
ASP-Based Time-Bounded Planning for Logistics Robots

Björn Schäpers, Tim Niemueller, Gerhard Lakemeyer
Knowledge-Based Systems Group,

RWTH Aachen University, Germany
{schaepers, niemueller, lakemeyer}@kbsg.rwth-aachen.de

Martin Gebser, Torsten Schaub
Knowledge Representation and Reasoning Group,

University of Potsdam, Germany
{gebser, torsten}@cs.uni-potsdam.de

Abstract

Manufacturing industries are undergoing a major paradigm
shift towards more autonomy. Automated planning and
scheduling then becomes a necessity. The Planning and Ex-
ecution Competition for Logistics Robots in Simulation held
at ICAPS is based on this scenario and provides an interesting
testbed. However, the posed problem is challenging as also
demonstrated by the somewhat weak results in 2017. The
domain requires temporal reasoning and dealing with uncer-
tainty. We propose a novel planning system based on Answer
Set Programming and the Clingo solver to tackle these prob-
lems and incentivize robot cooperation. Our results show a
significant performance improvement, both, in terms of low-
ering computational requirements and better game metrics.

1 Introduction

Industrial applications move towards more autonomy in
smart factories, context-aware facilities that assist in the ex-
ecution of manufacturing tasks. This scenario is modeled
by the Planning and Execution Competition for Logistics
Robots in Simulation (PExC) (Niemueller et al. 2016) for
a small fleet of three robots maintaining and optimizing the
material flow in a virtual factory with six machines. While
obviously planning is useful to accomplish this task, it is still
the exception rather than the norm. The performance in the
first competition in 2017 was subpar. Investigating the do-
main, several challenges arise. Even for the small number
of objects, the combinatorial growth quickly becomes over-
whelming. This is only made worse when the temporal as-
pects inherent to the domain are fully modeled. For instance,
orders must be delivered in specific time windows and are
announced only at run-time with a certain lead time. Even
more severe, there is uncertainty, e.g., in terms of time re-
quired to move in-between locations due to two teams com-
peting at the same time, or due to processing stations being
down for maintenance for limited (a priori unknown) time.

Our main contribution is a pattern for modeling time-
bounded temporal multi-robot planning with Answer Set
Programming (ASP) (Brewka, Eiter, and Truszczyński
2011), which enables us to use the full power of ASP to

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

steer the search. As our planning approach is time-bounded,
it generates actions for a specified time window (e.g., for the
next three minutes). Planning is considered successful if a
partial plan can be found, even if no full goal state is reach-
able within the time window. To this end, domains have
to provide an evaluation metric that accumulates within the
time window in order to ensure eventual progress towards
the goal. Our planner then generates temporal plans with
concurrency for efficient multi-robot (co)operation, making
use of Clingo’s multi-shot solving (Gebser et al. 2014) for
virtually continuous and adaptable solving. We thoroughly
evaluate our approach by comparing it to the POPF planner
(Coles et al. 2010) and by simulating PExC games against
publicly available agents, among them the 2017 PExC win-
ner as well as the winner of the 2016 RoboCup competition.

In the following Section 2, we give a brief overview of
related work and this work’s background, before explaining
our approach in detail in Section 3. We present our evalua-
tion results in Section 4 before concluding in Section 5.

2 Related Work and Background

We briefly introduce our evaluation domain, related planners
such as POPF and Plasp, and Answer Set Programming.

2.1 Planning and Execution Competition for
Logistics Robots in Simulation

The Planning and Execution Competition for Logistics
Robots in Simulation (PExC) (Niemueller et al. 2016)
is based on the RoboCup Logistics League (RCLL)
(Niemueller, Lakemeyer, and Ferrein 2015). It considers

Figure 1: The PExC/RCLL simulation environment.

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

509

two teams of three robots each that need to maintain pro-
duction according to a dynamic order schedule. A product
consists of a base (out of three possible colors), zero or up
to three color-coded and ordered rings, and a cap (out of
two colors). Products are assigned a complexity C0 to C3

depending on the number of rings. Orders specify the re-
quested product and a time window when the product can
be delivered. There are six stationary machines per team
on the field (at a priori unknown positions), which provide
specific functionality, such as supplying bases of specified
colors, mounting a ring or a cap, or accepting deliveries of
completed products. Orders become known only at run-time
with a certain lead time before the beginning of the delivery
time window. The teams are oversubscribed, i.e., the order
schedule asks for more products than can be produced and
delivered in the given time of 15 minutes. Therefore, teams
must dynamically decide which orders to pursue, what pro-
duction steps are necessary, and how to schedule this to the
available robots. Uncertainty arises through the presence of
a second team, which can delay robots while driving (and
avoiding collisions), and because machines may be in main-
tenance and thus unavailable for limited time.

2.2 POPF

POPF (Coles et al. 2010) is a temporal planner based on
PDDL 2.1 (Fox and Long 2003). It aims at balancing total
order planning, as done by most forward-chaining planners,
and partial order planning as an “intuitively attractive strat-
egy”. While forward-chaining commits to an action’s time
frame as soon as the action is added to a plan, partial order
planning pursues the idea of least commitment and delays
setting actual times for planned actions as long as possible.

