
Graphs and colorings for answer set programming:
Abridged Report

Kathrin Konczak, Thomas Linke, and Torsten Schaub

Institut für Informatik, Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam

Abstract. We investigate rule dependency graphs and their colorings for char-
acterizing the computation of answer sets of logic programs. We start from a
characterization of answer sets in terms of totally colored dependency graphs. To
a turn, we develop a series of operational characterizations of answer sets in terms
of operators on partial colorings. In analogy to the notion of a derivation in proof
theory, our operational characterizations are expressed as (non-deterministically
formed) sequences of colorings, turning an uncolored graph into a totally colored
one. This results in an operational framework in which different combinations
of operators result in different formal properties. Among others, we identify the
basic strategy employed by the noMoRe system and justify its algorithmic ap-
proach. Also, we distinguish Fitting’s and well-founded semantics.

1 Introduction

Graphs constitute a fundamental tool within computing science. Similarly, in answer
set programming [8] graphs are used for deciding whether answer sets exist [6]. We
take the application of graphs further and elaborate upon using graphs as the under-
lying computational model for computing answer sets. To this end, we build upon the
theoretical foundations introduced in [9, 1]. Accordingly, we are interested in charac-
terizing answer sets by means of their set of generating rules. For determining, whether
a rule belongs to this set, we must verify that each positive body atom is derivable and
that no negative body atom is derivable. In fact, an atom is derivable, if the set of gen-
erating rules includes a rule, having the atom as its head; or conversely, an atom is not
derivable, if there is no rule among the generating rules that has the atom as its head.
Consequently, the formation of the set of generating rules boils down to resolving posi-
tive and negative dependencies among rules. For capturing these dependencies, we take
advantage of the concept of a rule dependency graph, wherein each node represents a
rule of the underlying program and two types of edges stand for the aforementioned
positive and negative rule dependencies, respectively. For expressing the applicability
status of rules, that is, whether a rule belongs to a set of generating rules or not, we
color the respective nodes in the graph. In this way, an answer set can be expressed
by a total coloring of the rule dependency graph. Of course, in what follows, we are
mainly interested in the inverse, that is, when does a graph coloring correspond to an
answer set of the underlying program; and, in particular, how can we compute such a
total coloring. To this end, we start by identifying graph structures that allow for char-
acterizing answer sets in terms of totally colored dependency graphs. We then build

upon these characterizations for developing an operational framework for answer set
formation. The idea is to start from an uncolored rule dependency graph and to employ
specific operators that turn a partially colored graph gradually into a totally colored one
that represents an answer set. This approach is strongly inspired by the concept of a
derivation, in particular, that of an SLD-derivation [15]. Accordingly, a program has a
certain answer set iff there is a sequence of operations turning the uncolored graph into
a totally colored one, expressing the answer set.

All proofs can be found in the full version of this abridged report [12].

2 Rules, programs, graphs, and colorings

A logic program is a finite set of rules such as p0 ← p1, . . . , pm,not pm+1, . . . ,not pn,
where n ≥ m ≥ 0, and each pi (0 ≤ i ≤ n) is an atom. For such a rule r, we let head (r)
denote the head, p0, of r and body(r) the body, {p1, . . . , pm, not pm+1, . . . ,not pn},
of r. Let body+(r) = {p1, . . . , pm} and body−(r) = {pm+1, . . . , pn}. A program is
basic if body−(r) = ∅ for all its rules. The reduct, ΠX , of a program Π relative to a set
X of atoms is defined by ΠX = {head (r)← body+(r) | r ∈ Π, body−(r) ∩X = ∅}.
A set of atoms X is closed under a basic program Π if for any r ∈ Π , head(r) ∈ X

if body+(r) ⊆ X . The smallest set of atoms being closed under a basic program Π

is denoted by Cn(Π). Then, a set X of atoms is an answer set of a program Π if
Cn(ΠX) = X . We use AS (Π) for denoting the set of all answer sets of Π . In what
follows, an important concept is that of the generating rules of an answer set. The set
RΠ(X) of generating rules of a set X of atoms from program Π is given by

RΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅}.

Next, we lay the graph-theoretical foundations of our approach. A graph is a pair
(V, E) where V is a set of vertices and E ⊆ V × V a set of (directed) edges. A graph
(V, E) is acyclic if E contains no cycles. For W ⊆ V , we denote E ∩ (W ×W) by
E|W . Also, we abbreviate G = (V ∩ W, E|W) by G|W . A subgraph of (V, E) is a
graph (W, F) such that W ⊆ V and F ⊆ E|W .

In the sequel, we are interested in graphs reflecting dependencies among rules.

Definition 1. Let Π be a logic program. The rule dependency graph (RDG) ΓΠ =
(Π, E0, E1) of Π is a labeled directed graph with

E0 =
{

(r, r′) | r, r′ ∈ Π, head (r) ∈ body+(r′)
}

;

E1 =
{

(r, r′) | r, r′ ∈ Π, head (r) ∈ body−(r′)
}

.

