
Minimal belief and negation as failure:

A feasible approach

Antje Beringer and Torsten Schaub

FG Intellektik, TH Darmstadt, Alexanderstra�e 10,

D-6100 Darmstadt, Germany

fantje,torsteng@intellektik.informatik.th-darmstadt.de

Abstract

Lifschitz introduced a logic of minimal belief and

negation as failure, called mbnf, in order to

provide a theory of epistemic queries to non-

monotonic databases. We present a feasible sub-

system of mbnf which can be translated into a

logic built on �rst order logic and negation as fail-

ure, called fonf. We give a semantics for fonf

along with an extended connection calculus. In

particular, we demonstrate that the obtained sys-

tem is still more expressive than other approaches.

Introduction

Lifschitz

[

1991; 1992

]

1

introduced a logic of minimal

belief and negation as failure, mbnf, in order to pro-

vide a theory of epistemic queries to nonmonotonic

databases. This approach deals with self-knowledge

and ignorance as well as default information.

From one perspective, mbnf relies on concepts de-

veloped by Levesque

[

1984

]

and Reiter

[

1990

]

for data-

base query evaluation. In these approaches, databases

are treated as �rst order theories, whereas queries may

also contain an epistemic modal operator. In addition

to query-answering from a database, this modal opera-

tor allows for dealing with queries about the database.

From another perspective, Lifschitz' approach relies on

the system gk developed by Lin and Shoham

[

1990

]

,

which uses two epistemic operators accounting for the

notion of \minimal belief" and \negation as failure".

Thus, mbnf can be seen as an extension of gk, which

identi�es their epistemic operator for minimal belief

with the ones used by Levesque and Reiter.

mbnf is very expressive. Apart from asking what a

database knows, it permits expressing default knowl-

edge and axiomatizing the closed world assumption

[

Reiter, 1977

]

and integrity constraints

[

Kowalski,

1978

]

. Furthermore, Lifschitz

[

1992

]

established close

relationships to logic programming, default logic

[

Re-

iter, 1980

]

and circumscription

[

McCarthy, 1980

]

.

However, Lifschitz' approach is purely semantical

and mainly intended to provide a unifying framework

1

In what follows, we rely on the more recent approach.

for several nonmonotonic formalisms. Consequently,

there is no proof theory yet. We address this gap

by identifying a subsystem of mbnf and translating

it into a feasible system by relying on the fact that

in many cases negation as failure is expressive enough

to account for the di�erent modalities in mbnf. The

resulting system is called fonf (�rst order logic with

negation as failure). We demonstrate that it provides

a versatile approach to epistemic query answering for

nonmonotonic databases, which are �rst order theories

enriched by beliefs and default statements. Further-

more, we give a clear semantics of fonf along with an

extended connection calculus for fonf. Also, we show

that fonf is still more expressive than prolog and a

competing approach

[

Reiter, 1990

]

.

Minimal belief and negation as failure

mbnf deals with an extended �rst order language in-

cluding two independent modal operators B and not.

B is of epistemic nature and represents the notion of

\minimal belief", whereas not captures the notion of

\negation as failure". A theory T , or database, is a set

of sentences. �; � denote sentences; F;G denote for-

mulas. A positive formula (or theory) does not contain

not. An objective one contains neither B nor not.

For instance, given an ornithological database, we

can formalize the default that \we believe that birds


y, unless there is evidence to the contrary", as

8x(Bbird(x) ^ not:
y(x)! B
y(x)):

Now, the idea is to interpret our beliefs by a set of

\possible worlds", ie. Bbird(Tweety) is true i� Tweety

is a bird in all possible worlds and not:
y(Tweety) is

true i� Tweety 
ies in some possible world.