POPF’s approach is committing to the order of the added
actions, in regard of used or modified facts and numerics.
That is, adding an action A with p in its precondition, the ac-
tion A has to start after the last known adder of p. Likewise
can another action B that would remove p at its beginning
only start after action A is finished. To adhere to these con-
straints, POPF checks when a fact was last added, removed,
and when it has to hold. The commitment to the timing of
unrelated actions is delayed. Moreover, POPF is a complete
planner because, if a poor choice of ordering occurs, it back-
tracks and continues to calculate a new plan.

2.3 Answer Set Programming

Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczyński 2011) is a declarative programming language
with stable model (answer set) semantics of logic program-
ming (Lifschitz 2008) and a similar syntax to specify rules.
The idea is to express a problem in logical format so that
models of its representation provide solutions to the original
problem. Hence, we formulate our planning task by an ASP
encoding and read off the resulting plan from an answer set.

An ASP encoding is made up of rules of the basic form
head ← body, e.g., r = a0 ← a1, ..., an,∼an+1, ...,∼am,
with atoms ai for i ∈ {0, ...,m}. A rule with an empty
body is a fact, and a program is a collection of rules. Two
special forms of rules are of particular relevance. First, for
a choice rule of the form l{a1, ..., an}u ← an+1, ..., am,

∼am+1, ...,∼ao, a solver can add any subset of {a1, ..., an}
to the answer set, provided that at least l and at most u ele-
ments are added. In our planner, such choice rules represent
the possible actions for a plan. Second, integrity constraints,
rules with an empty head, prune answer sets in which the
body of such a rule holds. This permits, for example, pre-
venting two robots from performing the same task.

Searching for answer sets is done in two steps (Kaufmann
et al. 2016). First, the grounder instantiates an ASP encod-
ing through variable substitution to create ground instances
of the rules. Second, the output of the grounder is processed
by the solver to find answer sets. This can involve optimiza-
tion according to some metric. We use Clingo (Gebser et al.
2016), which integrates both aspects into a common frame-
work. In particular, we harness multi-shot solving (Gebser et
al. 2014) for iterative grounding and solving, specifically ap-
pealing to incomplete knowledge, e.g., regarding orders yet
to be announced. Clingo supports specifying multiple pro-
gram parts that can be grounded separately. Furthermore,
and more importantly, it supports externals, i.e., undefined
atoms that may change in-between solving iterations.

2.4 Plasp

Plasp is a system for planning by compilation of a PDDL
specification to ASP (Gebser et al. 2011). While this transla-
tion is simple, it supports modeling different planning tech-
niques in ASP by meta-programming. The ASP grounder is
used to obtain propositional representations and the solver to
retrieve actual plans. Plasp so far only supports the STRIPS
subset of PDDL and can thus not handle temporal domains.

We have run experiments with Plasp for PExC, where the
domain was simplified to a single robot, we ignored all tem-
poral aspects, and the task consisted of a single C0 order
without any rings.1 Even for this simple setup, Plasp was un-
able to find a solution within an hour. Plasp also is not able
to operate on-line, i.e., it builds on the assumption of com-
plete information. Since the capabilities and performance of
Plasp turned out as insufficient, we will not consider PDDL-
based ASP planners in the remainder of this paper.

3 ASP-based Time-Bounded Planning

As illustrated in Figure 2, we employ the paradigm of cen-
tralized, global planning, where a single computer plans for
the full fleet of robots (Niemueller, Lakemeyer, and Ferrein
2015). On this central computer, a wrapper collects all its
data through a shared database (robot memory) to provide
the necessary information to the planner. It also controls
Clingo by instructing when to ground or solve. A plan is
then extracted from an answer set (if any) and passed on to
the robots through the shared database. On the robots, a con-
troller selects actions assigned to the specific robot adhering
to its timing requirements and executes them. The robots
in turn provide all necessary information back to the plan-
ner host. In particular, they report when executing an action
takes longer than anticipated, in which case the planner may
decide to replan. Our system is based on a publicly available

1We also removed ring station related specification parts, as the
system would run out of memory at 16GiB of RAM otherwise.

510

Model
translation

Plan
extraction

Clingo

Planner

Planner Integration/CLIPS Robot Integration/CLIPS

R
o
b
o
t

M
em

o
ry

Executive

CLIPS Executive

Planner Computer Robot i

Figure 2: Planning system architecture. Grey boxes repre-
sent computing devices, blue boxes components and sub-
components, and arrows indicate the flow of information.

Create Clingo Control

Load Encoding Ground base Wait for Team Color

Team Color

Ground ourTeam(t)Wait for Game StartGame Start

Ground start

Set current world state

Solve Plan Feedback

Ground newOrder(...)
Release externals
related to order

Game Event

Execute

Compose Plan

Optimum
found

New order received

Figure 3: Program flow diagram. The main planning and
execution cycle is included on the right. We show only the
event of a new order as an example for interrupting planning.

implementation using the CLIPS rules engine (Niemueller,
Lakemeyer, and Ferrein 2013),2 and integrating our own
planning system required only modest modifications.