We omit the subscript Π from ΓΠ whenever the underlying program is clear from the
context. An i-subgraph (V, E) of Γ is a subgraph of Γ with E ⊆ Ei for i ∈ {0, 1}.

For illustration, consider the logic program Π1 = {r1, . . . , r6}, where

r1 : p←
r2 : b← p

r3 : f ← b, not f ′

r4 : f ′ ← p, not f

r5 : b← m

r6 : x← f, f ′, not x
(1)

The RDG of Π1 is depicted graphically in Figure 1a. The RDG ΓΠ1
has among others

r1i r2i

r4i r3i

r6i r5i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0
⊕i ⊕i

r4i r3i

	i r5i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0
⊕i ⊕i

	i ⊕i

	i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0
⊕i ⊕i

⊕i 	i

	i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

Fig. 1. (a) The RDG of logic program Π1; (b) The (partially) colored RDG (ΓΠ1
, C2); (c+d)

The totally colored RDGs (ΓΠ1
, C4a) and (ΓΠ1

, C4b).

0-subgraph ({r1, . . . , r4}, {(r1, r2)}) and 1-subgraph ({r5, r6}, {(r6, r6)}).
We call C a coloring of ΓΠ if C is a mapping C : Π → {⊕,	}. We denote the set

of all partial colorings of a RDG ΓΠ by CΓΠ
. For readability, we often omit the index

ΓΠ . Intuitively, the colors ⊕ and 	 indicate whether a rule is supposedly applied or
blocked. We define C⊕ = {r | C(r) = ⊕} and C	 = {r | C(r) = 	} for obtaining all
vertices colored by C with ⊕ or 	. If C is total, (C⊕, C) is a binary partition of Π .
That is, Π = C⊕ ∪ C	 and C⊕ ∩ C	 = ∅. Accordingly, we often identify a coloring
C with the pair (C⊕, C). A partial coloring C induces a pair (C⊕, C) of sets such
that C⊕ ∪ C	 ⊆ Π and C⊕ ∩ C	 = ∅. For comparing partial colorings, C and C ′,
we define C v C ′, if C⊕ ⊆ C ′

⊕ and C	 ⊆ C ′
	. The “empty” coloring (∅, ∅) is the

v-smallest coloring. Accordingly, we define C t C ′ as (C⊕ ∪ C ′
⊕, C	 ∪ C ′

).
If C is a coloring of ΓΠ , we call the pair (ΓΠ , C) a colored RDG . For example,

“coloring” the RDG of Π1 with

C2 = ({r1, r2}, {r6}) (2)

yields the colored graph in Figure 1b. For simplicity, when coloring, we replace the
label of a node by the respective color.

The central question addressed in this paper is how to compute the total colorings of
RDGs that correspond to the answer sets of an underlying program. In fact, the colorings
of interest can be distinguished in a straightforward way. Given a logic program Π along
with its RDG Γ. Then, for every answer set X of Π , define an admissible coloring C

of Γ as

C = (RΠ(X), Π \RΠ(X)).

By way of the respective generating rules, we associate with any program a set of ad-
missible colorings whose members are in one-to-one correspondence with its answer
sets. Clearly, any admissible coloring is total; also, we have X = head (C⊕). We use
AC (Π) for denoting the set of all admissible colorings of a RDG ΓΠ . For a partial
coloring C, we define AC Π(C) as the set of all admissible colorings of ΓΠ compatible
with C. Formally, given the RDG Γ of a logic program Π and a partial coloring C of
Γ, define

ACΠ(C) = {C ′ ∈ AC (Π) | C v C ′}.

Clearly, C1 v C2 implies AC Π(C1) ⊇ ACΠ(C2). Observe that a partial coloring C

is extendible to an admissible one C ′, that is, C v C ′ iff ACΠ(C) is non-empty. For

a total coloring C, AC Π(C) is either empty or singleton. Regarding program Π1 and
coloring C2, we get

ACΠ1
(C2) = AC (Π1) = {({r1, r2, r3}, {r4, r5, r6}), ({r1, r2, r4}, {r3, r5, r6})}

as shown in Figure 1c+d. Accordingly, define ASΠ(C) as the set of all answer sets X

of Π compatible with partial coloring C:

ASΠ(C) = {X ∈ AS (Π) | C⊕ ⊆ RΠ(X) and C	 ∩ RΠ(X) = ∅}.

Note that head (C⊕) ⊆ X for any answer set X ∈ ASΠ(C). As regards program Π1

and coloring C2, we get

ASΠ1
(C2) = AS (Π1) = {{b, p, f}, {b, p, f ′}}.

We need the following concepts for describing a rule’s status of applicability.

Definition 2. Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a partial
coloring of Γ. For r ∈ Π , we define:

1. r is supported in (Γ, C), if body+(r) ⊆ {head(r′) | (r′, r) ∈ E0, r
′ ∈ C⊕};

2. r is unsupported in (Γ, C), if {r′ | (r′, r) ∈ E0, head(r′) = q} ⊆ C	 for some
q ∈ body+(r);

3. r is blocked in (Γ, C), if r′ ∈ C⊕ for some (r′, r) ∈ E1;
4. r is unblocked in (Γ, C), if r′ ∈ C	 for all (r′, r) ∈ E1.