Formally, the truth of a formula is de�ned wrt a

triple (w;W

B

;W

not

); where w is a �rst order interpre-

tation, or simply world, representing \the real world",

W

B

is a set of \possible worlds" de�ning the meaning

of beliefs formalized with B, and W

not

serves for the

same purpose in case of not. w;W

B

and W

not

share

the same universe, but W

B

and W

not

do not necessar-

ily include w. Intuitively, this means that beliefs need

not be consistent with reality. Thus, Tweety may be

believed to 
y without actually 
ying.



Then, the truth of a formula F in mbnf is de�ned

for the language of mbnf extended by names for all

elements of the common universe.

2

1. For atomic F; (w;W

B

;W

not

)j=

mbnf

F i� w j= F .

2. (w;W

B

;W

not

)j=

mbnf

:F i� (w;W

B

;W

not

) 6j=

mbnf

F .

3. (w;W

B

;W

not

)j=

mbnf

F ^G i�

(w;W

B

;W

not

)j=

mbnf

F and (w;W

B

;W

not

)j=

mbnf

G.

4. (w;W

B

;W

not

)j=

mbnf

9XF (X) i�

for some name �, (w;W

B

;W

not

)j=

mbnf

F (�).

5. (w;W

B

;W

not

)j=

mbnf

BF i�

8w

0

2W

B

: (w

0

;W

B

;W

not

)j=

mbnf

F .

6. (w;W

B

;W

not

)j=

mbnf

notF i�

9w

0

2W

not

: (w

0

;W

B

;W

not

) 6j=

mbnf

F .

The de�nition of a model in mbnf is restricted to the

case where W

B

= W

not

: Therefore, Lifschitz introduces

structures (w;W ), where w is a world and W a set

of worlds corresponding to W

B

and W

not

. In partic-

ular, he is only interested in <-maximal structures,

where (w;W ) < (w

0

;W

0

) i� W � W

0

; since they ex-

press \the idea of `minimal belief': The larger the set

of `possible worlds' is, the fewer propositions are be-

lieved"

[

Lifschitz, 1992

]

. Formally, a model in mbnf

is de�ned by means of a �xed-point operator �(T;W );

which, given a theory T and a set of worlds W , denotes

the set of all <-maximal structures (w;W

0

) such that

T is true in (w;W

0

;W ). Then, a structure (w;W ) is

an mbnf-model of T i� (w;W ) 2 �(T;W ):

In mbnf, theoremhood is only de�ned for positive

formulas: A positive formula F is entailed by T ,

T j=

mbnf

F , i� F is true in all models of T . Thus,

query answering is also restricted to positive queries.

3

Notice that models of T need not be models of F .

For instance, Bp is true in all models of B(p ^ q) and,

hence, B(p ^ q)j=

mbnf

Bp: However, no mbnf-model of

B(p ^ q) is an mbnf-model of Bp, since none of them

is <-maximal in satisfying Bp. So, we have to distin-

guish carefully between formulas in a given theory and

formulas being posed as queries to that theory.

FONF: A feasible approach to MBNF

We develop a feasible approach to mbnf by identify-

ing a large subclass of mbnf, which allows for equiv-

alent formalizations in �rst order logic plus negation

as failure. This is the case whenever a theory T is

complete for believed sentences, ie. whenever we have

either T j=

mbnf

B� or T j=

mbnf

:B� for each �. In this

case, �rst order logic with negation as failure is strong

enough to capture also the notion of \minimal belief".

We thus identify a feasible subclass of mbnf for

which we provide a translation into fonf, a �rst or-

der logic with an additional negation as failure oper-

ator not. This translation preserves the above notion

2

j=without any subscript denotes �rst order entailment.

3

As regards mbnf-queries, we rely on this restriction

throughout the paper.

of completeness in the sense, that an mbnf-theory is

complete for believed sentences i� the corresponding

fonf-theory is.

As mentioned above, we have to distinguish between

queries and sentences in a database. Accordingly, we

de�ne the following feasible subset of mbnf for queries

and databases separately:

� A feasible query is an mbnf-formula q satisfying:

1. q is positive.

