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Abstract. Often graphs are used to investigate properties of logic pro-
grams. In general, different graphs represent different kinds of informa-
tion of the corresponding programs. Sometimes this information is not
sufficient for solving a certain problem. In this paper we define graphs
which are suitable for computing answer sets of different classes of logic
programs. Intuitively, a graph associated to a logic program is suitable
for answer set semantics if its structure is sufficient to compute the an-
swer sets of the corresponding program. That is, algorithms that use
suitable graphs do not have to consider the original logic program any
longer. We investigate different classes of graphs which are suitable for
answer set computation of normal nested logic programs, normal logic
programs and normal programs with at most on positive body atom.

1 Introduction

In the literature many different types of graphs are associated with a given logic
program in order to investigate its properties or to compute its answer sets.
Among them we find dependency graphs (DGs) [2], (defined on literals), rule
graphs (RGs) [7] (defined on rules for reduced negative programs) and more re-
cently extended dependency graphs (EDG) [4, 6] as well as block graphs [14] (de-
fined on rules of normal programs). Block graphs are also called rule dependency
graphs (RDGs) [11] since they reflex positive and negative dependency between
the rules of a logic program. In general, different graphs represent different de-
pendencies among rules or atoms of the corresponding programs. Sometimes this
information is not sufficient for solving a certain problem. In this paper we are
interested in the question which graphs are suitable for computing answer sets
of logic programs1.

Intuitively, a class of graphs is suitable for answer set semantics of a class of
programs if the structure of a graph is sufficient to compute the answer sets of
the corresponding program. For an example, let us look at the rule dependency
graphs [11] (block graphs [14]) of the following two programs:

P1 = {r1 : a← not b. r2 : b← not a. r3 : c← a. r4 : d← b. r5 : x← c, d. }
P2 = {r1 : a← not b. r2 : b← not a. r3 : c← a. r4 : c← b. r5 : x← c. }.

1 The language of logic programs is not the only one used for ASP. Others are propo-
sitional logic or DATALOG with constraints [8].



Program P1 has answer sets {a, c} and {b, d}, whereas program P2 has answer
sets {a, c, x} and {b, d, x}. With the above rule naming both programs have
the same rule dependency graphs (block graph) which is shown in Figure 1,
where 0-arcs (1-arcs) correspond dependencies between rules via positive (neg-
ative) body literals, respectively. Since the semantic difference between the two
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Fig. 1. The block graph of programs P1 and P2.

programs cannot be detected from the structure of the corresponding rule de-
pendency graph, those graphs are not suitable for answer set computation of
normal programs. For dealing with this problem there different solutions. For
example, the approaches in [7, 4] rely on a translation of normal programs into
negative ones before using rule graphs and extended dependency graphs, respec-
tively, for characterizing answer sets. Notice that the above problem disappears
for negative programs. On the other hand one may use some kind of additional
meta-information not present in the graph structure for rules like r5 in program
P1. In fact, this is done in the noMoRe system [1] and its underlying theory
(see [16, 11, 15] for details).

In this paper, we make a first step into another research direction by in-
vestigating suitable graphs for different classes of programs. More precisely, we
deal with the classes of normal nested logic programs (nNLP) a syntactically
restricted subclass of nested logic programs [13], normal logic programs (nLP)
and normal logic programs with at most one positive body atom (nLP1). The
central contribution of our approach is to allow different kinds of nodes in one
graph, in order to incorporate more information of the underlying logic program.
For example, the so-called rule-head-graph of a given program P has the rules
and the heads of P as its nodes (see Figure 2 for the rule-head-graphs of P1

and P2). This ensures that the different semantics of programs P1 and P2 are
reflected in the corresponding rule-head-graph. Furthermore, we introduce body-

head-graphs, where the bodies and heads of a corresponding program form the
set nodes. We prove that body-head-graphs are suitable for answer set compu-
tation of normal nested logic programs. To the best of our knowledge, this is the
first time that graphs corresponding to normal nested logic programs are intro-
duced and utilized to characterize and compute answer sets for those programs.
Additionally, we obtain suitability results for all other of the above mentioned
classes of programs.



