
A Meta-Programming Technique for Debugging Answer-Set Programs∗

Martin Gebser1, Jörg Pührer2, Torsten Schaub1, and Hans Tompits2

1 Institut für Informatik, Universität Potsdam, Germany, {gebser,torsten}@cs.uni-potsdam.de
2 Institut für Informationssysteme 184/3, Technische Universität Wien, Austria, {puehrer,tompits}@kr.tuwien.ac.at

Abstract
Answer-set programming (ASP) is widely recognised as a vi-
able tool for declarative problem solving. However, there is
currently a lack of tools for developing answer-set programs.
In particular, providing tools for debugging answer-set pro-
grams has recently been identified as a crucial prerequisite
for a wider acceptance of ASP. In this paper, we introduce a
meta-programming technique for debugging in ASP. The ba-
sic question we address is why interpretations expected to be
answer sets are not answer sets of the program to debug. We
thus deal with finding semantical errors of programs. The ex-
planations provided by our method are based on an intuitive
scheme of errors that relies on a recent characterisation of the
answer-set semantics. Furthermore, as we are using a meta-
programming technique, debugging queries are expressed in
terms of answer-set programs themselves, which has several
benefits: For one, we can directly use ASP solvers for pro-
cessing debugging queries. Indeed, our technique can easily
be implemented, and we devised a corresponding prototype
debugging system. Also, our approach respects the declara-
tive nature of ASP, and the capabilities of the system can eas-
ily be extended to incorporate differing debugging features.

Introduction
Answer-set programming (ASP) is a well-known logic-
programming paradigm (Baral 2003) that became popular
not only because of its fully declarative semantics (Gel-
fond & Lifschitz 1991) but also in view of the availabil-
ity of efficient solvers like DLV (Leone et al. 2006) and
Smodels (Simons, Niemelä, & Soininen 2002). However,
arguably a major reason why ASP has not yet found a more
widespread popularity as a problem-solving technique is its
lack of suitable engineering tools for developing programs.
In particular, debugging in ASP is an important field that has
not been studied thoroughly so far.

The most prominent example of established debugging
techniques in logic programming is tracing in PROLOG,
enabling developers to control the evolution of the proof-
search tree. Like traditional debugging techniques used in
imperative programming, tracing relies on tracking the un-
derlying steps in the execution of a program. However,

∗This work was partially supported by the Austrian Science
Fund (FWF) under grant P18019.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

applying such an approach to ASP results in some deci-
sive drawbacks, undermining the declarativity of answer-
set semantics. In particular, establishing canonical tracing-
based techniques for debugging answer-set programs re-
quires also a canonical procedure for answer-set computa-
tion, and programmers would have to be familiar with the al-
gorithm. This would lead to a shift of perspectives in which
an answer-set program is degraded from a declarative prob-
lem description to a set of parameters for a static solving
algorithm. Therefore, we argue for declarative debugging
strategies that are independent of answer-set computation.

Indeed, among the few approaches dealing with debug-
ging of answer-set programs, most rely (fully or largely)
on declarative techniques. While Brain & De Vos (2005)
essentially outline general considerations on debugging,
Syrjänen (2006) focuses on restoring coherence of programs
not having any answer set. The latter, among other debug-
ging aspects, is also addressed by Brain et al. (2007). In
contrast, the technique of Pontelli & Son (2006) supplies
justifications for the truth values of atoms with respect to
answer sets of a program to debug.

In our approach, we tackle another important question,
viz., why interpretations are not answer sets of a program
under consideration. Thereby, we rely on a meta-program-
ming technique, i.e., a program over a meta-language manip-
ulates another program over an object-language. In our case,
the program in the object-language, say Π, is a propositional
(disjunctive) logic program that we want to debug, whereas
the program in the meta-language, denoted D(Π), is also
an answer-set program, but non-ground and non-disjunctive.
Errors in Π are reflected by special meta-atoms in the answer
sets of D(Π). More precisely, each answer set of D(Π) de-
scribes the behaviour of Π under an interpretation I that is
not an answer set of Π. Conversely, for each interpretation I
for Π not being an answer set of Π, there is at least one cor-
responding answer set of D(Π).