2. Each scope of an 9 or : in q is either purely sub-

jective or purely objective.

3. If the scope of a : in q is subjective, then it must

not contain free variables.

� A feasible database (FDB) is an mbnf-theory con-

taining only rules of the form

F

1

^ : : :^ F

m

^ not F

m+1

^ : : :^ not F

n

! F

n+1

where for n;m � 0 each F

i

(i = 1; : : : ; n+ 1) is

{ either a disjunction-free mbnf-formula where the

scope of : is minimal and objective,

4

{ or of the form B(G

1

_ : : :_G

k

) where the G

i

(i =

1; : : : ; k) are objective formulas.

F

n+1

may also be an unrestricted objective formula.

These restrictions are not as strong as it seems at �rst

sight: Even default rules, integrity constraints, and

closed world axioms can be formalized within FDBs.

In

[

Lifschitz, 1992

]

an mbnf-formula F is translated

into a �rst order formula F

�

to relate mbnf- and �rst

order entailment: A second sort of so-called \world

variables" is added to the �rst order language; append-

ing one of them to each function and predicate symbol

(as an additional argument), and introducing a unary

predicate B whose argument is such a world variable.

A world variables denotes the world in which a cer-

tain predicate or function symbol is interpreted and

B accounts for the \accessibility" of a world from the

actual world. However, the translation

�

is insu�cient

for creating a deduction method for mbnf. First, it

deals only with positive formulas and, therefore, dis-

cards a substantial half of mbnf: The modal operator

not. Second, only �rst order entailment carries over to

mbnf but not vice versa. That is, roughly speaking,

even for positive T and �, T

�

j= �

�

implies T j=

mbnf

�

but not vice versa. In this sense, the translation

�

is

sound but incomplete.

Our approach addresses this shortcoming by trans-

lating feasible queries and databases into fonf. This

has the following advantages: First, we deal with a

much larger subset of mbnf. In particular, we can

draw nonmonotonic conclusions by expressing B and

not by a �rst order predicate bel and a negation as

failure operator not. Second, our translation is truth-

preserving. That is, for feasible queries and databases,

fonf-entailment carries over to mbnf and vice versa.

4

Observe that one cannot distribute : over B.



In this sense, the translation is sound and complete for

feasible queries and databases. In the sequel, we give

this translation and prove that it is truth-preserving.

Now, fonf-formulas are all formulas that can be

built using the connectives and construction rules of

�rst order logic and the unary operator not. The only

constraint on fonf-formulas is that variables must not

occur free in the scope of not.

The translation

?

of feasible mbnf-queries and -da-

tabases into fonf-formulas is developed in analogy to

[

Lifschitz, 1992

]

. We use the predicate bel to translate

the mbnf-operator B. Then, a feasible mbnf-formula

F , ie. either a feasible query or a formula belonging to

a FDB, is translated into the fonf-formula F

?

in the

following way.

� If F is objective, then

1. F

?

is obtained by appending the world variable V

to each function and predicate symbol in F .

� else (ie. if F is non-objective)

2. (:F )

?

= not F

?

.

3. (F �G)

?

= F

?

�G

?

for � = ^;_ or !.

4. (Q F )

?

= Q F

?

for Q = 9 or 8.

5. (BF )

?

= 8V (bel(V )! F

?

).

6. (not F )

?

= not(BF )

?

.

Observe that feasible queries must not contain not, so

that then Condition 6 does not apply. The trans-

lation

?

depends on the notion of feasible formulas

which obey syntactical restrictions. Thus, we have to

account for all connectives. As an example, trans-

lating :� _ :B� (�; � objective) into fonf yields

:�

?

_ not(8V (bel(V ) ! �

?

); which shows that the

combination :B is translated using negation as failure,

namely not, whereas pure negation : is kept.