In what follows, we use S(Γ, C), S(Γ, C), B(Γ, C), and B(Γ, C) for denoting the sets
of all supported, unsupported, blocked, and unblocked rules in (Γ, C). For illustration,
consider the sets obtained regarding the colored RDG (ΓΠ1

, C2) in Figure 1b.

S(ΓΠ1
, C2) = {r1, r2, r3, r4} S(ΓΠ1

, C2) = {r5}
B(ΓΠ1

, C2) = ∅ B(ΓΠ1
, C2) = {r1, r2, r5, r6}

(3)

The next results are important for understanding the idea of our approach.

Theorem 1. Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
Then, we have for every X ∈ ASΠ(C) that

1. S(Γ, C) ∩ B(Γ, C) ⊆ RΠ(X);
2. S(Γ, C) ∪ B(Γ, C) ⊆ Π \RΠ(X).

If C is admissible, we have for {X} = ASΠ(C) that

3. S(Γ, C) ∩ B(Γ, C) = RΠ(X);
4. S(Γ, C) ∪ B(Γ, C) = Π \RΠ(X).

Equation 3 and 4 are equivalent since C is total. Reconsider the partially colored RDG
(ΓΠ1

, C2) in Figure 1b. For every X ∈ ASΠ1
(C2) = {{b, p, f}, {b, p, f ′}}, we have

S(ΓΠ1
, C2) ∩ B(ΓΠ1

, C2) = {r1, r2} ⊆ RΠ1
(X);

S(ΓΠ1
, C2) ∪ B(ΓΠ1

, C2) = {r5} ⊆ Π \RΠ1
(X).

3 Deciding answersetship from colored graphs

The result in Theorem 1 started from an existing answer set induced from a given color-
ing. We now develop concepts that allow us to decide whether a (total) coloring repre-
sents an answer set by purely graph-theoretical means. To begin with, we define a graph
structure accounting for the notion of recursive support.

Definition 3. Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
We define a support graph of (Γ, C) as an acyclic 0-subgraph (V, E) of Γ such that
body+(r) ⊆ {head (r′) | (r′, r) ∈ E} for all r ∈ V , C⊕ ⊆ V , and C	 ∩ V = ∅.

Every uncolored RDG (with C = (∅, ∅)) has a unique support graph possessing a largest
set of vertices. We refer to such support graphs as maximal ones; all of them share the
same set of vertices. For example, the maximal support graph of (ΓΠ1

, (∅, ∅)), given
in Figure 1a, excludes r5, since it cannot be supported (recursively); otherwise, it con-
tains, except for (r5, r3), all 0-edges of ΓΠ1

. The maximal support graph of the colored
RDG (ΓΠ1

, C2), given in Figure 1b, is ({r1, r2, r3, r4}, {(r1, r2), (r1, r4), (r2, r3)}). It
includes all positively colored and exclude all negatively colored nodes in (ΓΠ1

, C2).
Given a program {q, p← q} a “bad” coloring, like C = ({p← q}, {q}), may deny

the existence of a support graph of (Γ, C). As above, we distinguish maximal support
graphs of colored graphs through their maximal set of vertices. For colored graphs, we
have the following conditions guaranteeing the existence of (maximal) support graphs.

Theorem 2. Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
If ACΠ(C) 6= ∅, then there is a (maximal) support graph of (Γ, C).

Clearly, the existence of a support graph implies that of a maximal one. Note further-
more that support graphs of totally colored graphs are necessarily maximal.

Corollary 1. Let Γ be the RDG of logic program Π and C be an admissible coloring
of Γ. Then, (C⊕, E) is a support graph of (Γ, C) for some E ⊆ (Π ×Π).

Taking the last result together with Property 3 or 4 in Theorem 1, we obtain a sufficient
characterization of admissible colorings (along with their underlying answer sets).

Theorem 3. Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, the following statements are equivalent.

1. C is an admissible coloring of Γ;
2. C⊕ = S(Γ, C) ∩ B(Γ, C) and there is a support graph of (Γ, C);
3. C	 = S(Γ, C) ∪ B(Γ, C) and there is a support graph of (Γ, C).

For illustration, let us consider the two admissible colorings of RDG ΓΠ1
, correspond-

ing to the two answer sets of program Π1:

C4a = ({r1, r2, r3}, {r4, r5, r6}) and C4b = ({r1, r2, r4}, {r3, r5, r6}). (4)

The resulting colored RDGs are depicted in Figure 1c+d. Let us detail the case of C4a:

S(ΓΠ1
, C4a) ∩ B(ΓΠ1

, C4a) = {r1, r2, r3} = (C4a)⊕;
S(ΓΠ1

, C4a) ∪ B(ΓΠ1
, C4a) = {r4, r5, r6} = (C4a)	.

The maximal support graph of (ΓΠ1
, C4a) is given by ((C4a)⊕, {(r1, r2), (r2, r3)}).