For illustrating our technique, consider program Πex ,
consisting of the rules

r1 = night ∨ day ←,
r2 = bright ← candlelight ,
r3 =← night , bright ,not torch on,
r4 = candlelight ← .

Πex has a single answer set, {candlelight , day , bright},

but the programmer expects also I = {candlelight ,night ,
bright} to be an answer set of Πex . Now, the answer
sets of the meta-program D(Πex), projected to the rel-
evant predicates, include A = {int(lnight), int(lbright),
int(lcandlelight), violated(lr3)}. Here, lx (for x ∈ {night ,
bright , candlelight , r3}) is a label for an atom or a rule in
the object-language, and the atoms over the predicate int/1
describe the considered interpretation I . From the occur-
rence of violated(lr3) in A, we conclude that r3 is an in-
tegrity constraint violated under I .

In general, our approach provides an intuitive classifica-
tion of errors for the addressed debugging problem, based
on an alternative characterisation of answer sets (Lee 2005;
Ferraris, Lee, & Lifschitz 2006). Our approach is not re-
stricted to querying why a single interpretation is not an an-
swer set of a program Π, but also allows for answering why
a specified class of interpretations for Π does not contain
answer sets of Π. This class can be defined by query pro-
grams using the meta-atoms of D(Π). Here, various criteria
can be combined for choosing the interpretations to be con-
sidered, e.g., we can select interpretations in which specific
atoms are (not) contained, specific rules are (not) applicable,
or specific errors occur. Note, however, that the resulting
answer sets of the meta-program refer to the specified inter-
pretations for Π individually, not to the class as a whole.

A particular advantage of our method is that it is easily
implementable, by using existing ASP solvers. Indeed, we
incorporated our technique into the system spock, which
is a prototype debugging tool originally developed for the
debugging approach by Brain et al. (2007). We only require
a single (linear) transformation of the original program that
can then be exploited by highly extensible non-ground mod-
ules. Furthermore, our approach is also user-friendly, since
debugging queries are formed in the original programming
language.

We finally mention that, to the best of our knowledge, our
method for debugging in ASP is the first coping with dis-
junctive programs. A more detailed account of a preliminary
version of our technique is discussed by Pührer (2007).

Preliminaries
We assume that the reader is familiar with logic program-
ming and answer-set semantics (cf. Baral (2003) for a com-
prehensive textbook about ASP) and only briefly recall the
necessary concepts.

We consider programs in a function-free first-order lan-
guage (including at least one constant). As for terms,
strings starting with uppercase (resp., lowercase) letters de-
note variables (resp., constants). An atom is an expression
of the form p(t1, . . . , tn), where p is a predicate symbol and
each ti is a term. A literal is either an atom a or an expres-
sion of the form not a, where not denotes default negation.

A disjunctive logic program (DLP), or simply a program,
is a finite set of rules of the form

h1 ∨ · · · ∨ hl ← b1, . . . , bm,not bm+1, . . . ,not bn , (1)

where l, m, n ≥ 0 and each hi, bj is an atom. For a rule r
of form (1), we call H (r) = {h1, . . . , hl} the head of r
and B(r) = {b1, . . . , bm, not bm+1, . . . ,not bn} the body

of r. If H (r) = ∅, r is an integrity constraint. Further-
more, the positive body and the negative body of r are given
by B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn},
respectively. Literals (resp., rules, programs) are ground
if they are variable-free. Non-ground literals (resp., rules,
programs) amount to their ground instantiations, i.e., all
instances obtained by substituting variables with constants
from the (implicit) language. The ground instantiation of a
program Π is denoted by Gr(Π). By At(Π) we denote the
set of all (ground) atoms occurring in Gr(Π).