In order to show that this translation is truth-

preserving, we look at the semantics of fonf and de�ne

satis�ability wrt a set of worlds W :

W j=

fonf

� i� 8w 2W : (w;W )j=

fonf

�;

where the truth value of a fonf-formula wrt a struc-

ture (w;W ) is de�ned in the following way:

� If F is objective, then

1. (w;W )j=

fonf

F i� w j= F .

� else (ie. if F is non-objective)

2. (w;W )j=

fonf

:F i� (w;W ) 6j=

fonf

F .

3. (w;W )j=

fonf

F ^G i�

(w;W )j=

fonf

F and (w;W )j=

fonf

G.

4. (w;W )j=

fonf

notF i� 9w

0

2 W: (w

0

;W ) 6j=

fonf

F .

fonf can be seen as an extension of extended logic

programs

[

Gelfond and Lifschitz, 1990

]

. Accordingly,

fonf-models extend the semantics of extended logic

programs to the �rst order case: For a fonf-theory T ,

and a set of worlds W , we develop a set of objective

formulas T

W

from T by

1. deleting all rules, where not � occurs in the body

while W j=

fonf

� holds.

2. deleting all remaining subformulas of the form not �.

Then, W is a fonf-model for T if it consists of all

�rst order models of T

W

: A sentence � is entailed by

a fonf-theory T , T j=

fonf

�, i� � is true in all fonf-

models of T . Then, we obtain the equivalence between

query-answering in mbnf and fonf for FDBs.

Theorem 1 For feasible mbnf-databases T and feasi-

ble mbnf-queries � : T j=

mbnf

� i� T

?

j=

fonf

�

?

:

As a corollary, we get that the translation

?

preserves

completeness for believed sentences in the above sense.

The translation proposed in

[

Lifschitz, 1992

]

satis�es

only one half of the above result since it only provides

completeness for \monotonically answerable queries".

Moreover, Lifschitz deals with a more restricted frag-

ment of mbnf, which excludes, for example, the use of

negation as failure for database sentences.

A connection calculus for FONF

We develop a calculus for fonf based on the connec-

tion method

[

Bibel, 1987

]

, an a�rmative method for

proving the validity of a formula in disjunctive nor-

mal form (DNF). These formulas are displayed two-

dimensionally in the form of matrices. A matrix is a

set of sets of literals. Each element of a matrix rep-

resents a clause of a formula's DNF. In order to show

that a sentence � is entailed by a sentence T , we have

to check whether :T _ � is valid. In the connection

method this is accomplished by path checking: A path

through a matrix is a set of literals, one from each

clause. A connection is an unordered pair of literals

with the same predicate symbol, but di�erent signs. A

connection is complementary if both literals are identi-

cal except for their sign. Now, a formula, like :T_�; is

valid i� each path through its matrix contains a com-

plementary connection under a global substitution.

First, we extend the de�nition of matrices and liter-

als. AnNM-Literal is an expression not M , where M

is an NM-matrix. An NM-matrix is a matrix contain-

ing normal andNM-literals. Although these structures

seem to be rather complex, we only deal with normal

form matrices, sinceNM-literals are treated in a special

way during the deduction process.

The de�nition of classical normal form matrices re-

lies on the DNF of formulas. Here, we deal with for-

mulas in disjunctive fonf-normal form (fonf-DNF)

by treating subformulas like not � as atoms while

transforming formulas into DNF. Then these �'s are

transformed recursively into fonf-DNF and so forth.

An NM-matrix M

F

represents a quanti�er-free fonf-

formula F in fonf-DNF as follows.

1. If F is a literal then M

F

= ffFgg.

2. If F = not G then M

F

= ffnot M

G

gg.

3. If F = F

1

^ : : :^ F

n

then M

F

= f

S

n

i=1

M

F

i

g.



4. If F = F

1

_ : : :_ F

n

then M

F

=

S

n

i=1

M

F

i

.