2 Background

In this paper we consider a proper subclass of propositional nested logic pro-
grams [12]. Nested logic programs generalize logic programs by allowing bodies
and heads of rules to contain arbitrary nested expressions. Here an expression is
formed from propositional atoms using the operators

, ; not

standing for conjunction, disjunction and default negation, respectively. Literals

are expressions of the form p (positive literals) or not p (negative literals), where
p is some propositional atom. A rule r has the form

h1, . . . , hk ← B1; . . . ; Bn (1)

where h1, . . . , hk are atoms and B1, . . . , Bn are conjunctions of literals or >
(true) or ⊥ (false). A rule r is called a fact if n = 1 and B1 = >; r is called
normal if k ≤ 1 and n = 1. If r contains no default negation not then it is called
a basic rule. A normal nested logic program is a finite set of rules of the form (1).
A normal logic program is a finite set of normal rules. A program is basic if it
contains only basic rules. Let nNLP (nLP ) denote the class of all normal nested
logic programs (normal logic programs), respectively. Furthermore, with nLP1

we denote the class of normal programs with at most one positive body literal.
Notice that nLP1 ⊂ nLP ⊂ nNLP. For a rule r we define the head and the body

of r as Head(r) = {h1, . . . , hk} and Body(r) = {B1, . . . , Bn}, respectively. For a
set of rules P we define Head(P ) = ∪r∈P Head(r) and Body(P ) = ∪r∈P Body(r).
If B ∈ Body(P ) s.t. B = (p1, . . . , pl, not s1, . . . , not sm) we let B+ = {p1, . . . , pl}
and B− = {s1, . . . , sm} denote the positive and negative part of B, respectively.
If B = > then we set B+ = B− = ∅. For a normal rule r we define B+

r = B+

and B−
r = B− where r = Head(r)← B.

Answer sets for general nested programs were first defined in [13]. Here we
adapt the definition of stable models [9] (answer sets for normal programs) to
normal nested logic programs. A set of atoms X is closed under a basic program
P iff for any r ∈ P , Head(r) ⊆ X whenever there is a B ∈ Body(r) s.t. B+ ⊆ X .
The smallest set of atoms which is closed under a basic program P is denoted by
Cn(P ). The reduct, P X , of a program P relative to a set X of atoms is defined
in two steps. First, let B ∈ Body(P ) and let X be some set of atoms. Then the
reduct BX of B relative to X is defined as

BX =

{

B+ if B− ∩X = ∅
⊥ otherwise.

For a rule of the form (1) we define rX = h1, . . . , hk ← BX
1 ; . . . ; BX

n . Second, for
a normal nested program P we define P X = {rX | r ∈ P and Body(rX ) 6= {⊥}}.
Then P X is a basic program. We say that a set X of atoms is an answer set of a
program P iff Cn(P X)=X . For normal logic programs this definition coincides
with the definition of stable models [12]. The set of all answer sets of program



P is denoted by AS(P ). Let P be a program and let X be a set of atoms. We
define the set of generating bodies and the set of generating rules of P wrt X as

BP (X)={B∈Body(P ) | B+ ⊆ X and B− ∩X =∅} and
RP (X)={r ∈ P | there is some B ∈ Body(r) s.t. B ∈ BP (X)}, respectively.

A set of rules P is grounded iff there exists an enumeration 〈ri〉i∈I of P such
that for all i ∈ I there is some B ∈ Body(ri) with B+ ⊆ Head({r1, . . . , ri−1}).
Then X is an answer set of P iff we have X = Cn(RP (X)+). This characterizes
answer sets in terms of generating rules.

