des Lackierpfads auswählbar

Hardware-Anforderungen der VR-Lackierwerkstatt

- PC-gebundenes VR-Set (VR-Headset +

 Controller, ggf. externe Ortungssensoren), z. B. von
 HTC VIVE, Windows Mixed Reality oder Oculus
- Gaming-PC oder -Laptop mit Windows-Betriebssystem und hoher Grafikleistung
- Nachbau einer Lackierpistole aus dem 3D-Druck mit Sensoren für die Bedienelemente
- Simulation der Grundfunktionalitäten, wie z. B. die Betätigung des Hebels für die Öffnung der Lackdüse
- Kompatibilität mit einer Vielzahl von VR-Systemen
- verfügbar über den Einkauf bei der Ideenfertiger GmbH oder Selbstbau auf Basis von Anleitungen

Rahmenbedingungen der VR-Lackierwerkstatt

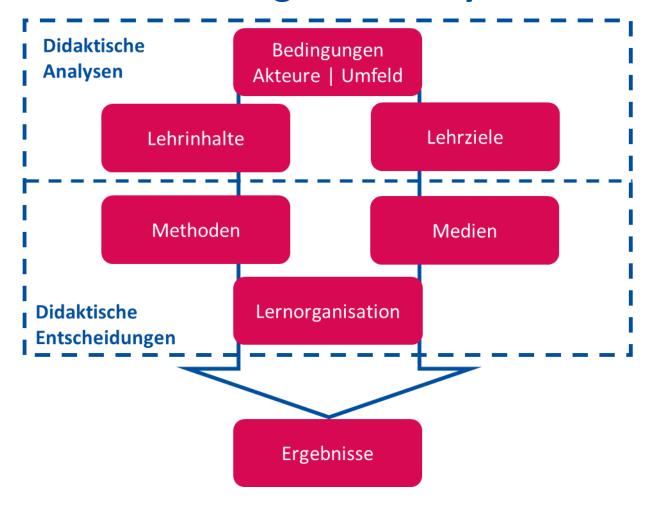
Niederschwellige **Bereitstellung**

- Veröffentlichung als Open **Educational Ressource**
- ungebundene VR-Hardware-Komponente
- Bauanleitung des Lackierpistolen-Controllers
- VR- und GUI-Entwicklungen in Unity

Flexible Einsatzmöglichkeiten

- Nutzung von Aufgabenbausteinen
- Anpassbarkeit der Trainingsanwendung
- Prüfung auf gewerkeübergreifende Potenziale und Einsatzgebiete

Befähigung


- Entwicklung von Anwendungsschulungen für die Lehrenden und Lernenden
- Entwicklung von allgemeinen Beratungsund Schulungskonzepten für den Einsatz von VR-Technologien in der Lehre

Grundlage und Methoden der Untersuchung

Grundlage der Analyse

Grundlage der Analyse

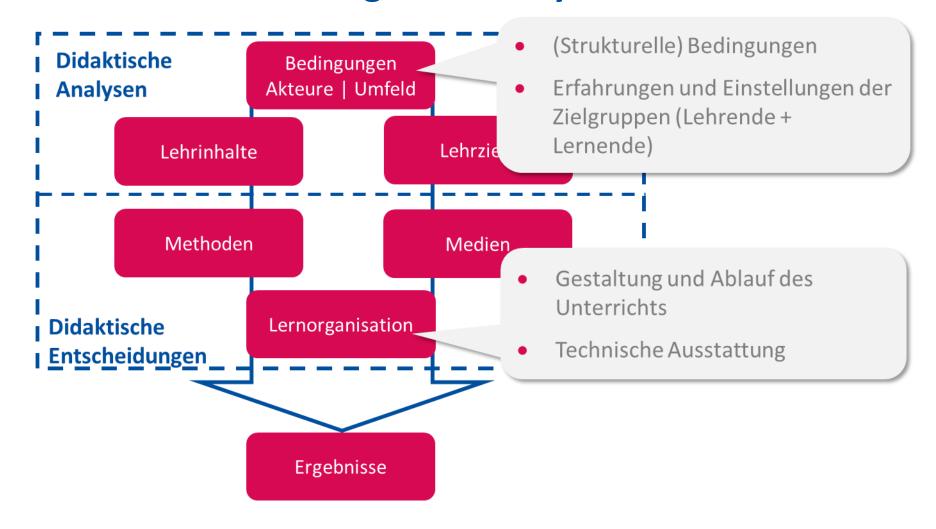
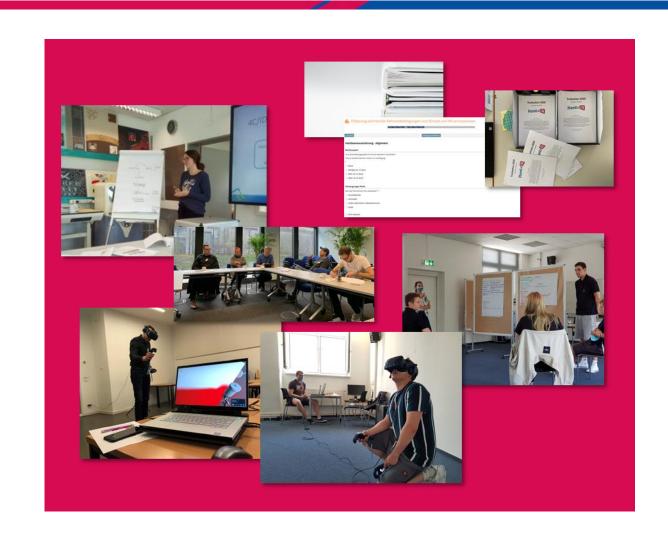