For instance, p(X) _ (q(a) ^ not (r(Y ) ^ q(Y )_ p(a)))

has the following matrix representation:

p(X)

not

q(a)

r(Y )

q(Y )

p(a)

In order to de�ne a nonmonotonic notion of com-

plementarity, we introduce so-called adjunct matri-

ces. They are used for resolving the complex struc-

tures in NM-matrices during the deduction process.

Given an NM-matrix M = fC

1

; : : : ; C

n

g where C

n

=

fL

1

; : : : ; L

m

; notNg the adjunct matrixM

N

is de�ned

as M

N

= (M nC

n

) [N , or two-dimensionally:

.

.

.

C

1

.

.

.

M

: : :

.

.

.

C

n�1

.

.

.

not

L

1

.

.

.

�

N

�

.

.

.

C

1

.

.

.

M

N

: : :

.

.

.

C

n�1

.

.

.

N

An NM-matrix is NM-complementary if each path

through the matrix is NM-complementary. A path p

isNM-complementary if

� p contains a connection fK;Lg which is complemen-

tary under uni�cation or

� p contains an NM-literal not N with N being an

NM-matrix. If the adjunct matrix M

N

is not NM-

complementary, then p isNM-complementary.

The deduction algorithm relies on the standard con-

nection method, except that if a path contains anNM-

literal then the same deduction algorithm is started re-

cursively with the corresponding adjunct matrix. Let

M be an NM-matrix and let P

M

be the set of all

paths through M . Then the NM-complementarity of

M is checked by checking all paths in P

M

for NM-

complementarity. This is accomplished by means of

the procedure nmc in the following informal way for a

set of paths P

0

and a matrix M

0

.

nmc(P

0

;M

0

)

� If P

0

= ;, then nmc(P

0

;M

0

)=\yes"

� else choose p 2 P

0

.

{ If p is classically complementary with connec-

tion fK�;L�g and uni�er �, then nmc(P

0

;M

0

) =

nmc((P

0

� fp j fK;Lg 2 pg)�;M

0

)

{ else

� if there exists anNM-literal not N 2 p such that

nmc(P

M

N

;M

N

)=\no",

then nmc(P

0

;M

0

)=nmc(P

0

�fp j not N 2 pg;M

0

)

� else nmc(P

0

;M

0

)=\no"

Initially, nmc is called with P

M

and M , namely

nmc(P

M

;M ). Then, we obtain the following result.

Proposition 1 If the algorithm terminates with \yes",

then theNM-matrix isNM-complementary.

So far, we have only considered quanti�er-free fonf-

formulas in fonf-DNF. But how can an arbitrary

fonf-formula F be treated within this method? First

of all, F must be transformed into fonf-Skolem nor-

mal form, analogously to

[

Bibel, 1987

]

. We denote the

result of fonf-skolemization of a formula F by S(F ).

Now, fonf-formulas can be represented as matri-

ces. If we have a fonf-database, we require that rules

containing free variables in the scope of not (which is

actually not allowed in fonf) are replaced by the set

of their ground instances before skolemization.

However, the above algorithm has its limitations due

to its simplicity. First, in mbnf and fonf, it is nec-

essary to distinguish between sentences occurring in

the database and those serving as queries. Repre-

senting a database together with a query as an NM-

matrix removes this distinction. Second, the above

algorithm cannot deal with fonf-theories possessing

multiple fonf-models. This requires a separate algo-

rithmic treatment of alternative fonf-models.

We address this shortcoming by slightly restrict-

ing the de�nition of feasible queries and databases

instead of providing a much more complicated algo-

rithm. Thus, we introduce determinate queries and

databases.