In the full paper [12], we show how our graph-theoretical approach allows for cap-
turing the original concepts like Cn and ΠX . Also, we introduce the concept of a
blockage graph by means of 1-subgraphs for capturing blockage relations.

4 Operational characterizations

The goal of this section is to provide operational characterizations of answer sets. The
idea is to start with the empty coloring (∅, ∅) and to successively apply operators that
turn a partial coloring C into another one C ′ such that C v C ′, if possible. This is done
until an admissible coloring, encompassing an answer set, is obtained.

We concentrate first on operations deterministically extending partial colorings.

Definition 4. Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
Then, define PΓ : C→ C as

PΓ(C) = C t (S(Γ, C) ∩ B(Γ, C), S(Γ, C) ∪ B(Γ, C)) .

A partial coloring C is closed under PΓ , if C = PΓ(C). Note that PΓ(C) does
not always exist. To see this, observe that PΓ(({a ← not a}, ∅)) would be ({a ←
not a}, {a← not a}), which is no mapping and thus no partial coloring.

Interestingly,PΓ exists on colorings expressing answer sets.

Theorem 4. Let Γ be the RDG of logic program Π and C a partial coloring of Γ.
If ACΠ(C) 6= ∅, then PΓ(C) exists.

Note that PΓ(C) may exist although AC Π(C) = ∅. To see this, consider Π = {a ←
, c← a, not c}. Clearly, AC Π(C) = ∅. However, PΓ((∅, ∅)) = ({r1}, ∅) exists.

Now, we can define our principal propagation operator in the following way.

Definition 5. Let Γ be the RDG of logic program Π and C a partial coloring of Γ.
Then, define P∗

Γ : C→ C where P∗
Γ(C) is the v-smallest partial coloring contain-

ing C and being closed under PΓ .

Like PΓ(C), P∗
Γ(C) is not necessarily defined. This situation is made precise next.

Theorem 5. Let Γ be the RDG of logic program Π and C a partial coloring of Γ.
If ACΠ(C) 6= ∅, then P∗

Γ(C) exists.

In fact, the non-existence of P∗
Γ is an important feature since an undefined applica-

tion of P∗
Γ amounts to a backtracking situation at the implementation level. Note that

P∗
Γ((∅, ∅)) always exists, even though we may have AC Π((∅, ∅)) = ∅ (because of

AS (Π) = ∅).
For illustration, consider program Π1. We get:

PΓ((∅, ∅)) = ({r1}, {r5})
PΓ(({r1}, {r5})) = ({r1, r2}, {r5})

PΓ(({r1, r2}, {r5})) = ({r1, r2}, {r5}) and so P∗
Γ((∅, ∅)) = ({r1, r2}, {r5}) .

Let us now elaborate upon the formal properties of PΓ and P∗
Γ . First, we observe

that both are reflexive, that is, C v PΓ(C) and C v P∗
Γ(C) provided they exist.

As shown in the full paper [12], both operators are monotonic: For partial colorings
C, C ′ of Γ such that AC Π(C ′) 6= ∅, we have: If C v C ′, then PΓ(C) v PΓ(C ′);
analogously for P∗

Γ . Consequently, we have C v PΓ(C) v PΓ(PΓ(C)). Moreover,
PΓ and P∗

Γ are answer set preserving: AC Π(C) = AC Π(PΓ(C)) = AC Π(P∗
Γ(C)).

In fact, PΓ can be used for deciding answersetship in the following way.

Corollary 2. Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ iff PΓ(C) = C and (Γ, C) has a support graph.

For relating P∗
Γ to the well-known Fitting operator [7], we need the following.

Definition 6. Let Γ be the RDG of logic program Π and let C be a partial coloring of
Γ. Define XC = {head(r) | r ∈ C⊕} and YC = {q | for all r ∈ Π, if head (r) =
q, then r ∈ C	}.

The pair (XC , YC) is a 3-valued interpretation of Π . By letting the pair mapping
ΦΠ(X, Y) be Fitting’s operator [7], we have the following result.

Theorem 6. Let Γ be the RDG of logic program Π .
If C = P∗

Γ((∅, ∅)), then Φω
Π(∅, ∅) = (XC , YC).

A more detailed analysis of this relationship is given in the full paper [12].
The next operation draws upon the maximal support graph of colored RDGs.

Definition 7. Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
Furthermore, let (V, E) be a maximal support graph of (Γ, C) for some E ⊆ (Π×Π).

Then, define UΓ : C→ C as

UΓ(C) = (C⊕, Π \ V).

This operator allows for coloring rules with	whenever it is clear from the given partial
coloring that they will remain unsupported.1 Observe that Π \V = C	∪ (Π \V). Like
P∗

Γ , UΓ(C) is an extension of C. Unlike P∗
Γ , however, UΓ allows for coloring nodes

unconnected with the already colored part of the graph. For Π1, for instance, we obtain
UΓ((∅, ∅)) = (∅, {r5}). While this information on r5 can also be supplied by PΓ , it is
not obtainable for “self-supporting 0-loops”, as in Π = {p ← q, q ← p}. In this case,
we obtain UΓ((∅, ∅)) = (∅, {p← q, q ← p}), which is not obtainable through PΓ .