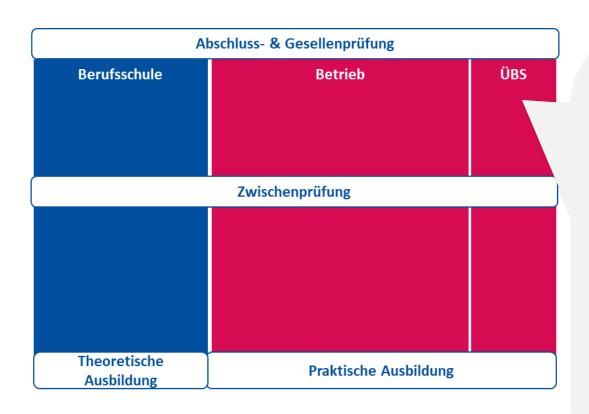
Abbildung: didaktische Analysen und Entscheidungen in der Mediendidaktik (entnommen aus Kerres, 2018, S. 229)


Untersuchungsmethoden

Untersuchte Dimension		Erhebungsquelle	
Bedingungen Akteure Umfeld	(Strukturelle) Bedingungen	Sichtung der gesetzlichen GrundlageStrukturen und Institutionen der	
	Erfahrungen und Einstellungen	handwerklichen AusbildungBefragung der Dozierenden und	
	der Zielgruppe	Auszubildenden zur Vorerfahrung, Technologieakzeptanz	
		 Leitfadeninterviews mit Dozierenden 	
Lernorganisation	Zeitliche, räumliche und soziale Organisation	 Sichtung Rahmenlehrpläne und Unterweisungspläne aus dem Bereich Fahrzeuglackierung 	
		 Befragung zur technischen Ausstattung 	
		 Leitfadeninterviews mit Dozierenden 	

Stichprobe

- Zeitraum der Datenerhebung: Juli 2019–
 Dezember 2020 (weitere Erhebungen geplant)
- Beteiligte Institutionen/Personen:
 - Einzelne Bildungsverantwortliche aus den Handwerkskammern (bundesweit)
 - Dozierende aus 7 Bildungszentren der Handwerkskammern aus Mittel-, Nord- und Ostdeutschland
 - Auszubildende der Mercedes-Benz Ludwigsfelde GmbH
- Teilnehmende insgesamt:
 - 11 Lehrkräfte/Bildungsverantwortliche
 - 14 Auszubildende



Rahmenbedingungen für den Einsatz der VR-Lernszenarien im Bildungskontext

(Strukturelle) Bedingungen

ÜBS = **überbetriebliche** Berufsbildungsstätte

- Vermittlung und Vertiefung von grundlegenden Qualifikationen in der überbetrieblichen Lehrlingsunterweisung (ÜLU)
- Ergänzung zur Ausbildung im Betrieb
- Träger der überbetrieblichen Ausbildungsstätten sind Kammern, Innungen, Kreishandwerkerschaften oder Fachverbände
- Finanziert durch Betriebe, Zuschüsse und Förderungen
- Ausgestaltung der ÜLU auf Basis flexibler und gestaltungsoffener Unterweisungspläne