5

Determinate queries are feasible mbnf-

queries in DNF which are either objective or consist

only of one non-objective disjunct. Determinate data-

bases are FDBs which do not contain circular sets of

rules, like fnot p ! Bq; not q ! Bpg; because only

such circular sets cause multiple models in fonf. This

restriction is not as serious as it might seem at �rst

sight: First, non-objective disjunctive queries can be

posed by querying the single disjuncts separately. Sec-

ond, we doubt that we loose much expressiveness by

forbidding circular rules. So, if we consider this kind

of databases and queries, we can use the nonmonotonic

connection method for query-answering:

Proposition 2 For determinate fonf-theories T and

fonf-sentences �: T j=

fonf

� i� the NM-matrix of

S(:T _�) isNM-complementary.

Together with Theorem 1, we obtain the following.

Theorem 2 For determinate mbnf-databases T and

determinate mbnf-queries �: T j=

mbnf

� i� the NM-

matrix of S(:T

?

_ �

?

) isNM-complementary.

Hence, we obtain a deduction method for a quite large

subset of mbnf: Given a determinate mbnf-database

T and -query �, we check whether T j=

mbnf

� holds by

1.translating T into T

?

and � into �

?

,

2.replacing free variables with all constants occurring

in the database,

3.skolemizing :T

?

_ �

?

yielding S(:T

?

_ �

?

),

4.testing the resulting matrix forNM-complementarity.

5

This expression will also be used for the corresponding

fonf-queries and -databases.



Finally, let us consider an example illustrating our ap-

proach. Consider the following mbnf-database T :

B(teaches(anne,bio) _ teaches(sue,bio))

not teaches(X,bio) ! : teaches(X,bio)

which we write in short notation as

B(t(a; b) _ t(s; b)) ^ (not t(X; b)! :t(X; b)):

Recall that the second conjunct is considered as an ab-

breviation for the set of its ground instances. Consider

the following query:

Is it true that Anne doesn't teach biology?

This query, say �, is formalized in mbnf as :t(a; b).

Notice that T and � constitute determinate mbnf-

expressions. Now, we have to verify whether T j=

mbnf

�

holds. According to the closed world axiom given by

not t(X; b) ! :t(X; b); saying that a person does not

teach biology unless proven otherwise, we expect a pos-

itive answer.

Following the four steps above, we �rst translate T

and � into fonf and obtain the fonf-theory T

?

8V bel(V )! t(a; b; V ) _ t(s; b; V )

not [8V bel(V )! t(X; b; V )]! :t(X; b; V )

along with the query �

?

= :t(a; b; V ). Then, the the-

ory is negated yielding :T

?

. After replacing X by the

constants a; s and b

6

in :T

?

, we obtain S(:T

?

_�

?

) by

fonf-skolemization which is (with Skolem constants

w

i

(i = 1; 2; 3))

bel(V ) ^ :t(a; b; V ) ^ :t(s; b; V )

not [:bel(w

2

) _ t(a; b; w

2

)]^ t(a; b; w

1

)

not [:bel(w

3

) _ t(s; b; w

3

)] ^ t(s; b; w

1

)

:t(a; b; w

1

):

This fonf-formula has the following matrix represen-

tation (if we ignore the drawn line)

bel(V )

:t(a; b; V )

:t(s; b; V )

not N

1

t(a; b;w

1

)

not N

2

t(s;b; w

1

)

:t(a; b;w

1

)

with the submatrices N

1

= [:bel(w

2

) t(a; b; w

2

)] and

N

2

= [:bel(w

3

) t(s; b; w

3

)].

It remains to be checked whether this matrix is

NM-complementary in order to prove T j=

mbnf

�: The

�rst connection starting from the query :t(a; b; w

1

) is

shown by the drawn line. It remains to be tested,

if all paths through the NM-literal not N

1

are NM-

complementary. So, the adjunct matrix has to be built

yielding the following matrix (with N

2

as above), which

must not beNM-complementary for a successful proof.

bel(V )

:t(a; b; V )

:t(s; b; V )

:bel(w

2

) t(a; b;w

2

) not N

2

t(s; b;w

1

)

:t(a; b;w

1

)

6

For simplicity, we omit the last case in this example,

as it obviously does not contribute to the proof.