A directed graph (or digraph) G is a pair G = (V, E) such that V is a fi-
nite, non-empty set (nodes) and E ⊆ V × V is a set (arcs). For a digraph
G = (V, E) and a vertex v ∈ V , we define the set of all predecessors (suc-

cessors) of v as Pred(v) = {u | (u, v) ∈ E} (Succ(v) = {u | (v, u) ∈ E}),
respectively. Let M ⊆ V be a subset of nodes of some digraph G = (V, E).
We define Pred(M) = ∪v∈MPred(v) and Succ(M) = ∪v∈MSucc(v). We need a
special kind of arc labeling for digraphs. G = (V, E0, E1, E) is a directed graph
whose arcs E0 ∪E1 ∪E are labeled zero (E0) or one (E1) and additionally there
are arcs without labels (E). Those graphs are called 0-1-digraphs and G0,1 is the
class of all 0-1-digraphs. We call arcs in E0 and E1 0-arcs and 1-arcs, respec-
tively. For G we distinguish 0-predecessors (0-successors) from 1-predecessors (1-
successors) denoted by Pred0(v) (Succ0(v)) and Pred1(v) (Succ1(v)) for v ∈ V ,
respectively. For 0-1-digraphs we have Pred(v) = Pred1(v) ∪ Pred0(v) and
Succ(v) = Succ0(v) ∪ Succ1(v). The notations for 0- and 1-predecessors and
0- and 1-successors are generalized to sets of nodes as for predecessors and suc-
cessors (see above). In this paper we deal with special colorings of graphs. A
coloring C of G = (V, E0, E1) is a mapping C : V → {⊕,	}. We sometimes
denote the set of all nodes colored with ⊕ or 	 by C⊕ or C	, respectively. Since
we have C⊕ ∩ C	 = ∅, we identify a coloring C with the pair (C⊕, C	).

3 Graphs for Logic Programs

In this section we define several directed graphs, which are shown to be suitable
for different classes of logic programs in the next section.

Definition 1. Let P be a logic program.

The BH-graph (body-head-graph) BHP = (V, E0, E1, E) of P is a directed

graph with nodes V = Body(P ) ∪ Head(P ) and labeled arcs

E = {(B, h) | B ∈ Body(P ), h ∈ Head(P ) and (h← B) ∈ P}
E0 = {(h, B) | B ∈ Body(P ), h ∈ Head(P ) and h ∈ B+}
E1 = {(h, B) | B ∈ Body(P ), h ∈ Head(P ) and h ∈ B−}.

The RH-graph (rule-head-graph) RHP = (V, E0, E1, E) of P is a directed

graph with nodes V = P ∪ Head(P ) and labeled arcs

E = {(r, h) | r ∈ P, h ∈ Head(P ) and Head(r) = {h}}
E0 = {(h, r) | r ∈ P, h ∈ Head(P ) and h ∈ B+

r }
E1 = {(h, r) | r ∈ P, h ∈ Head(P ) and h ∈ B−

r }.



The BR-graph (body-rule-graph) BRP = (V, E0, E1, E) of P is a directed

graph with nodes V = P ∪ Body(P ) and labeled arcs

E = {(B, r) | r ∈ P, B ∈ Body(P ) and Body(r) = {B}}
E0 = {(r, B) | r ∈ P, B ∈ Body(P ) and Head(r) ⊆ B+}
E1 = {(r, B) | r ∈ P, B ∈ Body(P ) and Head(r) ⊆ B−}.

Observe that all graphs in Definition 1 have two different kinds of nodes such
as rules and head for rule-head-graphs, bodies and rules for body-rule-graphs
and bodies and heads for body-head-graphs. Oppositely many graphs found in
the literature have a single kind of nodes such as the literals or the rules of a
given program. The introduction of two different kinds of nodes enables us to
put more information into graphs corresponding to logic programs.
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Fig. 2. The rule-head-graphs RHP1
and RHP2

of programs P1 and P2 together with
its a-colorings (see Definition 4 in Section 4).

