
An Introduction to claspre ∗

Stefan Ziller Martin Gebser Benjamin Kaufmann
Torsten Schaub ∗∗

October 7, 2009

Abstract

This document gives an overview of the Answer Set Programming (ASP; [1])
tool claspre, developed at the University of Potsdam. claspre is based on
the ASP solver clasp [4, 2] and specialized to pre-processing functionalities.

By default, claspre prints a pre-processed version of the input logic pro-
gram in Smodels Internal Format [8]. This enables ASP solvers to make use of
clasp’s advanced pre-processing [3], including for instance equivalence reason-
ing. Command-line options can be used for customization, e.g., --trans-ext
may be configured to compile extended rules into normal ones.

As a second functionality, claspre allows for extracting static and dynamic
features of logic programs. The latter are obtained via terminable solving, re-using
the search engine of clasp. Command-line options can be used to customize
the maximum amount of initial solving with claspre, done in order the extract
dynamic features.

∗Tool claspre is available at [6].
∗∗{ziller,gebser,kaufmann,torsten}@cs.uni-potsdam.de

1

Contents
1 Functionalities 3

1.1 Pre-Processing a Logic Program . 3
1.2 Extracting Features of a Logic Program 3

2 Summary of claspre Options 7

References 8

2

1 Functionalities
The pre-processing tool claspre is written in C++ and published under GNU General
Public License [5]. Sources are available at [6]. claspre serves two main purposes:
(1) obtaining a compact representation of a logic program or (2) extracting features
from a logic program. In case (1), an ASP solver that accepts Smodels Internal For-
mat [8] can start from the pre-processed version of an input logic program. In case (2),
claspre collects features of the input program, both static and dynamic ones (the lat-
ter determined through commenced solving), which can be used to analyze the program
at hand. In either case, command-line options, such as --trans-ext for compiling
extended rules into normal ones, can be provided to customize the pre-processing.

We now describe on examples how claspre is utilized for its two functionalities.

1.1 Pre-Processing a Logic Program
By default, claspre prints the pre-processed version of an input logic program in
Smodels Internal Format, obtained by applying techniques described in [3]. As an
example, we take a Blocks-World problem from [2]. The invocation looks as follows:1

gringo blocks.lp world4.lp --ifixed 9 | \
claspre

This makes claspre output the following:
1 1 2 0 0
2 2 179 121 0 1 58 59 60 ...
3 ...
4 4055 move(b10,b9,9)
5 0
6 B+
7 2
8 0
9 B-

10 1
11 180
12 655
13 1141
14 1627
15 2113
16 2599
17 3085
18 3571
19 4057
20 0
21 1

The output can then directly be processed by another solver, such as smodels [7]:

gringo blocks.lp world4.lp --ifixed 9 | \
claspre | smodels

1.2 Extracting Features of a Logic Program
The second functionality of claspre consists of extracting features. To this end,
claspre provides option --noLP to suppress the output of Smodels Internal Format
and option --features to print statistic information about a logic program. Features
are distinguished into static and dynamic ones. While the former are printed only once,
some of the latter are grabbed on each restart. For controlling the efforts spent on the

1The “\” in command-line calls indicates that line breaks are escaped and used only for readability.

3

extraction of dynamic features, options --endC and --endR allow for limiting the
number of conflicts and restarts, respectively, to be conducted by claspre. In fact,
claspre stops its solving as soon as one of the limits is reached. The restart strategy
and other behaviors of claspre can be set via options inherited from clasp (cf. [2]).

As a typical use of claspre to extract features, consider the following invocation:

gringo blocks.lp world4.lp --ifixed 9 | \
claspre --noLP --features --restarts 50,1 --endR 3

The resulting output is as follows:
1 claspre 0.7.9 based on clasp 1.2.0
2 Reading from stdin
3 Reading : Done(0.000s)
4 Preprocessing: Done(0.020s)
5 Solving...