Operator UΓ is defined on colorings guaranteeing the existence of support graphs.

Corollary 3. Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
If (Γ, C) has a support graph, then UΓ(C) exists.

We show in the full paper [12] that UΓ is reflexive, idempotent, monotonic, and answer
set preserving. That is, for partial colorings C and C ′ of Γ such that AC Π(C) 6= ∅ and
ACΠ(C ′) 6= ∅, we have C v UΓ(C), UΓ(C) = UΓ(UΓ(C)), and if C v C ′, then
UΓ(C) v UΓ(C ′). Moreover, we have AC Π(C) = AC Π(UΓ(C)). Note that unlike
PΓ , operator UΓ leaves the support graph of (Γ, C) unaffected.

Because UΓ implicitly enforces the existence of a support graph, our operators fur-
nish yet another characterization of answer sets.

1 The relation to unfounded sets is detailed in the full paper [12].

Corollary 4. Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ iff C = PΓ(C) and C = UΓ(C).

Note that the last condition cannot guarantee that all supported unblocked rules belong
to C⊕. For instance, (∅, {a ←}) has an empty support graph; hence (∅, {a ←}) =
UΓ((∅, {a←})). That is, the trivially supported fact a← remains in C	. In our setting,
such a miscoloring is detected by PΓ . That is, PΓ((∅, {a←})) is no partial coloring.

Finally, we can express well-founded semantics [18] with our operators. For this,
given a partial coloring C, define (PU)∗Γ (C) as thev-smallest partial coloring contain-
ing C and being closed under PΓ and UΓ .

Theorem 7. Let Γ be the RDG of logic program Π .
If C = (PU)∗Γ((∅, ∅)), then (XC , YC) is the well-founded model of Π .

A more detailed analysis of this relationship is given in the full paper [12].
We continue by providing a very general operational characterization that possesses

a maximum degree of freedom. To this end, we observe that Corollary 4 can serve
as a straightforward check for deciding whether a given total coloring constitutes an
answer set. A corresponding guess can be provided through an operator capturing a
non-deterministic (don’t know) choice.

Definition 8. Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
For ◦ ∈ {⊕,	}, define C◦Γ : C→ C as

1. C⊕Γ (C) = (C⊕ ∪ {r}, C) for some r ∈ Π \ (C⊕ ∪ C);
2. C	Γ (C) = (C⊕, C	 ∪ {r}) for some r ∈ Π \ (C⊕ ∪ C).

We use C◦Γ if the distinction between C⊕Γ (C) and C	Γ (C) is of no importance. Strictly
speaking, C◦Γ is also parametrized with r; we leave this implicit.

Combining the previous guess and check operators yields our first operational char-
acterization of admissible colorings (along with its underlying answer sets).

Theorem 8. Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ iff there exists a sequence (C i)0≤i≤n where

1. C0 = (∅, ∅);
2. Ci+1 = C◦Γ(Ci) for some ◦ ∈ {⊕,	} and 0 ≤ i < n;
3. Cn = UΓ(Cn);
4. Cn = PΓ(Cn);
5. Cn = C.

We refer to such sequences also as coloring sequences. Note that all sequences satisfy-
ing conditions 1-5 of Theorem 8 are successful insofar as their last element corresponds
to an existing answer set. If a program has no answer set, then no such sequence exists.

Although this guess and check approach is of no great implementational value, it
supplies us with a skeleton for the coloring process that we refine in the sequel. In
particular, it stresses the basic fact that we possess complete freedom in forming a
coloring sequence as long as we can guarantee that the resulting coloring is a fixed point
of PΓ and UΓ . It is worth mentioning that this simple approach is inapplicable when
fixing ◦ to either ⊕ or 	 (see full paper [12]). We observe the following properties.

Theorem 9. Given the prerequisites in Theorem 8, let (C i)0≤i≤n be a sequence satisfy-
ing conditions 1-5 in Theorem 8. Then, we have the following properties for 0 ≤ i ≤ n.

1. Ci is a partial coloring;
2. Ci v Ci+1;
3. AC Π(Ci) ⊇ ACΠ(Ci+1);
4. AC Π(Ci) 6= ∅;
5. (Γ, Ci) has a (maximal) support graph.

All these properties represent invariants of the consecutive colorings. While the first
three properties are provided by operator C◦Γ in choosing among uncolored rules only,
the last two properties are actually enforced by the “check” on the final coloring Cn

expressed by conditions 3–5. In fact, sequences only enjoying conditions 1 and 2 in
Theorem 8, fail to satisfy Property 4 and 5. In practical terms, this means that compu-
tations of successful sequences may be led numerous times on the “garden path”.

As well-known, the number of choices can be significantly reduced by applying
deterministic operators.

Theorem 10. Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ iff there exists a sequence (C i)0≤i≤n where

1. C0 = (PU)∗Γ ((∅, ∅));
2. Ci+1 = (PU)∗Γ(C◦Γ(Ci)) for some ◦ ∈ {⊕,	} and 0 ≤ i < n;
3. Cn = C.

The continuous applications of PΓ and UΓ extend colorings after each choice. Further-
more, this proceeding guarantees that each partial coloring C i is closed under PΓ and
UΓ . It is clear in view of Theorem 8 that any number of iterations of PΓ and UΓ can be
executed after C◦Γ as long as (PU)∗Γ is the final operation leading to Cn in Theorem 10.