For completeness we also investigate three types of graphs where the nodes
are the bodies, rules and heads, respectively.

Definition 2. Let P be a logic program.

The B-graph (body-graph) BP = (V, E0, E1, ∅) of P is a directed graph with

nodes V = Body(P ) and labeled arcs

E0 = {(B′, B) | ∃r′ ∈ P s.t. B′ ∈ Body(r′) and Head(r′) ⊆ B+}
E1 = {(B′, B) | ∃r′ ∈ P s.t. B′ ∈ Body(r′) and Head(r′) ⊆ B−}.



The R-graph (rule-graph) RP = (V, E0, E1, ∅) of P is a directed graph with

nodes V = P and labeled arcs

E0 = {(r′, r) | Head(r′) ⊆ B+ for some B ∈ Body(r)}
E1 = {(r′, r) | Head(r′) ⊆ B− for some B ∈ Body(r)}.

The H-graph (head-graph) BHP = (V, E0, E1, ∅) of P is a directed graph

with nodes V = Head(P ) and labeled arcs

E0 = {(h′, h) | r, r′ ∈ P, h′ ∈ Head(r′), h ∈ Head(r) and h′ ∈ B+ for B ∈ Body(r)}
E1 = {(h′, h) | r, r′ ∈ P, h′ ∈ Head(r′), h ∈ Head(r) and h′ ∈ B− for B ∈ Body(r)}.

In order to obtain a uniform graph representation for this paper, we have not
deleted the unnecessary empty set of unlabeled arcs in Definition 2. Observe, that
RP is the rule dependency graph (block graph) as defined in [11, 14] provided
that P is a normal logic program.

4 Graph Colorings Characterizing Answer Sets

As done in [4, 14, 11] for normal programs, we now characterize answer sets of
normal nested programs as special non-standard graph colorings. We need the
following definitions.

Definition 3. Let P be a normal nested program and let B be a conjunction of

literals. Then

1. B is grounded wrt P iff there exists SB ⊆ P s.t. SB is grounded and B+ ⊆
Head(SB)

2. B is blocked wrt P iff B− ∩ Head(P ) 6=∅.

Now let P be a normal nested program and let P ′ ⊆ P be a subset of rules. A
body B ∈ Body(P ) is applicable wrt P ′ iff B is grounded and not blocked wrt P ′.
Next we define applicable rules and heads wrt applicable bodies. A rule r ∈ P

(possibly not in P ′) is applicable wrt P ′ iff there exists some B ∈ Body(r) s.t. B

is applicable wrt P ′. Similarly a head h ∈ Head(P ) (possibly not in Head(P ′))
is applicable wrt P ′ iff there exists some rule r ∈ P s.t. r is applicable wrt P ′

and h ∈ Head(r).

Definition 4. Let P be a normal program, let Γ ∈ {RH, BR, BH, B, B, H}, let

ΓP = (V, E0, E1, E) be the Γ -graph of P and let C be a total coloring of ΓP .

Then C is an a-coloring of ΓP iff for each v ∈ V we have

AP v ∈ C⊕ iff v is applicable wrt Rs(C⊕).

For each Γ ∈ {BH, RH, BR, B, R, H} let AC(ΓP ) denote the set of all a-
colorings of ΓP . For example, the two a-colorings of the rule-head-graphs of pro-
grams P1 and P2 are given in Figure 2 on the left and right side of |,respectively.



It is easy to see, that for both programs the a-colorings are in one to one cor-
respondence with the respective answer sets, by just looking at the ⊕-colored
head-nodes.