7 Features of lp:

9 runtime features...
10 Iteration : 1
11 maxLearnt : 1944
12 maxConflicts : 50
13 Constraints : 6746
14 LearntConstraints : 35
15 FreeVars : 3880
16 Vars/FreeVars : 1.50309
17 FreeVars/Constraints : 0.575156
18 Vars/Constraints : 0.864512
19 maxLearnt/Constraints : 0.288171
20 =====================
21 Iteration : 2
22 maxLearnt : 1944
23 maxConflicts : 50
24 Constraints : 6652
25 LearntConstraints : 70
26 FreeVars : 3819
27 Vars/FreeVars : 1.5271
28 FreeVars/Constraints : 0.574113
29 Vars/Constraints : 0.876729
30 maxLearnt/Constraints : 0.292243
31 =====================
32 Iteration : 3
33 maxLearnt : 1944
34 maxConflicts : 50
35 Constraints : 6670
36 LearntConstraints : 102
37 FreeVars : 3819
38 Vars/FreeVars : 1.5271
39 FreeVars/Constraints : 0.572564
40 Vars/Constraints : 0.874363
41 maxLearnt/Constraints : 0.291454
42 =====================
43 Completed : No

45 Atoms : 4420 (Original: 4420 Auxiliary: 0)
46 Rules : 5424 (BasicR: 3340, ConstraintR: 2075, ChoiceR: 9, WeightR: 0)
47 NormalRules/ExtRules : 1.60886
48 Bodies : 5252
49 Equivalences : 6812 (Atom=Atom: 202 Body=Body: 40 Other: 6570)
50 Tight : Yes
51 Variables : 5832 (Eliminated: 0)
52 Constraints : 7238 (Binary: 55.0566% Ternary: 20.42% Other: 24.5233%)

54 Models : 0
55 Choices : 615
56 Conflicts : 150
57 Restarts : 3
58 Constraints deleted : 0
59 Backtracks : 0
60 Backjumps : 150 (Bounded: 0)
61 Skippable Levels : 586

4

62 Levels skipped : 586 (100%)
63 Max Jump Length : 122 (Executed: 122)
64 Max Bound Length : 0
65 Average Jump Length : 3.90667 (Executed: 3.90667)
66 Average Bound Length : 0
67 Average Model Length : 0
68 Lemmas : 150 (Binary: 18% Ternary: 12% Other: 70%)
69 Conflicts : 150 (Average Length: 10.2)
70 Loops : 0 (Average Length: 0)

72 Time : 0.150 (Solving: 0.130)

Observe that some dynamic features are printed three times in Line 10–42 (one block
per restart), while static features and dynamic feature summaries are provided only
once in Line 43–70. Also note that, in case claspre finds some model upon feature
extraction, it is output before the features, unless suppressed via option -q.

A compressed feature format can be obtained by using option --claspfolio
instead of --features. The admissible values for this option are as follows:

--claspfolio 1
Print a separate line with dynamic features’ values on each restart, followed by a
line with static features’ values and dynamic feature summaries.

--claspfolio 2
Print one line with dynamic features’ values (including all restarts), followed by
a line with static features’ values and dynamic feature summaries.

--claspfolio 3
Like --claspfolio 2, but if some model (or unsatisfiability) is found upon
feature extraction, it is printed instead of the features.

The --claspfolio option is provided for obtaining an easily machine-readable out-
put, as it is used by portfolio-solver claspfolio, available at [6].

An example invocation of claspre using option --claspfolio 1 along with
corresponding output is given next:

gringo blocks.lp world4.lp --ifixed 9 | \
claspre --noLP --claspfolio 1 --restarts 50,1 --endR 3

1 1944,50,6746,35,3880,1.50309,0.575156,0.864512,0.288171
2 1944,50,6652,70,3819,1.5271,0.574113,0.876729,0.292243
3 1944,50,6670,102,3819,1.5271,0.572564,0.874363,0.291454
4 No,4420,4420,0,5424,3340,2075,9,0,1.60886,5252,6812,202,40,6570,Yes,NA,NA,

5832,0,7238,55.0566,20.42,24.5233,0,615,150,3,0,0,150,0,586,586,100,
122,122,0,3.90667,3.90667,0,0,150,18,12,70,150,10.2,0,0

Similar output is obtained with either:

gringo blocks.lp world4.lp --ifixed 9 | \
claspre --noLP --claspfolio 2 --restarts 50,1 --endR 3

or:

gringo blocks.lp world4.lp --ifixed 9 | \
claspre --noLP --claspfolio 3 --restarts 50,1 --endR 3

The difference to --claspfolio 1 is that iterated dynamic information in Line 1–3
is output on one line. Finally, --claspfolio 3 outputs models (or UNSATISFI-
ABLE) instead of features if found out during pre-processing:

5

gringo blocks.lp world4.lp --ifixed 9 | \
claspre --noLP --claspfolio 3 --restarts 50,1 --endR 4