3.1 Solution Overview

The domain is encoded directly in ASP, where tasks can be
added to an answer set through choice rules. The overall
encoding is split into several parts, which can be grounded
separately. The general planning procedure at a glance is
depicted in Figure 3. Through multi-shot solving, we re-
solve based on updated information on specific events, such
as a new order coming, without requiring costly grounding
of the whole program again. Special external atoms permit
updating information for the next solving call, and a result-
ing answer set contains specific atoms yielding a plan. In the
following, we describe these constituents in more detail.

3.2 Encoding Idea

Unlike Plasp, for example, which reads a PDDL description,
encoding the domain directly in ASP avoids compromises in

2https://www.fawkesrobotics.org/p/rcll2016-release/

1 robot(1)←
2 robot(2)←
3 at(1, l1, 0)←
4 at(2, l3, 0)←
5 ←∼at(1, l2, q)
6 ←∼at(2, l4, q)
7 task(drive(L))← location(L)
8 at(R,L,T)← end(R, drive(L),T)
9 at(R,L,T)← at(R,L,T − 1),∼begin(R, ,T − 1)

10 {begin(R,A,T) : task(A)} 1← robot(R),T = 0..(q − 1)
11 do(R,A,T , D)← begin(R,A,T), duration(R,A,T , D)
12 do(R,A,T , D)← do(R,A,T − 1, D + 1), D > 0
13 end(R,A,T)← do(R,A,T − 1, 1)
14 ← do(R, ,T − 1, D + 1), D > 0, begin(R, ,T)
15 ← do(R1,A,T ,), do(R2,A,T ,), R1 �= R2

Logic Program 1: Example encoding for path finding.

terms of efficiency and solving capabilities, as it increases
modeling flexibility, especially regarding the representation
of constraints. Nevertheless, our approach yields a general
pattern for modeling temporal planning problems that is in-
dependent of any other description language.3

Our systems plans over tasks, rather than primitive ac-
tions. Tasks are similar to macro actions that treat sev-
eral primitive actions as a compound to improve search ef-
ficiency. In the following, we will use action and task inter-
changeably. For an action A of a robot R at time T with a
remaining duration of D, the begin and end times are rep-
resented by begin(R,A,T) and end(R,A,T) atoms, while
atoms of the form do(R,A,T , D) keep track of an active
task. An example is shown in Logic Program 1, where the
encoding is split into a domain-specific (ll. 1–9) and a gen-
eral part (ll. 10–15). Lines 1–4 state facts about the initial
situation, i.e., there are two robots, and robot 1 is at location
l1 and robot 2 at location l3 at time 0. The goal is expressed
by constraint rules (ll. 5–6), i.e., robot 1 has to be at po-
sition l2 and robot 2 at position l4, where q represents the
planning horizon giving the latest time when the locations
should be reached. There is a single kind of task to drive
to a certain location (l. 7). Note that actions have no direct
argument denoting which robot is supposed to execute the
task, as this is handled by the generic encoding part. In our
example, we assume that driving is always possible, while
an atom possible were used to check actions’ preconditions
otherwise. The domain-specific effect of performing a drive
action is changing the robot’s location (l. 8), or we keep the
robot’s last position in case the robot is idle (l. 9).

In the generic part, line 10 provides a choice rule that al-
lows for picking tasks for specific robots by adding a begin
atom to an answer set. Lines 11–13 describe the bookkeep-
ing for performed actions, where a do atom is derived at
the time a task starts and then counts the remaining time.
The constraint in line 14 makes sure that no (other) action
is started by a robot as long as the execution of the previous
task is still ongoing. Finally, line 15 expresses that any task
can be performed by at most one robot at a given time.

3For instance, Plasp could be extended to take PDDL input and
translate it into the very pattern we formulate.

511

1 getBaseTask(getBase(L,B)) :- baseLocation(L), baseColor(B).
2 task(T) :- getBaseTask(T).
3 %points(T, 10) :- getBaseTask(T).
4 taskBase(getBase(L,B), B) :- task(getBase(L,B)).
5 taskDuration(T, @getTaskDuration()) :- getBaseTask(T).
6 taskLocation(getBase(L,B), L) :- task(getBase(L,B)).
7
8 toBeDone(T,GT) :- getBaseTask(T), productionStarted, horizon(H), GT=0..H-1.
9 inUse(L,R,GT) :- doing(R,T,_,GT), getBaseTask(T), baseLocation(L).

10 inUse(L,R,GT) :- end(R,T,GT), getBaseTask(T), baseLocation(L).
11 possible(R,T,GT) :- getBaseTask(T), robot(R), not holding(R,_,GT), horizon(H), GT=0..H-1.
12
13 :- doing(R1,T1,_,GT), doing(R2,T2,_,GT), getBaseTask(T1), getBaseTask(T2), R1 != R2.
14
15 generateProduct(R,B,GT) :- end(R,T,GT), getBaseTask(T), taskBase(T,B).
16 pickUp(R,P,GT) :- end(R,T,GT), getBaseTask(T), generatedProduct(R,P,GT).