The answer-set semantics for DLPs Π is defined as fol-
lows (Gelfond & Lifschitz 1991). An interpretation for Π is
a set I ⊆ At(Π) of ground atoms. Whenever B+(r) ⊆ I
and B−(r) ∩ I = ∅, for a rule r ∈ Gr(Π), we say that r
is applicable under I , and blocked under I otherwise. Fur-
thermore, r is satisfied by I (symbolically I |= r) if r is
blocked under I or H (r) ∩ I 6= ∅, otherwise r is unsat-
isfied by I (or violated under I). Interpretation I satisfies
a program Π (symbolically I |= Π) if I |= r, for every
r ∈ Gr(Π). If I |= Π, we call I a model of Π. The
reduct, ΠI , of Π with respect to I is the set of all rules
h1∨ · · ·∨hl ← b1, . . . , bm resulting from a rule r ∈ Gr(Π)
of form (1) with B−(r)∩ I = ∅. I is an answer set of Π if I
is a minimal model of ΠI . By AS (Π) we denote the set of
all answer sets of Π. Whenever AS (Π) = ∅, we say that Π
is incoherent.

An alternative characterisation of answer sets is based
on the concept of support (Lee 2005). For a program Π,
an interpretation I for Π, and G ⊆ At(Π), we call a
rule r ∈ Gr(Π) a support for G with respect to I if r is ap-
plicable under I , H (r)∩G 6= ∅, and H (r)∩ I ⊆ G. A sup-
port r for G with respect to I is external if B+(r) ∩G = ∅.
We call G supported (resp., externally supported) by Π with
respect to I if there is some support (resp., external support)
r ∈ Gr(Π) for G with respect to I . Furthermore, G is un-
supported (resp., unfounded) by Π with respect to I if G is
not supported (resp., not externally supported) by Π with re-
spect to I . The positive dependency graph of Π is given by
(At(Π), {(h, b) | r ∈ Gr(Π), h ∈ H (r), b ∈ B+(r)}). A
non-empty set Γ ⊆ At(Π) is a loop of Π if, for all a, b ∈ Γ,
there is a path of non-zero length from a to b in the posi-
tive dependency graph of Π such that all atoms in the path
belong to Γ. As shown by Lee (2005), an interpretation I
for Π is an answer set of Π iff I is a model of Π such that
each singleton {a} ⊆ I is supported and each loop Γ ⊆ I
of Π is externally supported by Π with respect to I .

Categories of Error
Our interest lies in finding semantical errors of programs,
i.e., mismatches between the intended meaning and the ac-
tual meaning of a program. In ASP, the semantics of a pro-
gram is given by its answer sets, thus, in this context, errors
can be identified as discrepancies between the expected and
the actual answer sets of the program.

As discussed in the introductory section, we deal with the
question why an interpretation I for Π is not an answer set
of a program Π to debug. Accordingly, we consider reasons
causing this situation as errors. We distinguish between four
different types of errors:

πint = {int(A)←atom(A),not int(A),

int(A)←atom(A),not int(A)}

πsat = {hasHead(R)←head(R,),
someHInI (R)←head(R, A), int(A),

violated(C)←ap(C),not hasHead(C),
unsatisfied(R)←ap(R), hasHead(R),

not someHInI (R)}

πsupp = {otherHInI (R, A1)←head(R, A2), int(A2),
head(R, A1), A1 6= A2,

supported(A)←head(R, A), ap(R),
not otherHInI (R, A),

unsupported(A)←int(A),not supported(A)}

πnoas = {noAnswerSet←unsatisfied(),
noAnswerSet←violated(),
noAnswerSet←unsupported(),
noAnswerSet←ufLoop(),

←not noAnswerSet}

πap = {bl(R)←bodyP(R, A), int(A),
bl(R)←bodyN (R, A), int(A),
ap(R)←rule(R),not bl(R)}

πufloop = {ufLoop(A)←int(A), supported(A),
not ufLoop(A),

ufLoop(A)←int(A),not ufLoop(A),

someBInLoop(R)←bodyP(R, A), ufLoop(A),

someHOutLoop(R)←head(R, A), ufLoop(A),
←head(R, A), ufLoop(A),

ap(R),not someHOutLoop(R),
not someBInLoop(R),

dpcy(A1, A2)←head(R, A1), bodyP(R, A2),
ufLoop(A1), ufLoop(A2),
ap(R),not someHOutLoop(R),

dpcy(A1, A2)←dpcy(A1, A3), dpcy(A3, A2),
←ufLoop(A1), ufLoop(A2),

not dpcy(A1, A2)}

Figure 1: Static Modules of Meta-Program D(Π)

1. Unsatisfied rules: If a rule r ∈ Gr(Π) such that H (r) 6= ∅
is unsatisfied by I , the logical implication expressed by r
is false under I , and thus I is not a classical model of Π.