Zielgruppenanalyse

Demografische Daten

Weitere Merkmale

Einstellungen und Erfahrungen

Lernmotivation und Vorwissen

Erfahrungen und Einstellungen innerhalb der Zielgruppen

Einflusskriterien zur Akzeptanz von VR-Lerntechnologien:

Image der Technologie

Relevanz

Authentizität

Ergebnisqualität

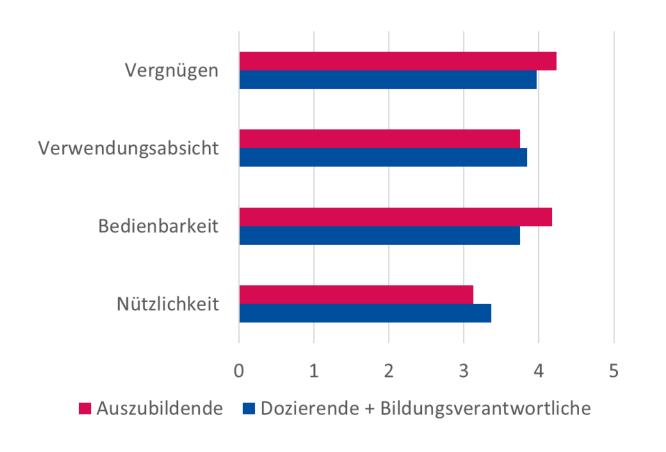
Vorerfahrung

Medienkompetenz

Motion Sickness

Vergnügen

Wahrgenommene Nützlichkeit

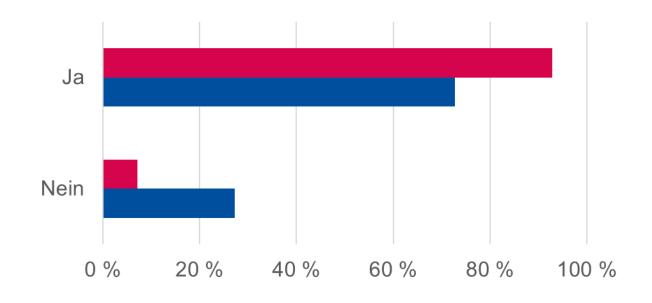

> Verwendungsabsicht

Wahrgenommene Bedienbarkeit Akzeptanz der Lerntechnologie

Unterstützende Bedingungen

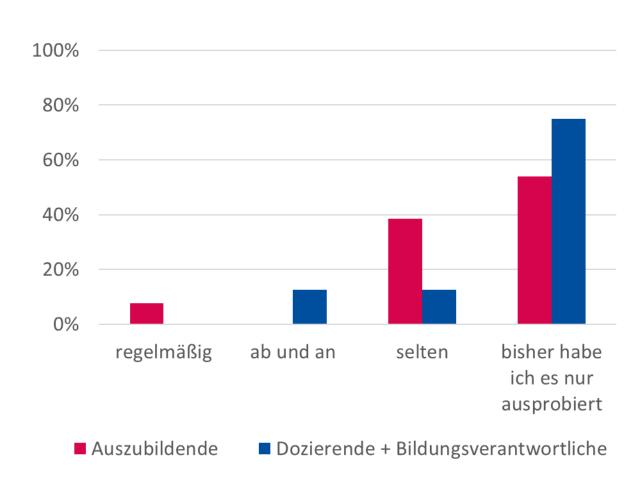
Technologieakzeptanz

Dozierende + Bildungsverantwortliche

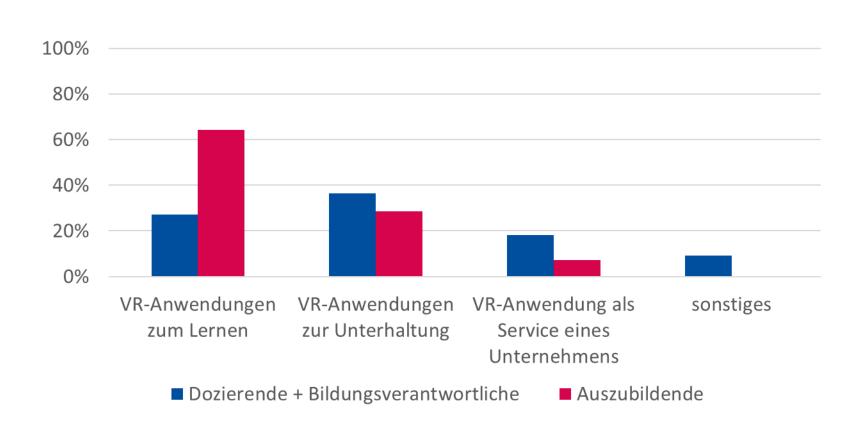

	M	SD
Nützlichkeit	3,36	0,76
Benutzerfreundlichkeit	3,75	0,65
Verwendungsabsicht	3,84	0,63
Vergnügen	3,97	0,77

Auszubildende