Listing 1: Encoding of the task to get a base from the base station.
(L: location, B: base color, T: task, H: horizon, GT: game time, R: robot, P: product/workpiece)

Let the durations from l1 to l2 be 3 s, and from l3 to l4 5 s.
A possible answer set may then include the following atoms
for q ≥ 5: begin(1, drive(l2), 0), end(1, drive(l2), 3),
begin(2, drive(l4), 0), and end(2, drive(l4), 5). Such atoms
provide a plan and implicitly determine other atoms like at .

3.3 Time Representation and Time Bound

In our previous example, we assume time to be represented
by a natural number. However, in the PExC domain, where
games are 900 s long, this leads to a large blow-up of the
state space. Therefore, we discretize time into intervals.

We have already specified a planning horizon by means
of the query time q. In the encoding, we specify this hori-
zon explicitly. Only within this time window will the plan-
ner create and optimize a plan. That bounds the search fur-
ther to enable the anticipated frequent replanning cycles as
new information becomes available. For the search to reach
the intended goal eventually, the chosen optimization metric
must ensure progress (e.g., reward) within the time horizon.

We have run several hundred games to calibrate these pa-
rameters. As is to be expected, the parameters are not inde-
pendent, e.g., similar solving time for a larger horizon can
be achieved by reducing the time resolution. However, this
leads to more idle time (actions are only planned to start at
interval bounds) and thus decreases task performance. For
the PExC domain, we have chosen an interval length of 10 s
and a planning horizon of 180 s.

3.4 ASP Domain Encoding

Our encoding of the PExC domain is split into several com-
ponents, dealing with the general planning mechanics, rules
of the game, and robot tasks. The overall encoding com-
prises less than 500 lines of code.

Our encoding is influenced by the capabilities of the
Clingo solver, in particular, multi-shot solving introduced
with Clingo 4 (Gebser et al. 2014). It supports separat-
ing an encoding into multiple parametrized parts with the
#program directive, which can be grounded independently

of each other. The components mentioned before sepa-
rate concerns in terms of the domain mechanics and their
modeling, and thus help the domain designer to structure
the encoding. Using multiple programs, where a program
is often mentioned in more than one component, separates
parts of the encoding with the same grounding require-
ments. Our encoding contains 6 programs. The implicit
base program contains basic facts and domain-specific (but
non-team-specific) externals (see below). It is grounded on
startup of the planner. A program ourTeam(t) (for t being
the team’s jersey color) is the largest program. It contains all
information that is specific to a particular team and grounded
once the jersey color is known. Three further programs
newOrder, setDriveDuration, and setRingInfo, are
used by the planner integration plugin to pass information
to the solver as it becomes available, i.e., once an order re-
quest has been received, or once the production phase starts
and information such as the position of the machines and the
configuration of the ring stations becomes available. Finally,
the program start is used to indicate the start of the game.

Updating information in-between grounding and solving
iterations is accomplished by means of externals. These are
special input atoms marked with the #external directive.
These atoms are exempt from simplification and pruning by
the solver. Externals are necessary to capture incomplete
and volatile information in the domain. For example, the
external base(O,B): order(O), baseColor(B) de-
scribes the base color B of an order O. Specifying this as
an external prevents the solver from removing rules related
to orders during initial solving when no orders have been an-
nounced, yet. In this way, the expected number of orders and
the possible base colors constitute static information. Later,
the newOrder program is used to ground information about
a specific order and the externals for that order can be re-
leased. An interesting property in this respect is that solv-
ing speed improves over time as the number of externals is
reduced as more information becomes available. Other ex-
ternals such as availableRobot(R): robot(R) that de-
scribes whether a robot R is currently alive and thus available

512

to perform tasks, are never released but merely used to pro-
vide volatile information about the world state.

One particular issue when modeling the PExC domain is
the requirement of exclusive access to machines, i.e., only
one robot may operate a machine at a time.4 We therefore
discretize the space of locations to just the ones of interest,
i.e., one on either side of a machine and starting positions.
Then, each task is explicitly assigned a specific location.
While a robot is traveling, it is assumed to be at no specific
location. Listing 1 shows an example of an encoding mod-
eling a task to retrieve a new colored base from the base sta-
tion. In lines 1–2, we declare the getBase task, and line 3
shows how points would be associated with a task (getting
bases does not actually award points, hence this is com-
mented out). In the following, we fix the color parameter
(l. 4), the task duration (l. 5, where the @ indicates an exter-
nal function call) and the location of the task (l. 6). Then, we
deduce the task as to be executed (l. 8) and mark a location
as being occupied by a robot while executing the task (ll. 9–
10), before specifying the task’s preconditions that the robot
may not be holding anything (l. 11). The constraint in line 13
expresses that at most one robot can perform a getBase task
at a time.5 Finally we add information about the generated
product and the robot that picked up the product (ll. 15–16).
Similar encodings are defined for the remaining tasks, such
as fetching or delivering a workpiece, or moving from one
place to another.