2. Violated integrity constraints: If an integrity constraint
c ∈ Gr(Π) is applicable under I , the fact that H (c) = ∅
implies I 6|= c, and thus I cannot be an answer set of Π.

3. Unsupported atoms: If {a} ⊆ I is unsupported by Π with
respect to I , no rule in Gr(Π) allows for deriving a, and
thus I is not a minimal model of ΠI .

4. Unfounded loops: If a loop Γ ⊆ I of Π is unfounded
by Π with respect to I , there is no acyclic derivation for
the atoms in Γ, and thus I is not a minimal model of ΠI .

Given a program Π and an interpretation I for Π, the meta-
program D(Π), detailed in the next section, detects these
four errors via occurrences of the following atoms in an-
swer sets of D(Π): unsatisfied(lr) indicates that a rule
r ∈ Gr(Π) is unsatisfied by I; violated(lc) indicates that
an integrity constraint c ∈ Gr(Π) is violated under I;
unsupported(la) indicates that, for an atom a ∈ I , {a} is
unsupported by Π with respect to I; and ufLoop(la) indi-
cates that an atom a belongs to some loop Γ ⊆ I of Π that
is unfounded by Π with respect to I . We call the predicates
of these meta-atoms error-indicating predicates.

A major advantage of this classification scheme is that
it is based on a rather intuitive characterisation of answer
sets (Lee 2005). In particular, we find the concept of an
unfounded loop (exploited in our approach) quite natural,
metaphorically speaking corresponding to a serpent biting
its tail. Compared to subset minimality relative to the reduct
of a program, this notion seems closer to the program written
and thus more natural to understand, especially for novice
answer-set programmers. Furthermore, the selection of er-
ror types is complete in the sense that it suffices to decide

whether an interpretation is an answer set and therefore pro-
vides explanations for an interpretation not being an answer
set, whenever this is the case. Note that the scheme is re-
dundant, as violated integrity constraints could be treated
as unsatisfied rules and, since unsupported atoms constitute
trivial unfounded sets, also the last two categories could be
merged. However, by allowing more types of errors, we get
a more differentiated insight into the context of a program Π
under an interpretation I . From a developer’s point of view,
integrity constraints play a rather different role than other
rules, as they are used to restrict answer sets rather than to
generate them. Therefore, we find it useful to handle their
violations separately. Moreover, by this differentiation, our
debugging technique allows for restricting the search for er-
rors to interpretations that do not violate any integrity con-
straint. Finally, unsupported atoms and unfounded loops are
usually corrected in a different way, since for correcting the
latter, we typically need to investigate multiple rules of Π
involved in connecting the loop, which is unnecessary when
coping with unsupported atoms.

Basic Approach
We now provide the details of the meta-program D(Π), for
a given program Π, and its central properties. The program
D(Π) is composed in a modular fashion, consisting of an
input module, πin(Π), representing the program Π to de-
bug, and several fixed modules. We make use of a standard
meta-programming encoding of Π, often found in the lit-
erature (Eiter & Polleres 2006; Sterling & Shapiro 1994).
Thereby, we assume that all rules r ∈ Π and all atoms
a ∈ At(Π) have unique labels, l(r) and l(a), respectively.
For readability, we denote l(x) by lx.

We start with the program πin(Π) translating a program Π
to debug into the meta-language, serving as an input module
for our meta-program.

Definition 1 Let Π be a ground DLP. Then, the input pro-
gram for Π is the following set of facts:

πin(Π) = {atom(la)← | a ∈ At(Π)} ∪
{rule(lr)← | r ∈ Π} ∪
{head(lr, la)← | r ∈ Π, a ∈ H (r)} ∪
{bodyP(lr, la)← | r ∈ Π, a ∈ B+(r)} ∪
{bodyN (lr, la)← | r ∈ Π, a ∈ B−(r)} .

Observe that πin(Π) just consists of facts stating which rules
and atoms occur in Π and, for each rule r ∈ Π, which atoms
are contained in H (r), B+(r), and B−(r), respectively.