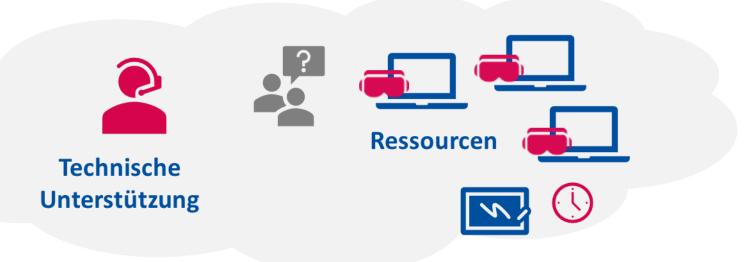
	M	SD
Nützlichkeit	3,13	0,60
Benutzerfreundlichkeit	4,18	0,70
Verwendungsabsicht	3,75	0,79
Vergnügen	4,24	0,62


Vorerfahrung mit VR

■ Auszubildende ■ Dozierende + Bildungsverantwortliche

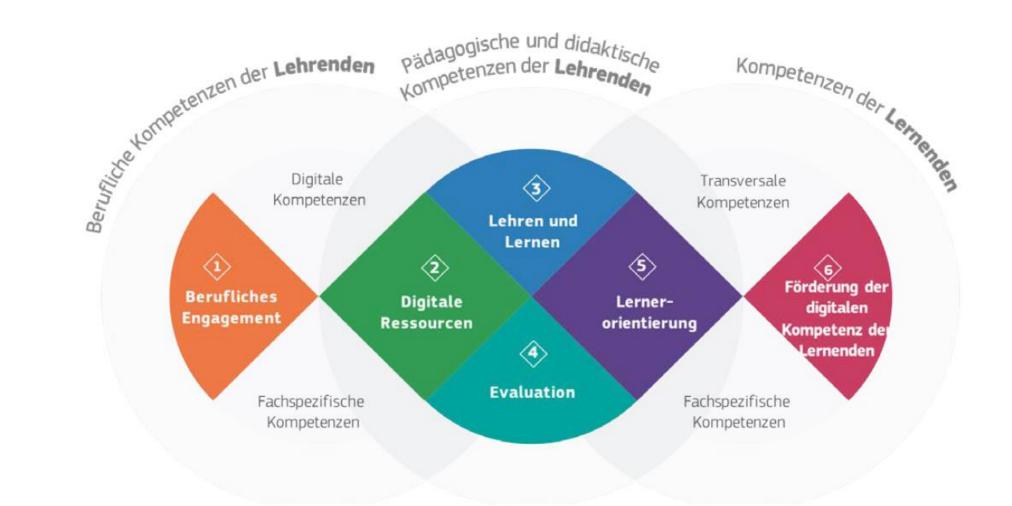


Vorerfahrung: Nutzungsintensität



Vorerfahrung: Art der Anwendung

Unterstützende Bedingungen



Entwicklung von
Unterstützungsressourcen
in Form von **Schulungskonzepten**und **Leitfäden** zur Nutzung und
Wartung des Lernsystems
notwendig

Rahmen des Befähigungskonzepts

Lernorganisation

Zielsetzung: Beschreibung der Organisation und Durchführung des Lernangebots sowie das Arrangement der Lernelemente

Zeitliche Organisation

- Zeitraum der Nutzung
- Gesamte Lernzeit des Angebotes
- Startpunkte (u. a. feste
 Termine, flexibler Einstieg)
- Geplante Anzahl der Durchgänge
- Taktung