3.5 Goal and Optimization

The robots are generally oversubscribed, that is, there are
more orders than can actually be fulfilled. Hence, the system
must choose which orders to pursue. Unlike classical (and
also temporal) planning systems that require a goal to be
specified before starting to plan, we only need to specify an
optimization metric that maximizes the score (cf. Listing 2).
Through the formulation of the scores of the tasks, the plan-
ner will eventually produce and deliver goods. However,
our system schedules task for various orders very densely
(cf. Section 4). While PDDL3 (Gerevini and Long 2005)
does support formulating soft and hard goals (and therefore
could support automatic goal selection), it only considers
solutions which contain the full sequence from the initial
situation to at least some goals. In our system, however, fea-
sible (and sometimes even optimal) models may contain par-
tial plans. This is because we only plan with a limited time
horizon and do not search towards a goal, but maximize our
metric within the given time window.

As a basis, we have used the scoring scheme of the com-
petition. We then made it more fine grained for the ring

4Two robots can still cooperate. For example, a robot may re-
trieve a workpiece prepared by another robot.

5The base station can serve bases on both sides, but only one at
a time. Other tasks do not have a similar restriction.

1 #program ourTeam(t).

2 #maximize{P, T : end(_,T,GT), points(T,P)}.

Listing 2: Optimization statement for the solver.

scores. For example, according to the rules mounting the
third ring of a C3 product scores 80 points. In our model,
however, we award 10, 20, and 50 for the first, second, and
third ring respectively (for any complexity). This is to ensure
the required metric progress (cf. Section 3.3). Otherwise, the
planner may not make progress on more complex products
within a time window as this would require completing all
three ring mounting operations.

3.6 Multi-Shot Solving and Execution

We use Clingo 5 (Gebser et al. 2016) as solver. We rely
in particular on its multi-shot solving capabilities by means
of programs and externals (cf. Section 3.4). The base pro-
gram is grounded upon startup, while the team program is
grounded during the setup phase of the game, a 90 s pe-
riod where teams can prepare before the actual game starts.
At that time, the team knows about its jersey color. Initial
grounding is a costly process and can take up to a minute.

The core of the task selection of the planning procedure
is shown in Listing 3. As part of the team specific program
(l. 1), the solver may choose one action per robot (ll. 2–3).
Several constraints require that a robot is at a location, i.e.,
not currently driving (l. 4), the task is yet to be done (l. 5) and
possible (l. 6), and we start it as early as possible (ll. 7–9).

Once the planner is started, it operates in an any-time fash-
ion. That is, during the game, we are running the solver vir-
tually all the time, and stop it on specific events, such as a
new order being announced, or a machine coming back from
maintenance. Once the new information is incorporated the
planning process is restarted with the current status. When
a new answer set is found, we wait for half a second for
stabilization (especially when starting a new solve call the
first two or three models may appear in quick succession)
and then accept the answer set. The solver continues thus
making it possible to find improved answer sets.

The planner extracts the plan from the accepted answer
set, that is, it determines tasks, the assigned robot, and when
the task is supposed to be executed. The new plan is val-
idated with the currently running plan. If the old and new
plans are compatible, the new plan is deployed. Conflicts
may arise since the old plan keeps being executed when a
new solving iteration is run. A robot might have completed
a task and started another one, which the new plan now had
assigned differently (or not at all). Then, replanning is initi-
ated and the old plan remains in effect. Principally, solving
could stop if the solver found an optimal (time-bounded) so-
lution. However, in our experiments this does not happen.

1 #program ourTeam(t).

2 { begin(R,T,GT) : task(T) } 1 :-

3 robot(R), horizon(H), GT = 0..H-1.

4 :- begin(R,_,GT), not robotLocation(R,_,GT).

5 :- begin(_,T,GT), not toBeDone(T,GT).

6 :- begin(R,T,GT), not possible(R,T,GT).

7 :- begin(R,T,GT), possible(R,T,GT-1),

8 robotLocation(R,_,GT-1),

9 toBeDone(T,GT-1).

Listing 3: Task selection choice and constraint rules.

513

Rather, we restart in the mentioned situations.
The plan is deployed through a shared database to which

all robots have access. Whenever a robot has completed a
step, it picks up the next assigned task and executes it. It
keeps track of the actual and the expected time taken. If dis-
crepancies exceed a given threshold, it notifies the planner,
which will replan (not necessarily, but possibly, coming to a
new solution).

3.7 Working with intermediate results

The usage of intermediate results and partial plans is critical
for the scenario. The highest scoring products, C3, can not
be produced within the 3 minute time window, but as we
award the internal score for steps towards this goal the tasks
are scheduled anyway. And when the solving is restarted
some of the work will be done already, up to the point where
the C3 delivery is schedulable within the time frame. On the
other hand increasing the horizon so that the full production
can be scheduled within one frame, the solving time to find
an answer set containing the delivery is so long, the solving
will most likely be stopped before finding the answer set.