1 Answer: 1
2 move(b10,b2,1) move(b9,table,2) move(b4,b9,3) move(b8,b3,4) move(b7,b8,5)

move(b10,b6,6) move(b2,b10,7) move(b1,b2,8) move(b0,b4,9)

The names of features output by claspre with option --claspfolio can be
obtained via option --listFeatures. This is achieved via the following call:

claspre --listFeatures

The corresponding output is:
1 maxLearnt,maxConflicts,Constraints,LearntConstraints,FreeVars,

Vars/FreeVars,FreeVars/Constraints,Vars/Constraints,maxLearnt/Constraints
2 Completed,Atoms,_Original,_Auxiliary,Rules,_BasicRule,_ConstraintRule,

_ChoiceRule,_WeightRule,NormalRules/ExtRules,Bodies,Equivalences,
_Atom=Atom,_Body=Body,_Other,Tight,_SCCs,_Nodes,Variables,_Eliminated,
Constraints,_Binary,_Ternary,_Other,Models,Choices,Conflicts,Restarts,
Constraints deleted,Backtracks,Backjumps,_Bounded,Skippable Levels,
Levels skipped,_%,Max Jump Length,_Executed,Max Bound Length,
Average Jump Length,_Executed,Average Bound Length,Average Model Length,
Lemmas,_Binary,_Ternary,_Other,Conflicts,_Average Length,Loops,_Average Length

It indicates names as used in output obtained with option --features of iterated
dynamic features (in Line 1) and of residual features (in Line 2). The values printed
with --claspfolio correspond to the listed feature names in the same order.

Finally, we note that claspre can also be run as an ASP solver by providing
option --noLP, but neither --features nor --claspfolio. As with feature ex-
traction, all options inherited from clasp can be used to customize solver behavior. In
addition, --endC and --endR can be set to force termination after a certain number
of conflicts or restarts, respectively.

6

2 Summary of claspre Options
This section gives a quick overview of command-line options provided by claspre
to configure the pre-processing functionalities described in Section 1. Beyond these,
claspre inherits many command-line options from clasp (cf. [2]), allowing for the
customization of pre-processing. For instance, --trans-ext may be configured to
compile extended rules into normal ones.

By default, claspre applies static pre-processing techniques [3] of clasp to ob-
tain a compact representation of an input logic program in Smodels Internal Format [8].
Further options of claspre are listed below:

--noLP
Do not print pre-processed logic program and instead run claspre as a solver.

--endC n
Stop solving after encountering n conflicts, n=0 standing for no limit on con-
flicts.

--endR n
Stop solving after performing n restarts, n=0 standing for no limit on restarts.

--features
Print static and dynamic features, the latter obtained upon solving. When us-
ing --features, by default, --endC 500 and --endR 20 are applied as
limits on conflicts and restarts, respectively.

--claspfolio 1|2|3
Print static and dynamic features in a compressed, easily machine-readable for-
mat. When using --claspfolio, by default, --endC 500 and --endR
20 are applied as limits on conflicts and restarts, respectively.

--listFeatures
Print a list of feature names. The feature names are the same as the ones dis-
played with option --features. The list format is the same as the one of
--claspfolio 1 (when performing exactly one restart), but showing feature
names instead of their values.

7

References
[1] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003. 1

[2] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo. Available at [6]. 1,
3, 4, 7

[3] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Advanced preprocess-
ing for answer set solving. In M. Ghallab, C. Spyropoulos, N. Fakotakis, and
N. Avouris, editors, Proceedings of the Eighteenth European Conference on Artifi-
cial Intelligence (ECAI’08), pages 15–19. IOS Press, 2008. 1, 3, 7

[4] M. Gebser, B. Kaufmann, and T. Schaub. The conflict-driven answer set solver
clasp: Progress report. In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings
of the Tenth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’09), volume 5753 of Lecture Notes in Artificial Intelligence,
pages 509–514. Springer-Verlag, 2009. 1

[5] GNU general public license. Free Software Foundation, Inc. http://www.
gnu.org/copyleft/gpl.html. 3

[6] Potsdam answer set solving collection. University of Potsdam. http://
potassco.sourceforge.net/. 1, 3, 5, 8

[7] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181–234, 2002. 3

[8] T. Syrjänen. Lparse 1.0 user’s manual. http://www.tcs.hut.fi/
Software/smodels/lparse.ps.gz. 1, 3, 7

8

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://potassco.sourceforge.net/
http://potassco.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

	Functionalities
	Pre-Processing a Logic Program
	Extracting Features of a Logic Program

	Summary of claspre Options
	References

