

Von der AR-App zur Lernerfahrung

Entwurf eines formalen Rahmens zum Einsatz von Augmented Reality als Lehrwerkzeug

Heinrich Söbke – Michael Montag – Steffi Zander

Bauhaus-Universität Weimar

DelFI 2017 | Workshop VR/AR Learning | Chemnitz | 05.09.2017

Ausgangslage

Ein Fachgebiet

Technische Infrastruktur der Siedlungswasserwirtschaft

- Rohrleitungssysteme (Trinkwasser & Abwasser)
- Kleinkläranlagen

Eine kommerzielle, mobile AR-App (AugView)

- Anzeige von Leitungssystemen basierend auf GIS-Daten
- Einsatzgebiet: Erdarbeiten, Kanal- und Leitungsverlegungen

Ausgangslage (II)

Quelle: Augview Limited, 2016)

Ausgangslage (III)

(Forschungs-)Frage:

Wie lässt sich eine bereits existierende App aus didaktischer Sicht sinnvoll in der (Hochschul-)Lehre einsetzen?

Vorgehen

Literaturrecherche

- Eignung von AR als Lernmedium
- Konstruktiv: Untersuchung einschlägiger mediendidaktischer Richtlinien zur Erstellung von E-Learning-Angeboten auf Übertragbarkeit auf AR-Szenarien
- Analytisch: Review-Arbeiten zum Einsatz von AR in Bildungskontexten

Entwicklung

- Beschreibungsschema für AR in Bildungskontexten ("Educational AR Canvas")
- Examplarische Illustration des Educational AR-Canvas anhand des AugView-Beispiels

Weshalb eignet sich AR als Lernmedium?

- Stationäre AR (Beispiel: Bücher) vs. geobasierte/mobile AR (Beispiel: AugView)
- Wesentliche Eigenschaft von AR: Gemeinsame Darstellung von Objekt und zusätzlicher Information
- Kontiguitätsprinzip: Zeitlich und/oder räumlich zusammenhängende Darstellung von visuellen Informationen und zusätzlichen Texten (in der Kognitiven Theorie des Multimedialen Lernens)
- Unterstützung Situierten Lernens (Corral & Bitter 2014)
- Zeitliche und räumliche Verlaufskurven des Objekts (Herber 2012)
- Beispiel AR für Mathematik-Unterricht (Bujak et al. 2013)
 - physikalischer Aspekt: u.a. vermehrt stattfindende Interaktionen
 - kognitiver Aspekt: u.a. zeit- und raumbasierte Präsentation von abstrakten Konzepten
 - situativer Aspekt (s.o.)

Konstruktive Sicht (Mediendidaktik & Instructional Design)

- Nutzung von deutschsprachigen Standardwerken der Mediendidaktik und des Instructional Designs
- Ziel: Erstellung eines formalen Rahmens zum Entwurf eines didaktischen Kontexts

Was	Schwerpunkt
Leitfaden zur mediendidaktischen Konzeption (Kerres 2013)	Grundaspekte zielgerichteter Planung einer mediendidaktischen Konzeption
	 Ergebnisauswahl: Rahmen Akteure Lehrinhalte und Ziele Didaktische Methode Lernorganisation Medien

Konstruktive Sicht (II)

Was	Schwerpunkt
Gestaltungsempfehlungen für E- Learning-Angebote (Rey 2009)	Gestaltungsempfehlungen (Beispiel: Wie sollte ein Dialogfenster aufgebaut werden?)
	 Ergebnisauswahl: Ähnlichkeiten zu Bildern, Animation, Computersimulationen Lernergerechte Abschnitte Übungs- und Planungsaufgaben

Analytische Sicht: Literaturreviews (1)

Nutzung von drei aktuellen Literaturreviews

Betonung unterschiedlicher Aspekte

Arbeit	Thema
Bacca et al. (2014)	 Augmented Reality Trends in Education 32 Studien 59 % der Studien benutzen Marker-basierte Objekterkennung Wachsende Zahl an Studien Zielgruppe: 35 % Bachelorstudiengänge dominierende Ziele Erklärung von Themen Bereitstellung zusätzlicher Informationen Stärken Lernerfolg Motivationssteigerung Interaktion Zusammenarbeit

Analytische Sicht: Literaturreviews (2)

Arbeit	Thema
Santos et al. (2014)	 Augmented Reality Learning Experiences (ARLE) 87 Artikel ARLE im Schulkontext davon 43 Nutzerstudien davon 7 geeignet zur Berechnung einer Effektgröße in Lernkontexten (moderat: 0,56) Einflussfaktoren eines ARLE Hardware Software Inhaltsmanagement Entwurfsansätze für ARLE Unterstützung der Untersuchung realer und virtueller Objekte Ermöglichung von Kollaboration Sicherstellen von Immersion (Fokussierung der Benutzer auf den AR-Kontext)

Analytische Sicht: Literaturreviews (3)

Arbeit	Thema
Chen et al. (2017):	 Augmented Reality in Education 55 Studien zw. 2011-16 (rel. kleine Stichproben) Zielgruppen: 24 % Bachelorstudiengänge, 16 % Grundschulen, 18 % "junior schools" Stärken: Lernerfolge, Motivationssteigerung, positive Grundeinstellung dem Fach gegenüber Hardware: Tablet, Smartphone Anwendungsgebiete: "unsichtbare" Sachverhalte, abstrakte & komplexe Konzepte

Entwicklung des Beschreibungsschemas

Kategorien

- Fachlichkeit (Was?)
- Didaktik (Wie?)
- Technik (Womit?)