New plans are immediately deployed, given they are com-
patible. The optimization value of new answer sets is always
higher than the one before so the resulting plan is better ac-
cording to our metric.

4 Evaluation

To assess the feasibility and performance of our approach we
have conducted an in-depth evaluation. In Section 4.1, we
compare our planning system to POPF on generated prob-
lems. We then describe our evaluations to guide some of
our design and parametrization decisions in Section 4.2. We
have run a large number of simulated test games which we
describe in Section 4.3. All evaluation was performed on
a cluster of 7 machines consisting of two with Intel Core
i7-6700 and five with i7-3770 quad core CPUs (all running
at 3.4GHz with 16GiB of RAM). We used safe compiler
settings compatible with both types of machines.

4.1 Comparison with POPF

To get an impression of the performance of our planning sys-
tem, we have run a large number of problems with random-
ized machine position and order configurations. We have
chosen POPF as a representative of PDDL-based temporal
planners.6 For one, it performed well in International Plan-
ning Competition (IPC) 2011, for another it comes readily
integrated with ROSPlan used in the on-line evaluation.

We have based our POPF tests on the domain which is
part of the PExC reference implementation7 that uses POPF
via ROSPlan. Then, we have generated 100 game instances
based on the order distribution and random machine posi-
tions as specified by the PExC referee box. For each of
these game instances, we have created 10 problems for sin-
gle order production of each complexity for a single or three
robots, and problems for the full set of orders (assuming all

6We have run Clingo with a single thread to increase similarity
with POPF, which does not support parallelization.

7https://github.com/timn/ros-rcll ros

orders to be known at start). For C0, we made a strict re-
quirement to produce plans within 60 s, which is the out-
most acceptable value for actual games. We also use this
configuration during the on-line evaluation with ROSPlan.
For the more complex products, we permit a maximum plan-
ning time of 30min, similar to the IPC. For ASP, we have
run the planner for the full game duration (F), and with our
time-window approach (W). There, we used a time interval
of 10 s and planned every 30 s for the next 180 s. We ac-
cumulate solve time among all solve steps. We have run
POPF in its any-time (A) mode, In this mode, POPF con-
tinues solving until a timeout is reached and it is aborted.
The solving time then is the run-time. Note that POPF mini-
mizes makespan of the plan, while ASP-based time-bounded
planning (ASP-TBP) maximizes score. However, a previous
analysis (Niemueller et al. 2015) has shown that in this spe-
cific domain these amount to the same optimal outcome.

Table 1 summarizes the results. Over all, ASP-TBP is
able to solve about 82 % of the problems. The time window
approach can solve all. POPF can solve about 16 % of the
problems. Using the time-bounded planning approach has
clear advantages. It is able to solve all problems.8 For sin-
gle orders, the planning times are well within the acceptable
range for PExC. Planning a full set of orders from the start
takes a very long time. However, if that time is spread over
the whole duration of the game (as is done for actual games
in the Section 4.3), it still yields acceptable times. Recall
that the given time is the sum of all 24 planning iterations,9
resulting in 17 s and 22 s per-cycle planning time averages
respectively. The makespan for the ASP approach is con-
siderably longer. This is mostly due to the time discretiza-
tion. If a task has a duration of 7 s, it is summed as 10 s in
the makespan. Furthermore, the ASP agent has a more tidy
modeling. For one specific production step, pre-filling a cap
station, the robot ends up with one scrap item. The PDDL
model supports simply dropping the item on the floor, while
the ASP encoding always recycles.10

For all higher order complexities, POPF runs out of mem-
ory for all problem instances at 4GiB. For some, it still
creates a plan before aborting, which we count as a suc-
cessful run. This is due to the fact that we run the 32-bit
version coming with ROSPlan. Experiments with a 64-bit
version showed worse performance in the solvable instances
in terms of solving time and memory consumption, so we
did not run this version on the full set.

The maximum memory consumption of Clingo was
5.8GiB for 3 robots for a C3, in full game mode. For a sin-
gle robot and a C0 product, Clingo requires about 90MiB

8To solve a problem means delivering the product for the C0 to
C3 cases, and delivering at least one product for the full set case.
Although in some of the 100 full set problems all products were
delivered, this is only possible because robots are assumed to move
very fast for the sake of this experiment.

9The last planning iteration starts at 12min and covers every-
thing until the end.

10Note that the makespan and scores are not directly comparable
to the on-line evaluation, as for simplicity the given model assumes
an unrealistic constant travel speed of 1m/s speed. ASP and POPF
results are comparable since they use the same time model.