Given πin(Π), the meta-program D(Π) is as follows:
Definition 2 Let Π be a ground DLP. Then, the meta-
program D(Π) for Π consists of πin(Π) together with all
programs from Figure 1, i.e., D(Π) = πin(Π)∪πint ∪πap ∪
πsat ∪ πsupp ∪ πufloop ∪ πnoas .
Note that D(Π) is both non-ground and non-disjunctive.

In what follows, we describe the meanings and important
properties of the individual modules from Figure 1.

Modules πint and πap The purpose of module πint is to
guess an (arbitrary) interpretation I for the program Π to de-
bug. In fact, each answer set A of D(Π) reveals properties
of Π under interpretation I = {a | int(la) ∈ A}. Intu-
itively, the two rules of πint partition the atoms of Π into
two categories, either belonging to I or not.

Based on the interpretation I guessed by πint , for each
rule of Π, module πap checks whether it is applicable or
blocked under I . We thus obtain the following behaviour:
Theorem 1 Let Π be a ground DLP. Then, for any A ∈
AS (D(Π)), I = {a | int(la) ∈ A} is an interpretation
for Π satisfying the following conditions:

1. ap(lr) ∈ A iff r ∈ Π and r is applicable under I , and
2. bl(lr) ∈ A iff r ∈ Π and r is blocked under I .

Modules πsat , πsupp , and πufloop The modules πsat ,
πsupp , and πufloop are central for debugging, detecting rea-
sons why I is not an answer set of Π. More specifically,
module πsat detects rules of Π that are unsatisfied by I ,
thereby distinguishing integrity constraints. Furthermore,
πsupp detects atoms a ∈ I such that {a} is unsupported
by Π with respect to I . The purpose of πufloop is to de-
tect loops of Π that are unfounded by Π with respect to I .
Since such loops may intersect or be subsets of one another,
we cannot provide all of them within a single answer set
of D(Π), at least not without using involved enumeration
strategies. Rather, we allow multiple answer sets of D(Π),
each of which inspects at most one unfounded loop of Π.

Even though many loops of Π might be unfounded with
respect to the same interpretation I , not all of them are crit-
ical in the sense that they incipiently spoil the minimality
of I relative to the reduct ΠI . In order to focus the consid-
eration of unfounded loops, we make use of a recent result
by Gebser, Lee, & Lierler (2006). For a ground program Π,
an interpretation I for Π, and G ⊆ At(Π), let ΠI(G) de-
note the set of all r ∈ Π such that r is a support for G with

respect to I . If I is a model of Π such that each single-
ton {a} ⊆ I is supported by Π with respect to I , and if I is
still not an answer set of Π, then some loop Γ ⊆ I of Π such
that Γ is also a loop of ΠI(Γ) is unfounded by Π with respect
to I . Module πufloop makes use of this fact and focuses on
such loops. More precisely, the first two rules of πufloop

permit guessing an unfounded loop among the atoms sup-
ported by Π with respect to I . For the guessed atoms a ∈ I ,
meta-atom ufLoop(la) is included in a corresponding an-
swer set A of D(Π). The next three rules of πufloop make
sure that Γ = {a | ufLoop(la) ∈ A} is unfounded by Π
with respect to I . Provided that Γ 6= ∅, the last three rules
of πufloop check that Γ is indeed a loop of ΠI(Γ), which also
implies that Γ is a loop of Π.

Module πnoas We use module πnoas to eliminate poten-
tial answer sets ofD(Π) that do not explain why an interpre-
tation I is not an answer set of Π, regardless of whether I
is (not) an answer set of Π. This is because the absence
of atoms over the error-indicating predicates in an answer
set A of (D(Π) \ πnoas) does not necessarily mean that
I = {a | int(la) ∈ A} is an answer set of Π. In fact, even
if I comprises some loop of Π that is unfounded by Π with
respect to I , A does not have to contain any meta-atom of the
form ufLoop(la). Hence, the absence of atoms over error-
indicating predicates does, in general, not imply that I is an
answer set of Π. However, the filtering by module πnoas

results in the following central property of our approach:
Theorem 2 Let Π be a ground DLP and I an interpretation
for Π. Then, I is an answer set of Π iff there is no A ∈
AS (D(Π)) such that I = {a | int(la) ∈ A}.