Let SRH ⊆ P ∪Head(P ), SBR ⊆ P ∪Body(P ), SBH ⊆ Body(P ) ∪Head(P ),
SB ⊆ Body(P ), SR ⊆ P and SH ⊆ Head(P ) be subsets of P ∪ Body(P ) ∪
Head(P ). Then for x ∈ {BH, RH, BR, B, R, H} the set of rules Rs(Sx) is defined
as follows:

Rs(Sx) = P ∩ Sx if x ∈ {RH, BR, R}
Rs(Sx) = {r ∈ P | Body(r) ∩ Sx 6= ∅} if x ∈ {BH, B}
Rs(Sx) = {r ∈ P | ∃B ∈ Body(r) s.t. B+

r ⊆ Sx} if x ∈ {H}.

Furthermore, for a subset S ⊆ P ∪Body(P )∪Head(P ) we define the set of bodies

Bs(S) and the set of heads Hs(S) of S as

Bs(S) = S ∩ Body(P ) and
Hs(S) = S ∩ Head(P ), respectively.

With this notations we are able to formulate the following theorem which gives
equivalence results between answer sets and a-colorings for the different graphs
types.

Theorem 1. Let P be a logic program, let Γ ∈ {BH, RH, BR, B, R, H}, let

ΓP = (V, E0, E1, E) be the Γ -graph of P and let C be a total coloring of ΓP .

Then we have the following equivalences:

1. C ∈ AC(RHP ) s.t. X =Hs(C⊕) iff

X ∈ AS(P ) s.t. C⊕=RP (X) ∪Head (RP (X))
2. C ∈ AC(BRP ) s.t. X =Head(Rs(C⊕)) iff

X ∈ AS(P ) s.t. C⊕=BP (X) ∪RP (X)
3. C ∈ AC(BHP ) s.t. X =Hs(C⊕) iff

X ∈ AS(P ) s.t. C⊕=BP (X) ∪Head(RP (X)).
4. C ∈ AC(BP ) s.t. X = Head({r ∈ P | B ∈ Body(r) and B ∈ C⊕}) iff X ∈

AS(P ) s.t. C⊕=BP (X)
5. C ∈ AC(RP ) s.t. X =Head(C⊕) iff X ∈ AS(P ) s.t. C⊕=RP (X)
6. C ∈ AC(HP ) iff C⊕ ∈ AS(P ).

This theorem gives not only the mentioned equivalence between the a-colorings
of a graph (belonging to different classes) and the answer sets of the associated
logic program, but it also tells us how to extract an answer set from a given
a-coloring. Principally, this can be done by collecting the ”corresponding” heads
of nodes in C⊕. Next we characterize applicability purely by the structure of
Γ -graphs as given in definitions 1 and 2.

Definition 5. Let P be a program, let Γ ∈ {BH, RH, BR, B, R, H}, let ΓP =
(V, E0, E1, E) be the Γ -graph of P , and for v ∈ V let Gv = (V v , Ev

0 , Ev) be a

graph s.t. V v ⊆ V . Then Gv is a proof graph for v wrt ΓP iff the following

conditions hold:



1. Gv is the 0-subgraph of ΓP induced by V v

2. Gv is acyclic

3. for each v′ ∈ V v we have Pred0(v′) ⊆ V v and Pred(v′) ∩ V v 6=∅.

This definition gives a graph theoretical characterization of groundedness.
Whereas groundedness has to be check globally by finding a proof graph by
considering 0-arcs, that is positive dependencies between nodes, blockage is a
rather local property and can be verified locally by looking at the 1-predecessors
of a node.

Theorem 2. Let P ∈ nNLP be a normal nested logic program, let ΓP =
(V, E0, E1, E) be the Γ -graph of P where Γ = BH, and and let C be a total

coloring of ΓP . Furthermore, let v ∈ V be a node of ΓP . Then v is applicable

wrt Rs(C⊕) iff both of the following conditions hold:

1. there exists a proof graph (V v, Ev
0 , Ev) for v wrt ΓP s.t. V v ⊆ C⊕

2. for each v′ ∈ Pred1(v) we have v′ ∈ C	.