514

One robot Three robots
ASP F ASP W POPF A ASP F ASP W POPF A

C
0

solved 100 100 95 73 100 10
makespan Median (s) 260 240 120.88 140 175 121.67

solve time Median (s) 12.25 1.52 60.06 24.44 1.79 60.05
first model Median (s) 11.3 4.89 20.65 27.71
points Median 36 42 30 36 42 30

C
1

solved 100 100 25 99 100 0
makespan Median (s) 335 260 172.49 250 210

solve time Median (s) 126.75 2.87 318.66 374.51 5.08

first model Median (s) 91.13 79.26 363.1

points Median 55.5 57 52 55 57

C
2

solved 100 100 21 53 100 0
makespan Median (s) 420 380 213 310 250

solve time Median (s) 285.09 5.87 344.16 852.94 35.41

first model Median (s) 257.9 103.17 748.1

points Median 89 89 77 83 89

C
3

solved 96 100 10 21 100 0
makespan Median (s) 490 445 252.35 350 290

solve time Median (s) 552.7 7.12 368.1 1178.09 78.97

first model Median (s) 534.04 145.81 1177.66

points Median 152 157 144 151 156

Fu
ll

Se
t

solved 0 100 0 0 100 0
makespan Median (s) 830 640

solve time Median (s) 405.75 524.99

first model Median (s)
points Median 268 391

Table 1: Comparison of ASP Planning with POPF. For each robot (macro column) and order configuration (macro rows) there
are 100 problem instances, resulting in 2×5×100 = 1000 runs in total. Bold face entries mark the best entries per configuration
(one per line and per number of robots).

in time window mode. The consumption of a typical on-
line configuration with three robots, all orders, and using the
time window approach is about 250MiB.

4.2 Solver and Encoding Parametrization

During the development of the ASP-based planner, we have
run several hundred games to guide the design of our encod-
ing in terms of planning and metric performance, as well as
to inform our decision of solving parameters.

One aspect of the encoding we have investigated in detail
is the way we model movement from one location to another
(the “goto” task). If the encoding allows the robot to move
among locations without further constraints, plans tend to be
very inefficient with many consecutive useless gotos. This is
because we optimize score, on which a goto has no impact.
This is a problem that can also often be observed with PDDL
domain models. To improve this, we then added constraints
to force a robot to perform a task, when one was possible at
its current location. This removed most useless movements.
While gotos and some other tasks have no direct impact on
the score, neither positive nor negative, their execution costs
time which could be used to perform actions which yield
score. Given enough time the solver would always find the
optimal answer set, not containing any useless gotos. But as
time is crucial we have to guide the solver with the additional
constraints to find better answer sets faster.

As described earlier in Section 3.3, we have systemati-
cally tried several combinations of time interval length and
planning horizon. A horizon of 60 s performed poorly, while

180 s was much better. No further improvement could be
reached by increasing the horizon; to the contrary a hori-
zon of 300 s or more showed deteriorated performance due
to long planning times and high memory consumption due
to a much larger grounding. Using a time intervals of 7 s
required too much memory. Using 13 s did not show a sig-
nificant improvement over 10 s but risks higher robot idle
times. We therefore went with a horizon of 180 s at a 10 s
time interval.

Clingo can be run with multiple threads in several thread-
ing modes for parallel search during solving. In split mode,
the search space is separated into disjunct pieces and threads
search exclusively in their sub-spaces. In compete mode,
each thread operates on the whole search space but with dif-
ferent search strategies. We have tried both modes with 2, 4,
and 7 threads (hyper-threading supports 8 parallel threads,
we left one free for the planner integration). Increasing the
number of threads has severe impact on memory require-
ments. After many test runs we settled for running with two
threads in split mode.

While the solver and encoding parameters have been de-
termined empirically, future work could investigate the (par-
tially) automated determination of these values.

4.3 Simulated Tournament

We have based our evaluation in actual games on the pub-
licly available cluster setup11 of the Planning and Execution

11https://github.com/timn/rcll-sim-cluster

515

ASP-TBP

Carologisti
cs

Freiburg

ROSPlan
0

50

100

150

200

250

300
Mean
Median
Outlier

Figure 4: Box plot of scores achieved in 600 simulated. A
box shows the 25% and 75% quartiles (lower and upper
bound of box), min and max points within expected toler-
ance (whiskers with caps), median, mean, and outliers. An
outlier is a score with a difference of more than 1.5× the
inter-quartile distance from the nearest bound.

Competition for Logistics Robots in Simulation12 (PExC) at
ICAPS 2017. We have run a competition with the publicly
available CLIPS-Agent13 (Niemueller, Lakemeyer, and Fer-
rein 2013), ROSPlan13 (Cashmore et al. 2015), and the win-
ning team from Freiburg.14

For each team combination, we have run 100 games, re-
sulting in a total of 600 games. The CLIPS-Agent won 232
games, our ASP planner won 179 times, and Freiburg and
ROSPlan won 93 and 85 times respectively (each system
played 300 games). Figure 4 shows a box plot of the result-
ing score distribution. The CLIPS-agent has consistent scor-
ing (narrow box) and the highest median score and many
upward outliers. Freiburg does not perform as robust, but
still manages to score high in many games. The baseline
ROSPlan implementation only pursues a single C0 product,
which it most of the time is able to finish. Our approach
scores reliably (indicated by the high median). However,
the lower quartile is really low, resulting in more opportuni-
ties for other teams to win. The upper quartile is even higher
than the one of the CLIPS-Agent. So further improvements
to robustness of planning and execution could provide the
necessary edge to supersede the CLIPS-Agent. Note that
the CLIPS-Agent does not do any planning, rather it per-
forms situation classification and then selects the next best
action whenever a robot is idle. The CLIPS domain model-
ing consists of more than 4000 lines, encoding very specific

12https://www.robocup-logistics.org/sim-comp
13https://github.com/timn/docker-robotics
14https://github.com/GKIFreiburg/rcll-sim-freiburg

Idle

Get Base

Get Product

Mount Ring

Mount Cap

Fill RS

Useless Goto

Goto

Prepare CS

Deliver

Late Deliver

Figure 5: Gantt chart of robot task assignments for the robots
R-1 to R-3 with the time denoted in minutes.

situations. While this does perform well, it required years of
development for the domain modeling and makes it tedious
to encode cooperative behavior and coordination.