Knowing that every answer set A of D(Π) expresses that
I = {a | int(la) ∈ A} is not an answer set of Π, we next
detail the meaning of atoms over error-indicating predicates
contained in A.
Theorem 3 Let Π be a ground DLP. Then, for any A ∈
AS (D(Π)), I = {a | int(la) ∈ A} is an interpretation
for Π satisfying the following conditions:

1. unsatisfied(lr) ∈ A iff r ∈ Π such that H (r) 6= ∅ and r
is unsatisfied by I ,

2. violated(lc) ∈ A iff c ∈ Π such that H (c) = ∅ and c is
violated under I ,

3. unsupported(la) ∈ A iff a ∈ I such that {a} is unsup-
ported by Π with respect to I , and

4. if ufLoop(la) ∈ A, then Γ = {a | ufLoop(la) ∈ A} ⊆ I
is a loop of ΠI(Γ) such that Γ is unfounded and each
{a} ⊆ Γ is supported by Π with respect to I .

Note that in the last item there is no “iff”-condition since I
may contain several loops of Π satisfying the “then”-part.
Such a situation gives rise to multiple answer sets of D(Π).

Finally, the following result describes how interpretations
for the program Π to debug induce answer sets of D(Π):
Theorem 4 Let Π be a ground DLP. Then, for every inter-
pretation I for Π:

1. there is exactly one answer set A of D(Π) such that {a |
ufLoop(la) ∈ A} = ∅ iff some r ∈ Π (resp., c ∈ Π) is

unsatisfied by I (resp., violated under I) or some {a} ⊆ I
is unsupported by Π with respect to I , and

2. there is exactly one answer set A of D(Π) such that Γ =
{a | ufLoop(la) ∈ A} 6= ∅ iff Γ ⊆ I is a loop of ΠI(Γ)
such that Γ is unfounded and each {a} ⊆ Γ is supported
by Π with respect to I .

Applying the Meta-Program
Usually, many interpretations for a program Π are not an-
swer sets of Π. Since D(Π) can potentially explain each of
them, it is sensible to prune unwanted information. Gener-
ally, every meta-atom in D(Π) provides a handle to direct
the search for errors. This allows a programmer to spec-
ify knowledge about her or his expected results, e.g., which
atoms should (not) be contained in expected answer sets or
which rules should (not) be applicable. For reducing debug-
ging information, a programmer can thus join D(Π) with a
query program Q, specifying intended results.

Example 1 Consider program Π1, consisting of the rules

r1 = active ∨ awake ∨ sleeping ←,
r2 = awake ← active,
r3 = tired ∨ rested ← awake,not active.

The answer sets of Π1 are given by {sleeping}, {awake,
tired}, and {awake, rested}. Assume that the programmer
wonders why I1 = {active, awake} is not an answer set
of Π1. The corresponding meta-program D(Π1) has 29 an-
swer sets. This number can be reduced to a single answer set
by joining D(Π1) with the following set Q1 of constraints,
pruning all answer sets not associated to I1:

← int(lsleeping), ← int(ltired), ← int(lrested),
← int(lactive), ← int(lawake).

The single answer set ofD(Π1)∪Q1, projected to int/1 and
the error-indicating predicates, is {int(lactive), int(lawake),
unsupported(lactive)}. Therefore, {active} is unsupported
by Π1 with respect to I1.

Example 2 Consider program Π2, consisting of the rules

r1 = goodJob ← goodAppearance,
r2 = highIncome ← goodJob,
r3 = goodFood ← highIncome,
r4 = healthy ← goodFood , sportive,
r5 = goodAppearance ← healthy ,
r6 = sportive ← ,

possessing one answer set, {sportive}. Let the interpreta-
tion of interest be I2 = {sportive, goodJob, highIncome,
goodFood , healthy , goodAppearance}. Using a query Q2,
defined in a similar fashion as query Q1 from Example 1,
the single answer set of D(Π2) ∪ Q2, projected to the
error-indicating predicates, is A = {ufLoop(lgoodJob),
ufLoop(lhighIncome), ufLoop(lgoodFood), ufLoop(lhealthy),
ufLoop(lgoodAppearance)}, exposing {a | ufLoop(la) ∈ A}
as a loop of Π2 that is unfounded by Π2 with respect to I2.