For illustration, consider the coloring sequence in Figure 2, obtained for answer set
{b, p, f ′} of program Π1. The decisive operation in this sequence is the application of
C⊕Γ leading to C(r3) = ⊕. The same final result is obtained when choosing C	Γ such

r1i r2i

r4i r3i

r6i r5i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

(PU)∗
Γ

7−→

⊕i ⊕i

r4i r3i

r6i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

C
⊕

Γ

7−→

⊕i ⊕i

r4i ⊕i

r6i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

(PU)∗
Γ

7−→

⊕i ⊕i

	i ⊕i

	i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

Fig. 2. A coloring sequence.

that C(r4) = 	. So, several coloring sequences may lead to the same answer set.
The usage of continuous propagations leads to further invariant properties.

Theorem 11. Given the prerequisites in Theorem 10, let (C i)0≤i≤n be a sequence sat-
isfying conditions 1-3 in Theorem 10. Then, we have properties 1–5 in Theorem 9 and

6. Ci+1
⊕ ⊇ S(Γ, Ci) ∩B(Γ, Ci);

7. Ci+1
	 ⊇ S(Γ, Ci) ∪B(Γ, Ci).

Taking Property 6 and 7 together with 5 from Theorem 9, we see that propagation
gradually enforces exactly the attributes on partial colorings, expressed in Theorem 3.

Given that we obtain only two additional properties, one may wonder whether ex-
haustive propagation truly pays off. In fact, its value becomes apparent when looking at
the properties of prefix sequences, not necessarily leading to a successful end.

Theorem 12. Given the prerequisites in Theorem 10, let (C j)0≤j≤m be a sequence
satisfying Condition 1 and 2 in Theorem 10.

Then, we have properties 1–3, 5 in Theorem 9 and 6–7 in Theorem 11.

Using exhaustive propagations, we observe that except for Property 4 all properties of
successful sequences, are shared by (possibly unsuccessful) prefix sequences. In the full
paper [12], we prove that propagation leads to shorter and fewer (prefix) sequences.

What else may cut down the number of choices? Looking at the graph structures
underlying an admissible coloring, we observe that support graphs possess a non-local,
since recursive, structure, while blockage exhibits a rather local structure, based on arc-
wise constraints. Consequently, it seems advisable to prefer choices maintaining sup-
port structures over those maintaining blockage relations, since the former have more
global repercussions than the latter. To this end, we develop in what follows a strategy
that is based on a choice operation restricted to supported rules.

Definition 9. Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
For ◦ ∈ {⊕,	}, defineD◦

Γ : C→ C as

1. D⊕
Γ (C) = (C⊕ ∪ {r}, C) for some r ∈ S(Γ, C) \ (C⊕ ∪ C);

2. D	
Γ (C) = (C⊕, C	 ∪ {r}) for some r ∈ S(Γ, C) \ (C⊕ ∪ C).

The number of rules colorable by D◦
Γ is normally smaller than that by C◦Γ . Depending

on how the non-determinism ofD◦
Γ is dealt with algorithmically, this may either lead to

a reduced depth of the search tree or a reduced branching factor.
In a successful coloring sequence (C i)0≤i≤n, all rules in Cn

⊕ belong to an encom-
passing support graph. Furthermore, usingD⊕

Γ (C) (andP∗
Γ) the supportness of each set

Ci
⊕ is made invariant. Consequently, such a proceeding allows for establishing the ex-

istence of support graphs “on the fly” and offers a much simpler approach to the task(s)
previously accomplished by UΓ . In fact, one may completely dispose of operator UΓ

and color in a final step all uncolored rules with 	.

Definition 10. Let Γ be the RDG of logic program Π and C a partial coloring of Γ.
Then, defineNΓ : C→ C as NΓ(C) = (C⊕, Π \ C⊕).

Roughly speaking, the idea is then to “actively” color only supported rules and rules
blocked by supported rules; all remaining rules are then unsupported and “thrown” into
C	 in a final step.

Theorem 13. Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ iff there exists a sequence (C i)0≤i≤n where

1. C0 = (∅, ∅);
2. Ci+1 = D◦

Γ(Ci) where ◦ ∈ {⊕,	} and 0 ≤ i < n− 1;
3. Cn = NΓ(Cn−1);
4. Cn = PΓ(Cn);
5. Cn = C.

We note that there is a little price to pay for turning UΓ into NΓ , expressed in Condi-
tion 4. Without it, one could use NΓ to obtain a total coloring by coloring rules with 	
in an arbitrary way. We obtain the following properties for this type of sequences.

Theorem 14. Given the prerequisites in Theorem 13, let (C i)0≤i≤n be a sequence sat-
isfying conditions 1-5 in Theorem 13. Then, we have properties 1–5 in Theorem 9 and

8. (Ci
⊕, E) is a support graph of (Γ, C i) for some E ⊆ Π ×Π .