Identifikation der Beschreibungselemente

Expertenurteil bei Literatursichtung

Darstellung

- Unterteilung in Checkliste und Beschreibungsschema
- Vorbild Business Model Canvas: Wesentliche Elemente eines Geschäftsmodells auf einer Seite

Ergebnis: Checkpunkte

Checkpunkt

Uneingeschränkte Funktionalität des Systems (T)

Einhaltung des Kontiguitätsprinzips (D, A7)

Aufgabenkomplexität angemessen und variierbar (D, A8)

Erstellung von Übungsaufgaben (D, A10)

Überwachungs- und

Planungswerkzeuge (F, A11)

Funktionales Interfacedesign (T, A12)

Transparente Bewertungssysteme (F, A13)

Datenverfügbarkeit (F)

Ergebnis: Beschreibungsschema (I)

Merkmal	Beschreibung
Rahmen (F, A1)	Name des Szenarios / Fachgebiet
Akteure (D, A2)	Wissenstand und Alter der Lernenden Lehrende und deren Funktion
Lehrinhalte &- Ziele (F, A3)	Beschreibung der zu erreichenden Fähigkeiten und Kenntnisse
Didaktische Methode (D, A4)	Methoden, die als theoretische Grundlage für den Lernprozess dienen
Lernorganisation (D, A5)	Organisation der Lehreinheiten unter Benutzung von AR- Technologie
Systemarchitektur (T, A6)	Darstellung der notwendigen technischen Komponente, deren Verfügbarkeit und deren Abhängigkeiten sowie der verwendeten AR-Technologien (Marker vs. Positionierung)

Ergebnis: Beschreibungsschema (II)

Merkmal	Beschreibung	Beispielszenario AugView	
Daten und	Beschreibung der benötigten	Netzpläne mit Attributen werden als virtuelle	
Augmentierungen	Daten, um Augmentierungen	Objekte dargestellt.	
(F)	darzustellen		
Interaktionen (D)	Lernförderliche Interaktionen der	Studierende erstellen Netzplan anhand von	
	Benutzer mit der Software	Beobachtungen und "educated guesses", sie sind dabei gefordert, aktiv Entscheidungen zu treffen, die Visualisierung der Auswirkungen erfolgt unmittelbar.	
Kontext (F)	Beschreibung des Kontexts, in	Studierende suchen die Lokationen auf, für die	
	dem die Augmentierungen	Pläne erstellt werden sollen und erzeuge virtuelle	
	vorgenommen werden.	Leitungen an GPS-gemessenen Lokationen	

Educational AR-Canvas

Educatio	nal AR Canvas	EdAR Szenario Tite	el 01-Jan-2014 Iteration #x
Fachgebiet	Augmentierungen	Lehrformen	Systemarchitektur
Lemziele			Software
		Interaktionen	
	Daten		Hardware
Lokationskontext		Zielgruppe	Kommunikationstechnik
Fachkontext		Didaktik	Technik 1.0 28.04.2

Zusammenfassung

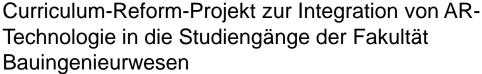
Ausgangsfrage

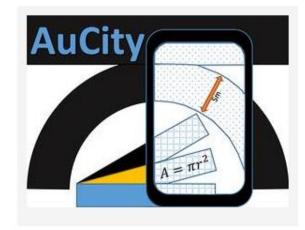
 Planung eines Einsatzszenarios einer gegebenen AR-App in einem didaktischen Kontext

Ergebnis

- Identifikation der Elemente einer Checkliste und eines Beschreibungsschema
- One-Page-Darstellungsform (Educational AR Canvas)
- Version 1

Ausblick


- Empirische Validierung notwendig
- Weiterentwicklung


Unterstützung & Kontakt

Beitrag entstanden im Rahmen des Projekts

Augmented Civil Engineereality (AuCity)