This theorem characterizes applicability of bodies and heads for normal nested
logic programs by exclusively appealing to the structure of the body-head-graph
BHP of P . The next two theorems give similar results for classes nLP and nLP1.

Theorem 3. Let P ∈ nLP be a normal logic program, let ΓP = (V, E0, E1, E)
be the Γ -graph of P where Γ ∈ {BH, RH} and and let C be a total coloring of

ΓP . Furthermore, let v ∈ V be a node of ΓP . Then v is applicable wrt Rs(C⊕)
iff conditions 1. and 2. of Theorem 2 hold.

Theorem 4. Let P ∈ nLP1 be a normal logic program with at most one pos-

itive body literal, let ΓP = (V, E0, E1, E) be the Γ -graph of P where Γ ∈
{BH, RH, BR, B, R} and let C be a total coloring of ΓP . Furthermore, let v ∈ V

be a node of ΓP . Then v is applicable wrt Rs(C⊕) iff conditions 1. and 2. of

Theorem 2 hold.

To sum up, for the program classes nNLP, nLP and nLP1 the above theorems
demonstrate how to characterize applicability of bodies, rules and heads by ex-
clusively referring to the structure of the corresponding graphs. This results form
the basis for the suitability results in the next section.

5 Suitability Results

Now we give several suitability results for the different graphs introduced in
Section 3. We start by clarifying our intuition about graphs to be suitable for
answer set semantics.

Definition 6. Let P be a class of logic programs, let Γ : P → G0,1 be a mapping

and let A : G0,1 → 2Node be an operator2. Then Γ is suitable (for ASP) for P
wrt A iff for each program P ∈P we have A(Γ (P ))=AC(ΓP ).

2 With 2Node we denote the power set of all nodes of graphs in G0,1.



Observe, that operator A must no use the original program, in order to compute
a-colorings. That is, A uses only the graph assigned to a program. Actually in
Definition 6 one could suspect an operator A which gives the answer sets instead
of the a-colorings, because we are mainly interested in them. However, in our
setting there are graphs like the rule-graph or the body-rule-graph that do not
contain any information on the heads of the corresponding program. For those we
need an additional interpretation step which gives the answer set corresponding
to some a-coloring. Observe that this step is trivial wrt computation of answer
sets in the sense that it can be performed in linear time by looking once at each
node of the graph.

Definition 7. Let Γ ∈ {BH, RH, BR, B, R, H}, let Γ(·) : nNLP → G0,1 be the

mapping that assigns the Γ -graph ΓP to each program P , let C ∈ AC(ΓP ) be

an a-coloring of ΓP and let XC be a set of atoms. Then XC is the answer set
corresponding to C iff one of the following conditions hold:

1. if Γ ∈ {BH, RH} then X =Hs(C⊕)
2. if Γ = BR then X =Head(Rs(C⊕))
3. if Γ = B then X =Head({r∈P | B ∈ Body(r) and B∈C⊕})
4. if Γ = R then X =Head(C⊕)
5. if Γ = H then X =C⊕.

In this definition we clarify how to interpret a-colorings for the different graphs
as answer sets of corresponding programs. We use exactly the relations between
answer sets and a-colorings as given in Theorem 1.

We have the following results.

Theorem 5. The mapping BH(·) : nNLP → G0,1 is suitable for nNLP, nLP

and nLP1 wrt ABH .

For illustration consider the logic programs

P3 = {r1 : x← (not a); (not b). r2 : a← not b. r3 : b← not a. }
P4 = {r1 : x← not a, not b. r2 : a← not b. r3 : b← not a. }.