Unlike the coloring sequences only enjoying Condition 5 in Theorem 9, the sequences
formed by means of D◦

Γ guarantee that each C i
⊕ forms an independent support graph.

In fact, there is some overlap among operator D	
Γ and NΓ . To see this, consider

Π = {a ← , b ← not a}. Initially, we must apply D⊕
Γ to obtain ({a ←}, ∅) from

(∅, ∅). Then, however, we may either applyD	
Γ orNΓ for obtaining admissible coloring

({a}, {b← not a}). Interestingly, this overlap can be eliminated by adding propagation
operator P∗

Γ . This results in the basic strategy used in the noMoRe system [1].

Theorem 15. Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ iff there exists a sequence (C i)0≤i≤n where

1. C0 = P∗
Γ((∅, ∅));

2. Ci+1 = P∗
Γ(D◦

Γ(Ci)) where ◦ ∈ {⊕,	} and 0 ≤ i < n− 1;
3. Cn = NΓ(Cn−1);
4. Cn = PΓ(Cn);
5. Cn = C.

Indeed, the strategy of noMoRe applies operator D◦
Γ as long as there are supported

rules. Once no more uncolored supported rules exist, operatorNΓ is called. Finally, PΓ

is applied but, in practice, only to those rules colored previously by NΓ . At first sight,
this approach may seem to correspond to a subclass of the coloring sequences described
above, in the sense that noMoRe enforces a maximum number of transitions described
in Condition 2 above. To see that this is not the case, we observe the following property.

Theorem 16. Given the prerequisites in Theorem 15, let (C i)0≤i≤n be a sequence sat-
isfying conditions 1-5 in Theorem 15. Then, we have (NΓ(Cn−1)	\C

n−1
) ⊆ S(Γ, C).

That is, no matter which (supported) rules are colored 	 by D	
Γ , operator NΓ only

applies to unsupported ones. It is thus no restriction to enforce the consecutive ap-
plication of P∗

Γ and D◦
Γ until no more supported rules are available. In fact, it is the

interplay of the two last operators that guarantees this property. For instance, looking
at Π = {a, b← not a}, we see that we directly obtain the final total coloring because
({a}, {b ← not a}) = P∗

Γ(D⊕
Γ ((∅, ∅))), without any appeal to NΓ . Rather it is P∗

Γ

that detects that b← not a is blocked. Generally speaking, D⊕
Γ consecutively chooses

the generating rules of an answer set, finally gathered in C⊕ = S(Γ, C) ∩ B(Γ, C).
Clearly, every rule in B(Γ, C) is blocked by some rule in C⊕. So whenever a rule r is
added byD⊕

Γ to C⊕, operatorP∗
Γ adds all rules blocked by r to C	. In this way,P∗

Γ and
D⊕

Γ gradually color all rules in S(Γ, C) ∩ B(Γ, C) and B(Γ, C), so that all remaining
uncolored rules, subsequently treated by NΓ , must belong to S(Γ, C). We obtain the
following properties.

Theorem 17. Given the prerequisites in Theorem 15, let (C i)0≤i≤n be a sequence sat-
isfying conditions 1-5 in Theorem 15. Then, we have properties 1–5 in Theorem 9, 6–7
in Theorem 11, and 8 in Theorem 14.

In the full paper [12], we discuss an alternative support-driven operational charac-
terization using an incremantal version of UΓ instead ofNΓ . As well, we elaborate upon
unicoloring strategies, using only one of the above choice operators instead of both.

5 Discussion, related work, and conclusions

Among the many graph-based approaches in the literature, we find some dealing with
stratification [2], existence of answer sets [6, 3], or the actual characterization of answer
sets or well-founded semantics [4, 3, 9, 11]. Our own approach has its roots in earlier
work on default logic [13, 14, 17]. The usage of rule-oriented dependency graphs is
common to [4, 3, 9]. In fact, the coloration of such graphs for characterizing answer sets
was independently developed in [3] and [9]. While we borrow the term of an admissible
coloring from the former, the work reported in Section 3 builds upon the latter and
revises its definitions by appeal to the concept of a support graph. 2

Our major goal is however to provide an operational framework for answer set for-
mation that allows us to bridge the gap between formal yet static characterizations of
answer sets and algorithms for computing them. For instance, in the seminal paper [16]
describing the smodels approach, answer sets are given in terms of so-called full-
sets and their computation is directly expressed in terms of procedural algorithms. Our
operational semantics aims at offering an intermediate stage that facilitates the formal
elaboration of computational approaches. Our approach is strongly inspired by the con-
cept of a derivation, in particular, that of an SLD-derivation [15]. This attributes our
coloring sequences the flavor of a derivation in a family of calculi, whose respective set
of inference rules correspond to the selection of operators.