@AuCity40

{heinrich.soebke|michael.montag|steffi.zander}@uni-weimar.de

Referenzen

- Augview Limited: Augview | Augmented Reality Mobile GIS. http://www.augview.net/, 20.10.2016.
- Azuma, R.: A survey of augmented reality. In Presence: Teleoperators and Virtual Environments, 1997, 6; S. 355–385.
- Bacca, J. et al.: Augmented Reality Trends in Education. A Systematic Review of Research and Applications. In Educational Technology & So-ciety, 2014, 17; S. 133–149.
- Bitter, G.; Corral, A.: The Pedagogical Potential of Augmented Reality Apps. In International Journal of Engineering Science Invention, 2014, 3; S. 13–17.
- Bujak, K. R. et al.: A psychological perspective on augmented reality in the mathematics classroom. In Computers and Education, 2013, 68; S. 536–544.
- Chatzopoulos, D. et al.: Mobile Augmented Reality Survey. From Where We Are to Where We Go. In IEEE Access, 2017, 3536; S. 1.
- Chen, P. et al.: A review of using Augmented Reality in Education from 2011 to 2016. In (Popescu, E. et al. Hrsg.): Innovations in Smart Learning. Springer Singapore, 2017; S. 13–19.
- Chen, C.-M.; Tsai, Y.-N.: Interactive augmented reality system for en-hancing library instruction in elementary schools. In Computers and Edu-cation, 2012, 59; S. 638–652.
- Gee, J. P.: What Video Games Have to Teach Us About Learning and Literacy. Palgrave Macmillan, New York, 2008.
- Georgiou, Y.; Kyza, E. A.: The development and validation of the ARI questionnaire. An instrument for measuring immersion in location-based augmented reality settings. In International Journal of Human-Computer Studies, 2017, 98; S. 24–37.
- Google: Tango. https://get.google.com/tango/, 2017-05-07.
- Herber, E.: Augmented Reality Auseinandersetzung mit realen Lernwel-ten. In Zeitschrift für e-Learning. Lernkultur und Bildungstechnologie, 2012, 3; S. 7–13.
- Hochberg, J.; Vogel, C.; Bastiaens, T.: Gestaltung und Erforschung eines Mixed-Reality- Lernsystems. In MedienPädagogik Zeitschrift für Theorie und Praxis der Medienbildung, 2017; S. 140–146.
- Keller, J. M.: Motivational Design for Learning and Performance. The ARCS Model Approach. Springer, New York, 2010.
- · Kerres, M.: Mediendidaktik. Oldenbourg Wissenschaftsverlag GmbH, München, 2013.
- Klauer, K. J.; Leutner, D.: Lehren und Lernen. Einführung in die Instrukti-onspsychologie. Beltz, Weinheim, 2012.
- Mayer, R. E.: Multimedia Learning. Cambridge University Press, New York, 2009.
- Mathison, C.; Gabriel, K.: Designing Augmented Reality Experiences in Authentic Learning Environments. In Proceedings of Society for Infor-mation Technology & Teacher Education International Conference 2012. AACE, Austin, Texas, USA, 2012; S. 3470–3473.
- Microsoft Corporation: The leader in Mixed Reality Technology | Mi-crosoft HoloLens. https://www.microsoft.com/en-us/hololens, 2017-06-08.
- Niegemann, H. M. et al.: Kompendium multimediales Lernen. Springer-Verlag, Berlin Heidelberg, 2008.
- Niantic Labs: Ingress. http://www.ingress.com/, 2015-10-15.
- Niantic Inc: Pokémon Go. http://www.pokemongo.com/, 2016-12-28.
- O'Shea, P.; Elliott, J.: Augmented Reality in Education. An Exploration and Analysis of Pedagogical Design in Mobile Augmented Reality Appli-cations. In Proceedings
 of Society for Information Technology & Teacher Education International Conference 2015. AACE, Las Vegas, NV, United States, 2015; S. 3525–3532.
- Osterwalder, A.: The Business Model Canvas. https://www.youtube.com/watch?v=2FumwkBMhLo, 2016-11-12.
- Rey, G. D.: E-Learning. Theorien, Gestaltungsempfehlungen und For-schung. Verlag Hans Huber, Bern, 2009.
- Söbke, H.; Bröker, T.; Kornadt, O.: Using the Master Copy Adding Edu-cational Content to Commercial Video Games. In Proceedings of the 7th European Conference on Games-Based Learning, Vol. 2. ACPI, Reading, 2013; S. 521–530.
- Söbke, H.; Baalsrud Hauge, J. M.; Stãnescu, I. A.: Prime Example Ingress. Reframing the Pervasive Game Design Framework (PGDF). In Interna-tional Journal of Serious Games, 2017, 2; S. 39-58.
- Santos, M. E.; Chen, A.; Taketomi, T.: Augmented reality learning experi-ences. Survey of prototype design and evaluation. In IEEE Transactions, 2014, 7; S. 38–56.
- Schmalstieg, D.; Höllerer, T.: Augmented Reality. Principles and Practice. Addison-Wesley Professional, 2016.
- Shneiderman, B.: Designing the User Interface. Strategies for Effective Human-Computer Interaction. Addison-Wesley, 1998.