(2)

Observe that program P3 has answer sets {a, x} and {b, x} and program P4 has
answer sets {a} and {b}. According to Theorem 5 both programs have different
BH-graphs; BHP3

is the graph shown in the middle and BHP3
is the graph on

the right side of Figure 3, respectively. In Figure 3, Ba denotes body (not a), Bb

denotes body (not b) and Ba,b denotes body (not a, not b), repsectively.
This also is reflected by the two different a-colorings of both BH-graphs:

AC(BHP3
) = {({Ba, a, x}, {Bb, b}), ({Bb, b, x}, {Ba, a})}

AC(BHP4
) = {({Ba, a}, {Bb, b, Ba,b, x}), ({Bb, b}, {Ba, a, Ba,b, x})}.

Although P3 and P4 have different answer sets both programs have the same
RH-graph, which is depicted on the left hand side of Figure 3. Obviously, we
cannot give any a-coloring of RHPi

(i ∈ {3, 4}) corresponding to some answer set
of Pi without referring to the original program. Therefore, we have the following
result.
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Fig. 3. The RH-graph of programs P3 and P4 (left) as well as the BH-graph of pro-
grams P3 (middle) and P4 (right).

Theorem 6. The mapping Γ (·) : nNLP → G0,1 is not suitable for nNLP wrt

AΓ for each Γ ∈ {B, R, H, BR, RH}.

However, RH-graphs are suitable for normal logic programs.

Theorem 7. The mapping RH(·) : nLP → G0,1 is suitable for nLP and nLP1

wrt ARH .

Next we demonstrate the difference between RH- and BR-graphs by programs
P1 and P2 from Section 1. Clearly, the RH-graphs of P1 and P2 are different,
because Head(P1) and Head(P2) are different. That is, d is a node of RHP1

but it is no node of RHP2
. For this reason the RH-graph is able to distinguish

the semantic differences between P1 and P2 (see Figure 2 in Section 3). For the
BR-graph we obtain a different situation, because both of the above programs
possess the same BR-graph. It is given in Figure 4, where Bb denotes body
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Fig. 4. The body-rule-graph (left) and the head-graph (right) of programs P1 and P2.

(not b) of rule r1, Ba denotes body (not a) of rule r2, Ba denotes body (a) of
rule r3, Bb denotes body (b) of rule r4 and B denotes one of the bodies (d, c)
or (c) of rule r5 depending on which program we are interested in P1 or P2. We
have the following theorem.

Theorem 8. The mapping Γ(·) : nLP → G0,1 is not suitable for nLP wrt AΓ

for each Γ ∈ {BR, B, R, H}.

If we focus on normal programs with at most one positive body literal, we obtain
suitability for Γ -graphs for Γ ∈ {BR, B, R}.



Theorem 9. The mapping Γ (·) : nLP1 → G0,1 is suitable for nLP1 wrt AΓ for

each Γ ∈ {BR, B, R}.

Surprisingly, head-graphs are not even suitable for nLP1. Consider the following
programs

{ a← b, c. b← not c. c← not b. }
{ a← b. a← c. b← not c. c← not b. }.

(3)

They both have the same head-graph, which is depicted on the right side of
Figure 4. Hence we have the final result.

Theorem 10. The mapping H(·) : nLP → G0,1 is not suitable for nLP wrt

AH .

All suitability results are summarized in Table 1.

6 Related Work and Discussion

In the literature many different types of graphs are associated with a given logic
program. Obviously, those graphs are used to detect structural properties of
programs, such as stratification [3], existence of answer sets [10, 4], or the actual
characterization of answer set semantics or well-founded semantics [7, 4, 14, 16].
The usage of rule-oriented dependency graphs is common to [7, 4, 14, 11]. In fact,
the coloration of such graphs for characterizing answer sets was independently
developed in [4] and [14] and further investigated in [11]. However, as the two
normal logic progrmas P1 and P2 demonstrate, rule dependency graphs (block
graphs) are not suitable for computing answer sets of normal logic programs.
Therefore, the approaches in [7, 4] rely on translations of normal programs into
negative ones before using their respective dependency graphs for characterizing
answer sets. Clearly, the above problem disappears for negative programs. In the
noMoRe system [1] and its underlying theory [16, 11, 15] some kind of additional
meta-information not present in the graph structure is neccessary to overcome
the mentioned problem (see Section 1). Obviously, non of the graphs discussed
so far is suitable for normal nested logic programs3.

