Dr. Johannes Fichte

University of Potsdam
Institute of Computer Science
August-Bebel-Str. 89
D-14482 Potsdam

Office complex III, House 4, Room 02.11
directly at the Griebnitzsee S-Bahn station

Fax   +49-331-977-3122
Email  fichte@cs.uni-potsdam.de

Publications

2019

  1. Fichte, J. K., Hecher, M., & Zisser, M. (2019). An Improved GPU-Based SAT Model Counter. In CP (Vol. 11802, pp. 491–509). Springer. [bib]
  2. Fichte, J. K., Hecher, M., & Meier, A. (2019). Counting Complexity for Reasoning in Abstract Argumentation. In AAAI (pp. 2827–2834). AAAI Press. [bib]
  3. Alviano, M., Dodaro, C., Fichte, J. K., Hecher, M., Philipp, T., & Rath, J. (2019). Inconsistency Proofs for ASP: The ASP-DRUPE Format. CoRR, abs/1907.10389. [bib]
  4. Alviano, M., Dodaro, C., Fichte, J. K., Hecher, M., Philipp, T., & Rath, J. (2019). Inconsistency Proofs for ASP: The ASP - DRUPE Format. TPLP, 19(5-6), 891–907. [bib]
  5. Fichte, J. K., & Hecher, M. (2019). Treewidth and Counting Projected Answer Sets. In LPNMR (Vol. 11481, pp. 105–119). Springer. [bib]
  6. Fichte, J. K., & Hecher, M. (2019). Treewidth and Counting Projected Answer Sets. CoRR, abs/1903.11316. [bib]

2018

  1. Fichte, J. K., Hecher, M., Lodha, N., & Szeider, S. (2018). An SMT Approach to Fractional Hypertree Width. In CP (Vol. 11008, pp. 109–127). Springer. [bib]
  2. Fichte, J. K., Hecher, M., & Meier, A. (2018). Counting Complexity for Reasoning in Abstract Argumentation. CoRR, abs/1811.11501. [bib]
  3. Fichte, J. K., Hecher, M., & Schindler, I. (2018). Default Logic and Bounded Treewidth. In LATA (Vol. 10792, pp. 130–142). Springer. [pdf] [bib]
  4. Fichte, J. K., & Hecher, M. (2018). Exploiting Treewidth for Counting Projected Answer Sets. In KR (pp. 639–640). AAAI Press. [bib]
  5. Fichte, J. K., Hecher, M., Morak, M., & Woltran, S. (2018). Exploiting Treewidth for Projected Model Counting and Its Limits. In SAT (Vol. 10929, pp. 165–184). Springer. [bib]
  6. Fichte, J. K., Morak, M., Hecher, M., & Woltran, S. (2018). Exploiting Treewidth for Projected Model Counting and its Limits. CoRR, abs/1805.05445. [bib]
  7. Fichte, J. K., Hecher, M., Woltran, S., & Zisser, M. (2018). Weighted Model Counting on the GPU by Exploiting Small Treewidth. In ESA (Vol. 112, pp. 28:1–28:16). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. [bib]

2017

  1. Fichte, J. K., Kronegger, M., & Woltran, S. (2017). A Multiparametric View on Answer Set Programming. In ASPOCP@LPNMR (Vol. 1868). CEUR-WS.org. [pdf] [bib]
  2. Fichte, J. K., Hecher, M., Morak, M., & Woltran, S. (2017). Answer Set Solving with Bounded Treewidth Revisited. In LPNMR (Vol. 10377, pp. 132–145). Springer. [pdf] [bib]
  3. Fichte, J. K., Hecher, M., Morak, M., & Woltran, S. (2017). Answer Set Solving with Bounded Treewidth Revisited. CoRR, abs/1702.02890. [bib]
  4. Fichte, J. K., & Szeider, S. (2017). Backdoor Trees for Answer Set Programming. In ASPOCP@LPNMR (Vol. 1868). CEUR-WS.org. [pdf] [bib]
  5. Fichte, J. K., Hecher, M., & Schindler, I. (2017). Default Logic and Bounded Treewidth. CoRR, abs/1706.09393. [bib]
  6. Fichte, J. K., Hecher, M., Morak, M., & Woltran, S. (2017). DynASP2.5: Dynamic Programming on Tree Decompositions in Action. In IPEC (Vol. 89, pp. 17:1–17:13). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. [pdf] [bib]
  7. Fichte, J. K., Hecher, M., Morak, M., & Woltran, S. (2017). DynASP2.5: Dynamic Programming on Tree Decompositions in Action. CoRR, abs/1706.09370. [bib]
  8. Fichte, J. K., Lodha, N., & Szeider, S. (2017). SAT-Based Local Improvement for Finding Tree Decompositions of Small Width. In SAT (Vol. 10491, pp. 401–411). Springer. [pdf] [bib]

2016

  1. Fichte, J. K., Hecher, M., Morak, M., & Woltran, S. (2016). Counting Answer Sets via Dynamic Programming. CoRR, abs/1612.07601. [bib]
  2. Fichte, J. K., Meier, A., & Schindler, I. (2016). Strong Backdoors for Default Logic. In SAT (Vol. 9710, pp. 45–59). Springer. [bib]
  3. Fichte, J. K., Meier, A., & Schindler, I. (2016). Strong Backdoors for Default Logic. CoRR, abs/1602.06052. [bib]

2015

  1. Fichte, J. K., & Szeider, S. (2015). Backdoors to Normality for Disjunctive Logic Programs. ACM Trans. Comput. Log., 17(1), 7:1–7:23. [bib]
  2. Fichte, J. K., & Szeider, S. (2015). Backdoors to tractable answer set programming. Artif. Intell., 220, 64–103. [bib]
  3. Fichte, J. K., Truszczynski, M., & Woltran, S. (2015). Dual-normal Logic Programs - the Forgotten Class. CoRR, abs/1507.05388. [bib]
  4. Fichte, J. K., Truszczynski, M., & Woltran, S. (2015). Dual-normal logic programs - the forgotten class. TPLP, 15(4-5), 495–510. [bib]