Next, we look at a situation where we have multiple loops
unfounded with respect to the same interpretation.

Example 3 Consider program Π3, consisting of the rules

r1 = fruity ← fresh,
r2 = fresh ← creamy ,
r3 = creamy ← tasty ,
r4 = tasty ← fruity , creamy ,

and interpretation I3 = {fruity , fresh, creamy , tasty}. Ap-
plying our technique as above, we get two answer sets of
the meta-program, identifying Γ1 = {fruity , fresh, creamy ,
tasty} and Γ2 = {creamy , tasty} as loops of Π3 being un-
founded with respect to I3. While Γ1 involves all rules of Π3,
Γ2 is formed by rules r3 and r4 only.

Finally, we consider a specific class of interpretations in-
stead of a single one.

Example 4 Reconsider program Πex from the introduction
and assume that the programmer wants to know why no in-
terpretation for Πex containing atom night is an answer set
of Πex . Furthermore, she or he is interested only in in-
terpretations under which integrity constraint r3 is not vi-
olated and no atom is unsupported. We devise the following
query Q4 according to these requirements:

← int(lnight), ← violated(lr3), ← unsupported().

Then, D(Πex) ∪ Q4 has two answer sets, whose projec-
tions to int/1 and the error-indicating predicates are as fol-
lows: {int(lcandlelight), int(lnight), unsatisfied(lr2)} and
{int(lnight), unsatisfied(lr4)}. They express that rule r2 is
unsatisfied by {candlelight ,night} and r4 by {night}.

Related Work
In their paper, Brain & De Vos (2005) identify general re-
quirements of future debugging systems for ASP. Most im-
portantly, they state the need for declarative debugging tech-
niques and formulate the questions why a set of literals is
satisfied by a specific answer set of the program to debug or
why a set of literals is not satisfied by any answer set, which
cover many debugging tasks. However, the algorithms they
provide answer these questions only fragmentarily.

The approach by Syrjänen (2006) addresses the issue of
debugging incoherent answer-set programs. It is adapted
from the field of symbolic diagnosis (Reiter 1987) and de-
signed to find reasons for the absence of answer sets. The
identified reasons for incoherence of a non-disjunctive pro-
gram are integrity constraints and odd cycles. As shown by
You & Yuan (1994), for the considered class of programs, in-
coherence is indeed always caused by integrity constraints or
odd cycles. Odd-cycle detection is performed using a meta-
programming technique related to ours. In fact, when con-
sidering non-disjunctive programs, our meta-program can be
combined with the one used by Syrjänen, and thus its func-
tionality can be extended to odd-cycle detection.

Precursing our present method, Brain et al. (2007) in-
troduce a debugging technique in ASP by augmenting non-
disjunctive programs with auxiliary atoms, called tags, for
manipulating the applicability of rules. In its basic version,
the method gives information about the applicability of rules
with respect to an answer set of the program to debug. This

task could also be performed by a modified version of our
meta-program. In an extension of their technique, Brain
et al. aim at “extrapolating” non-existing answer sets, i.e.,
identifying a minimal number of operations on a program
needed to make it coherent. It shares the classification of
errors in terms of rule violation, unsupportedness of atoms,
and unfoundedness of loops with our new approach.

Pontelli & Son (2006) adopt the concept of justification
(Roychoudhury, Ramakrishnan, & Ramakrishnan 2000) to
the context of ASP. Here, the general debugging question
addressed is why an atom is true or false with respect to an
answer set of the program to debug. Answers to this ques-
tion are given in the form of graphs, called justifications,
explaining the truth values of atoms with respect to a given
answer set and, in case of so-called online justifications, also
with respect to a partial interpretation. The approach nicely
complements our technique, as it investigates interrelations
within actual answer sets, whereas we focus on the remain-
ing interpretations.

A completely different approach towards debugging in
ASP is based on translating program rules into sentences of
natural language (Mikitiuk, Moseley, & Truszczyński 2007).
The intention is to ease the reading of a program and thereby
to help a programmer to detect errors.