The main contribution of this work is the introduction of body-head-graphs
which are shown to be suitable for normal nested logic programs. Hence body-
head-graphs handle multiple positive body atoms in an elegant and correct way
for normal programs. Furthermore, they also handle disjunctions of ”normal”
bodies correctly. To the best of our knowledge, this is the first time that graphs
corresponding to normal nested programs are introduced and used for charac-
terizing answer sets. As a byproduct the application of transformations utilized
in [15] in order to replace all rules with same head and all rules with same
body by just one nested normal rule, respectively, comes for free when using
body-head-graphs. That is, body-head-graphs give a much more compact repre-
sentation than all other mentioned graphs. Hence they should be preferred for

3 Observe, that normal nested logic programs are also utilized in [17] for translating
nested programs into extended ones.



representing logic programs. In fact, we have generalized a-colorings [14, 16] to all
graphs introduced in Section 3, in order to define suitability of graphs for answer
set semantics. This can be done because of two reasons. First, answer sets and
a-colorings are equivalent (see Theorem 1) and second, by using the ”correct”
graphs (which are the suitable ones later, see Theorems 2,3 and 4), the global
concept of groundedness can be characterized by exclusively referring to those
graphs. Consequently, applicability can be checked by exclusively investigating
the structure of corresponding graphs.

Observe that, the other graph formalisms for logic programs mentioned above
are only defined for normal [2, 14, 11] or normal negative programs [7, 4]. As show
in [5], extended dependency graphs [4] are suitable for kernel programs, where
kernel programs form a syntactically restricted but equivalent (wrt answer set
semantics) subclass of nLP which do not have any positive body atoms. Each
head atom of a kernel program must also appear as a body atom of the program
and all atoms are undefined in the well-founded model. As stated in [4], every
normal program is equivalent to some kernel program. Observe, that EDG and
the rule dependency graph (block graph) of a kernel program are isomorphic.
Here we have generalized [5] in two important aspects. First, we have developed
our concepts directly for each class of programs Γ ∈ {nNLP, nLP, nLP1}. That
is, we do not use any program transformations to equivalent but syntactically
restricted programs. In this way we also generalize [7] where rule graphs are
defined for reduced negative programs. Another difference between [4] and our
approach is that we abstract from actual atom names in the definition of suitable
graphs (see Definition 6) whereas in [4] atom names (as label of nodes) are used
to obtain different graphs for semantically different programs.

Finally, one may ask whether we do not have investigated rule-body-head-
graphs in this context. The reason is that distinguishing rules and bodies does not
give much more information on the underlying logic program. This is reflected
in Theorem 5 where it is shown that body-head graphs are sufficient to deal
with normal nested programs; and also Theorem 8 gives an argument for not
introducing bodies and rules in the same graph, since it shows that body-rule-
graphs are even not suitable for normal logic programs. In fact body-rule-graphs
give not more information than rule-graphs or body-graphs (see Theorem 9) and
are only useful for characterizing answer sets for normal programs with at most
one positive body atom. All suitability results are summarized in Table 1, where
each line gives the suitability of some graph wrt program classes nNLP, nLP and
nLP1. Currently we are implementing body-head-graphs in the noMoRe system.
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nNLP nLP nLP1

BH Yes Yes Yes
RH No Yes Yes
BR No No Yes
R No No Yes
B No No Yes
H No No No

Table 1. Suitability of Γ ∈ {BH, RH,BR, B, R,H} for program classes nNLP, nLP
and nLP1.

References

1. C. Anger, K. Konczak, and T. Linke. NoMoRe: A system for non-monotonic rea-
soning under answer set semantics. In W. Faber T. Eiter and M. Truszczyński,
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