Figure 5 shows the task assignment to three robots in a
game of the competition. At a first glance, in particular, the
dense task assignment is obvious. The plan is generated up
to the full horizon ignoring the end of a game (and hence ac-
tions reach beyond 15min. The time of a task also includes
driving to the location where the task must be performed.
The explicit goto allows robots to move to a location in an-
ticipation of a task that needs to be done there later. The
initial idle time is when the robots enter the field. In this in-
stance, R-3 immediately gets a base, while R-1 and R-2 start
by preparing the two cap stations. This is a typical game of
our ASP-based system scoring 117 points.

5 Conclusion

We have presented a novel approach to ASP-based time-
bounded planning. It uses a direct encoding of the planning
domain and procedure in ASP, and the Clingo grounder and
solver to find plans. Using improvements such as macro ac-
tions, time-bounded planning, and multi-shot solving yields
the required efficiency to be competitive in the Planning and
Execution Competition for Logistics Robots (PExC). We
have compared our approach to the POPF planner, where
our planner is able to solve many more problems in much
shorter planning times. This translates into very successful
runs based on the publicly available PExC cluster setup. We
could outperform the available planner integrations and the
performance is close to the CLIPS-based reference system,
but with an encoding size an order of magnitude smaller,
fully automated, and anticipating potential for cooperation
automatically.

Further improvements could be made in terms of robust-
ness, i.e., increasing the lower scoring quartile. Future work
could also be directed towards generalizing the concepts and
ideas and performance gains of our system, for example by
extending Plasp.

The source code and evaluation data are available at https:
//www.fawkesrobotics.org/p/asp-tbp.

Acknowledgments

T. Niemueller and B. Schäpers were supported by the
German National Science Foundation (DFG) research unit

516

FOR 1513 on Hybrid Reasoning for Intelligent Systems
(http://www.hybrid-reasoning.org).

We thank the anonymous reviewers for their insightful
comments and questions which helped clarify several as-
pects of this paper.

References

Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPlan: Planning in the robot operating system. In
25th Int. Conf. on Automated Planning and Scheduling.
Coles, A. J.; Coles, A.; Fox, M.; and Derek, L. 2010.
Forward-Chaining Partial-Order Planning. In International
Conference on Automated Planning and Scheduling.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20.
Gebser, M.; Kaminski, R.; Knecht, M.; and Schaub, T. 2011.
plasp: A Prototype for PDDL-Based Planning in ASP. In
International Conference on Logic Programming and Non-
monotonic Reasoning.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo = ASP + Control: Preliminary Report. In
Communications of the Thirtieth International Conference
on Logic Programming (ICLP). (online supplement).
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Wanko, P. 2016. Theory Solving Made Easy
with Clingo 5. In Tech. Comm. 32nd International Confer-
ence on Logic Programming (ICLP), volume 52 of OpenAc-
cess Series in Informatics (OASIcs). Schloss Dagstuhl.
Gerevini, A., and Long, D. 2005. Plan Constraints and Pref-
erences in PDDL3. Technical report, Dept. of Electronics
for Automation, University of Brescia, Italy.
Kaufmann, B.; Leone, N.; Perri, S.; and Schaub, T. 2016.
Grounding and Solving in Answer Set Programming. AI
Magazine 37(3).
Lifschitz, V. 2008. What Is Answer Set Programming? In
Association for the Advancement of Artificial Intelligence.
Niemueller, T.; Reuter, S.; Ferrein, A.; Jeschke, S.; and
Lakemeyer, G. 2015. Evaluation of the RoboCup Logis-
tics League and Derived Criteria for Future Competitions.
In RoboCup Symposium 2015 – Development Track.
Niemueller, T.; Karpas, E.; Vaquero, T.; and Timmons, E.
2016. Planning Competition for Logistics Robots in Simu-
lation. In WS on Planning and Robotics (PlanRob) at Int.
Conf. on Automated Planning and Scheduling (ICAPS).
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2013. Incre-
mental Task-level Reasoning in a Competitive Factory Au-
tomation Scenario. In AAAI Spring Symposium - Designing
Intelligent Robots: Reintegrating AI.
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
RoboCup Logistics League as a Benchmark for Planning in

Robotics. In WS on Planning and Robotics (PlanRob) at Int.
Conf. on Automated Planning and Scheduling (ICAPS).

517