During the proof for the above adjunct matrix a copy

of the �rst clause has to be generated. We get the

substitution � = fV

1

nw

1

; V

2

nw

2

g, where V

1

occurs in

the �rst copy and V

2

in the second one. The resulting

matrix contains the (non-complementary) path

f:t(a; b; w

1

); :t(s; b; w

2

); :bel(w

2

);

t(a; b; w

2

); t(s; b; w

1

); :t(a; b; w

1

)g:

The �rst two literals stem from the two copies of the

�rst clause of the adjunct matrix. The four others

belong to the remaining clauses of the adjunct matrix.

Since this path through the adjunct matrix is not

complementary, the NM-literal not N

1

in the origi-

nal matrix isNM-complementary. Therefore, all paths

through the original matrix are NM-complementary.

Accordingly, we have proven that T j=

mbnf

� holds and

thus that Anne doesn't teach biology.

In order to illustrate the di�erence between queries

to and about the database in presence of the closed

world assumption (CWA), consider the query, say �,

Is it known that Anne doesn't teach biology?

Now, we expect a negative answer, since the used for-

malization of the CWA only a�ects objective formulas.

It avoids merging propositions about the world (like

objective formulas in the database) and propositions

about the database, which causes inconsistencies when

using the \conventional" CWA

[

Reiter, 1977

]

in the

presence of incomplete knowledge.

� is formalized in mbnf as B:t(a; b) yielding the

skolemized fonf-formula :bel(w

4

)_:t(a; b; w

4

): Treat-

ing � and the above formula T according to the four

aforementioned steps results in the following matrix

with submatrices N

1

and N

2

as de�ned above:

bel(V )

:t(a; b; V )

:t(s; b; V )

not N

1

t(a; b;w

1

)

not N

2

t(s; b;w

1

)

:bel(w

4

) :t(a; b;w

4

)

Looking at the three paths withoutNM-literals, it can

be easily seen that at least one of them will never be

complementary (regardless of how V is instantiated).

Consequently, the matrix is not NM-complementary,

which tells us that � is not an mbnf-consequence of

T . That is, even though we were able to derive that

Anne does not teach biology, we cannot derive that it

is known that Anne does not teach biology. This is be-

cause the used closed world axioms merely a�ect what

is derivable and not what is known. However, observe

that the opposite query, namely :B:t(a; b) is answered

positively. Certainly, we could obtain di�erent answers

by using di�erent closed world axioms.

The above algorithm has been implemented using

a prolog implementation of the connection method.

The program takes NM-matrices and checks whether

they are NM-complementary. It consists only of �ve

prolog-clauses. Interestingly, the �rst four clauses

constitute a full �rst order theorem prover, and merely



the �fth clause deals with negation as failure. This

extremely easy way of implementation is a bene�t of

the restriction to determinate queries and -databases.

Conclusion

mbnf

[

Lifschitz, 1992

]

is very expressive and thus very

intractable. Therefore, we have presented a feasible

approach to minimal belief and negation as failure by

relying on the fact that in many cases negation as fail-

ure is expressive enough to capture additionally the

(nonmonotonic) notion of minimal belief. We have

identi�ed a substantial subsystem of mbnf: Feasible

databases along with feasible queries. This subsystem

allows for a truth-preserving translation into fonf, a

�rst order logic with negation as failure. However, fea-

sibility has its costs. For instance, fonf does not allow

for \quantifying-in" not. Also, we have given a seman-

tics of fonf by extending the semantics of extended

logic programs

[

Gelfond and Lifschitz, 1990

]

.

We have developed an extended connection calcu-

lus for fonf, which has been implemented in prolog.

To our knowledge, this constitutes the �rst connection

calculus integrating negation as failure. We wanted to

keep our calculus along with its algorithm as simple

as possible, so that it can be easily adopted by ex-

isting implementations of the connection method, like

setheo

[

Letz et al., 1992

]

. The preservation of sim-

plicity has resulted in the restriction to determinate

theories, which possess only single fonf-models. This

restriction is comparable with the one found in ex-

tended logic programming, where one restricts oneself

to well-behaved programs with only one model.