Although we leave out implementational issues, some remarks relating our ap-
proach, and thus the resulting noMoRe system [1], to the ones underlying dlv [5]
and smodels [16] are in order. A principal difference manifests itself in how choices
are performed. While the two latter’s choice is based on atoms occurring (negatively)
in the underlying program, our choices are based on its rules. An advantage of our ap-
proach is that we can guarantee the support of rules on the fly. Unlike this, support
checking is a recurring operation in the smodels system, similar to operator UΓ . On

2 The definition of RDGs differs from that of “block graphs” in [9], whose practically motivated
restrictions are superfluous from a theoretical perspective. Also, we abandon the latter term in
order to give the same status to support and blockage relations.

the other hand, this approach ensures that the smodels algorithm runs in linear space
complexity, while a graph-based approach needs quadratic space in the worst case. This
“investment” pays off once one is able to exploit the additional structural information
offered by a graph. First steps in this direction are made in [10], where graph com-
pressions are described that allow for conflating entire subgraphs into single nodes.
Propagation is more or less done similarly in all three approaches. smodels relies
on computing well-founded semantics, whereas dlv uses Fitting’s operator plus some
backpropagation mechanisms.

To sum up, we build upon the basic graph-theoretical characterizations in [9, 11] for
developing an operational framework for non-deterministic answer set formation. The
general idea is to start from an uncolored RDG and to employ specific operators that turn
a partially colored graph gradually in a totally colored one, representing an answer set.
To this end, we have developed a variety of deterministic and non-deterministic opera-
tors. Different coloring sequences (enjoying different formal properties) are obtained by
selecting different combinations of operators. Among others, we have identified the par-
ticular strategy of the noMoRe system as well as operations yielding Fitting’s and well-
founded semantics. Taken together, the last results show that noMoRe’s principal propa-
gation operation amounts to applying Fitting’s operator. Notably, the explicit detection
of 0-loops is avoided by employing a support-driven choice operation. The noMoRe
system is available at http://www.cs.uni-potsdam.de/∼linke/nomore.

Acknowledgements

The authors were partially supported by the German Science Foundation (DFG) under
grant FOR 375/1 and SCHA 550/6, TP C and they were partially funded by the In-
formation Society Technologies programme of the European Commission, Future and
Emerging Technologies under the IST-2001-37004 WASP project.

References

1. C. Anger, K. Konczak, and T. Linke. noMoRe: Non-monotonic reasoning with logic pro-
grams. In S. Flesca et al., editors, Proceedings of the Eighth European Conference on Logics
in Artificial Intelligence (JELIA’02), pages 521–524. Springer, 2002.

2. K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 89–148. Morgan
Kaufmann, 1987.

3. G. Brignoli, S. Costantini, O. D’Antona, and A. Provetti. Characterizing and computing
stable models of logic programs: the non-stratified case. In C. Baral and H. Mohanty, editors,
Proceedings of the Conference on Information Technology, Bhubaneswar, India, pages 197–
201. AAAI Press, 1999.

4. Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default
theories. Theoretical Computer Science, 170:209–244, 1996.

5. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for nonmono-
tonic reasoning. In J. Dix et al., editors, Proceedings of the Fourth International Conference
on Logic Programming and Non-Monotonic Reasoning, pages 363–374. Springer, 1997.

6. F. Fages. Consistency of clark’s completion and the existence of stable models. Journal of
Methods of Logic in Computer Science, 1:51–60, 1994.

7. M. Fitting. Fixpoint semantics for logic programming a survey. Theoretical Computer Sci-
ence, 278(1-2):25–51, 2002.

8. M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive databases.
New Generation Computing, 9:365–385, 1991.

9. T. Linke. Graph theoretical characterization and computation of answer sets. In B. Nebel,
editor, Proceedings of the International Joint Conference on Artificial Intelligence, pages
641–645. Morgan Kaufmann Publishers, 2001.

10. T. Linke. Using nested logic programs for answer set programming. 2003. Submitted.
11. T. Linke, C. Anger, and K. Konczak. More on noMoRe. In S. Flesca et al., editors, Pro-

ceedings of the Eighth European Conference on Logics in Artificial Intelligence (JELIA’02),
pages 468–480, 2002.

12. T. Linke, K. Konczak, and T. Schaub. Graphs and colorings for answer set program-
ming. Technical Report KRR-TR-03-01, University of Potsdam, June 2003. Available at
http://www.cs.uni-potsdam.de/∼torsten/Papers/KRR-TR-03-01.ps.

13. T. Linke and T. Schaub. An approach to query-answering in Reiter’s default logic and the
underlying existence of extensions problem. In J. Dix et al., editors, Proceedings of the Sixth
European Workshop on Logics in Artificial Intelligence, pages 233–247. Springer, 1998.

14. T. Linke and T. Schaub. Alternative foundations for Reiter’s default logic. Artificial Intelli-
gence, 124(1):31–86, 2000.

15. J. Lloyd. Foundations of Logic Programming. Springer, 1987.
16. I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable model

semantics. In M. Maher, editor, Proceedings of the Joint International Conference and Sym-
posium on Logic Programming, pages 289–303. The MIT Press, 1996.

17. C. Papadimitriou and M. Sideri. Default theories that always have extensions. Artificial
Intelligence, 69:347–357, 1994.

18. A. van Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