Räumliche Organisation

- Präsenz- und Online-Phasen
- Lernorte und technische Ausstattung
- Durchführung von rechtssicheren Prüfungen

Soziale Organisation

- Individuelles Lernen, mit anderen lernen, in einer Gruppe oder Gemeinschaft lernen
- Betreuung der Teilnehmenden

Aktuelles Lernszenario in den Lehrgängen

Arbeitsausführung

Kontrolle + Dokumentation

Begleitung der ÜLU als Moderator und Coach

Vorstellung Kundenauftrag und Herstellung Wissensgrundlage Präsentation der Zwischenergebnisse

Bedarfsorientierte Vertiefung von fachlichen Themen Präsentation + Diskussion der Arbeitsergebnisse

Tag 1

Tag 5

Diskussion der VR-Lernszenarien

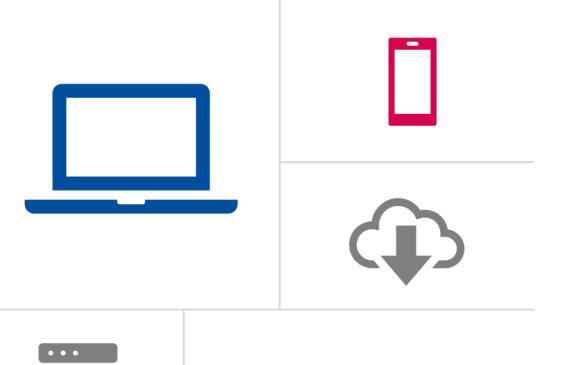
- Erarbeitung mit den beteiligten Dozierenden
- Ergänzende Nutzung der VR-Lackierwerkstatt zur Überbrückung von Wartezeiten
- Diskussion unterschiedlicher Einsatzszenarien:
 Einzelbearbeitung, in Kleingruppen oder vor der gesamten Gruppe

Bearbeitung im 2er Team als präferiertes
Szenario

Streaming der VR-Handlung erwünscht

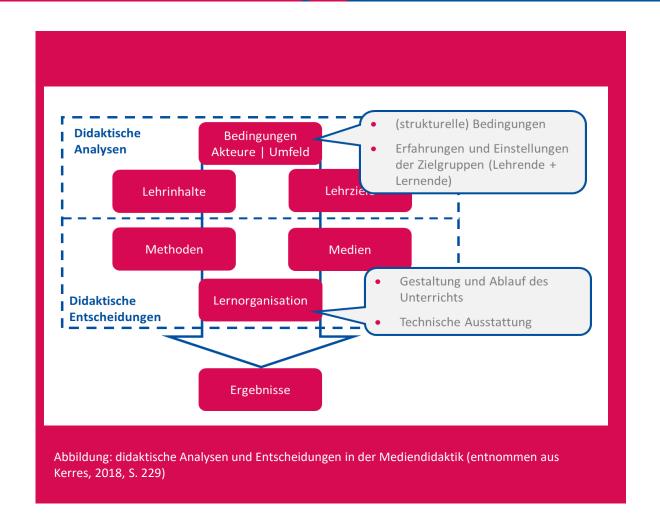
Lernszenario: Einzelbearbeitung

Lernszenario: Kleingruppe



Lernszenario: gesamte Gruppe

Allgemeine technische Ausstattung



- Technische Ausstattung in den Bildungszentren sehr heterogen
- Hardware-Nutzung von BYOD bis hin zu Rechnerpools für Auszubildende und Lehrkräfte
- Internetanbindung für Auszubildende und Lehrkräfte meist vorhanden
- Distribution des Lernangebotes über Apps, Cloud-Dienste oder lokale Server
- Lernmanagementsysteme größtenteils vorhanden
- VR-Equipment kaum vorhanden

Zusammenfassung

- Untersuchung der institutionellen Rahmenbedingungen auf Basis eines mediendidaktischen Vorgehensmodells
- Gute Ansatzpunkte für den Einsatz von VR-Lernszenarien in der ÜLU vorhanden
- Ausbau handlungsweisender Transferdokumente zu Datenschutz und Hygienestandards für die Nutzung der VR-Anwendungen
- Weitere Datenerhebungen als L\u00e4ngsschnittstudie notwendig

Vielen Dank für Ihre Aufmerksamkeit!