Discussion
In our approach, we express debugging queries by answer-
set programs, which allows for restricting debugging infor-
mation to relevant parts. Moreover, they can be refined by
using optimisation techniques of answer-set solvers, e.g.,
weak constraints (Leone et al. 2006). Applications include
finding error-minimal interpretations within a class of er-
roneous interpretations and detecting minimal or maximal
unfounded loops of a program. Generally, forming queries
and analysing the output of the debugging system does not
require expert knowledge of ASP beyond the basic under-
standing needed for programming. As meta-programming
is very powerful and flexible, our method is highly exten-
sible, e.g., minor modifications allow for checking standard
properties like whether a program is tight or head-cycle-free.

Our approach is easy to implement as it requires only a
fixed non-ground program and a trivial translation of the in-
put program to a set of facts. Indeed, we incorporated this
functionality into the debugging system spock (Brain et al.
2007), which is written in Java 5.0 and publicly available at

www.kr.tuwien.ac.at/research/debug.

An important issue for future work concerns debugging of
non-ground programs, as these typically evolve from real-
world applications. Clearly, debugging strategies for ground
programs can be applied to the ground instantiations of pro-
grams with variables. Here, an important task is relating
debugging information about ground programs to their non-
ground counterparts. Furthermore, since ground instantia-
tions can be of huge size, keeping the debugging process
efficient is a difficulty. As a next step, we plan an empirical
evaluation of our technique in such settings. Another open
task is investigating the specifics of restricting debugging to
certain program modules. Finally, future tools for debugging

should provide easy-to-use interfaces and be embedded into
integrated development environments.

References
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Brain, M., and De Vos, M. 2005. Debugging Logic Pro-
grams under the Answer-Set Semantics. In Proc. ASP’05,
CEUR-WS.org.
Brain, M.; Gebser, M.; Pührer, J.; Schaub, T.; Tompits, H.;
and Woltran, S. 2007. Debugging ASP Programs by Means
of ASP. In Proc. LPNMR’07, 31–43. Springer.
Eiter, T., and Polleres, A. 2006. Towards Automated Inte-
gration of Guess and Check Programs in Answer-Set Pro-
gramming: A Meta-Interpreter and Applications. Theory
and Practice of Logic Programming 6(1-2):23–60.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2006. A Generaliza-
tion of the Lin-Zhao Theorem. Annals of Mathematics and
Artificial Intelligence 47(1-2):79–101.
Gebser, M.; Lee, J.; and Lierler, Y. 2006. Elementary Sets
for Logic Programs. In Proc. AAAI’06. AAAI Press.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9(3-4):365–386.
Lee, J. 2005. A Model-Theoretic Counterpart of Loop
Formulas. In Proc. IJCAI’05, 503–508. Professional Book
Center.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV System for
Knowledge Representation and Reasoning. ACM Transac-
tions on Computational Logic 7(3):499–562.
Mikitiuk, A.; Moseley, E.; and Truszczyński, M. 2007.
Towards Debugging of Answer-Set Programs in the Lan-
guage PSpb. In Proc. ICAI’07, 635–640. CSREA Press.
Pontelli, E., and Son, T. C. 2006. Justifications for Logic
Programs under Answer Set Semantics. In Proc. ICLP’06,
196–210. Springer.
Pührer, J. 2007. On Debugging of Propositional Answer-
Set Programs. Master’s thesis, Technische Universität
Wien.
Reiter, R. 1987. A Theory of Diagnosis from First Princi-
ples. Artificial Intelligence 32(1):57–95.
Roychoudhury, A.; Ramakrishnan, C. R.; and Ramakrish-
nan, I. V. 2000. Justifying Proofs Using Memo Tables. In
Proc. PPDP’00, 178–189. ACM.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics. Artificial
Intelligence 138(1):181–234.
Sterling, L., and Shapiro, E. 1994. The Art of PROLOG:
Advanced Programming Techniques. MIT Press.
Syrjänen, T. 2006. Debugging Inconsistent Answer-Set
Programs. In Proc. NMR’06, 77–83.
You, J.-H., and Yuan, L. Y. 1994. A Three-Valued Seman-
tics for Deductive Databases and Logic Programs. Journal
of Computer and System Sciences 49(2):334–361.