As a result, we can compute determinate queries

to determinate databases in mbnf. This subset of

mbnf is still expressive enough for many purposes:

Apart from asking what a database knows, determi-

nate queries and databases allow for expressing de-

fault rules, axiomatizing the closed world assumption

and integrity constraints. Also, it seems that the re-

striction to determinate queries and databases can be

dropped in the presence of a more sophisticated algo-

rithm treating multiple fonf-models separately.

Moreover, our approach is still more expressive than

others: First, fonf is more expressive than prolog:

Since it is build on top of a �rst order logic, it al-

lows for integrating disjunctions and existential quan-

ti�cation. Second, Reiter

[

1990

]

has proposed another

approach, in which databases are treated as �rst or-

der theories, whereas queries may include an epistemic

modal operator. As shown in

[

Lifschitz, 1992

]

, this is

equivalent to testing whether BT j=

mbnf

BF holds for

objective theories T and positive formulas F of mbnf.

Obviously, Reiter's approach is also subsumed by de-

terminate queries and databases, so that we can use

our approach to implement his system as well.

Although we cannot account for mbnf in its entirety,

our approach still deals with a very expressive and,

hence, substantial subset of mbnf. Moreover, from

the perspective of conventional theorem proving, our

translation has shown how the epistemic facet of nega-

tion as failure can be integrated into automated the-

orem provers. To this end, it is obviously possible to

implement fonf by means of other deduction meth-

ods, like resolution. In particular, it remains future

work to compare resolution-based approaches to nega-

tion as failure to the approach presented here.

Acknowledgements

We thank S. Br�uning, M. Lindner, A. Rothschild,

S. Schaub, and M. Thielscher for useful comments on

earlier drafts of this paper. This work was supported

by DFG, MPS (HO 1294/3-1) and by BMfT, TASSO

(ITW 8900 C2).

References

Bibel, W. 1987. Automated Theorem Proving, Vieweg,

2nd edition.

Gelfond, M. and Lifschitz, V. 1990. Logic programs

with classical negation. In Proc. International Confer-

ence on Logic Programming. 579{597.

Kowalski, R. 1978. Logic for data description. In Gal-

laire, H. and Minker, J., eds., In Proc. Logic and Data-

bases, Plenum. 77{103.

Letz, R.; Bayerl, S.; Schumann, J.; and Bibel, W. 1992.

Setheo: A high-performance theorem prover. Journal

on Automated Reasoning.

Levesque, H. 1984. Foundations of a functional ap-

proach to knowledge representation. Arti�cial Intelli-

gence 23:155{212.

Lifschitz, V. 1991. Nonmonotonic databases and epis-

temic queries. In Myopoulos, J. and Reiter, R., eds.,

In Proc. International Joint Conference on Arti�cial

Intelligence, Morgan Kaufmann 381{386.

Lifschitz, V. 1992. Minimal belief and negation as fail-

ure. Submitted.

Lin, F. and Shoham, Y. 1990. Epistemic semantics for

�xed{points nonmonotonic logics. In Parikh, Rohit,

ed., In Proc. Theoretical Aspects of Reasoning about

Knowledge. 111{120.

McCarthy, J. 1980. Circumscription | a form of

nonmonotonic reasoning. Arti�cial Intelligence 13(1{

2):27{39.

Reiter, R. 1977. On closed world data bases. In Gal-

laire, H. and Nicolas, J.-M., eds., In Proc. Logic and

Databases, Plenum. 119{140.

Reiter, R. 1980. A logic for default reasoning. Arti�cial

Intelligence 13(1{2):81{132.

Reiter, R. 1990. On asking what a database knows.

In Lloyd, J. W., ed., Computational Logic, Springer.

96{113.


