
Using Nested Logic Programs for Answer Set

Programming

Thomas Linke

Institut für Informatik, Universität Potsdam
linke@cs.uni-potsdam.de

Abstract. We present a general method to improve computation of
answer sets by analyzing structural properties of normal logic programs.
Therefore we use labeled directed graphs associated to normal programs,
which can be utilized to compute answer sets. The basic idea is to detect
special subgraphs of those graphs corresponding to structural proper-
ties of normal programs and transform them into simpler but equivalent
subgraphs by applying graph transformations. It turns out that there is
no characterization for these graph transformations in terms of normal
logic programs. Surprisingly, nested logic programs provide a semantics
for the investigated transformations. In order to demonstrate its practical
usefulness, we have implemented our approach in the noMoRe system.

1 Introduction

Answer set programming (ASP) is a programming paradigm, which allows for
solving problems in a compact and highly declarative way. The basic idea is
to specify a given problem in a declarative language, e.g. logic programs1, such
that the different answer sets given by answer sets semantics [11] correspond to
the different solutions of the initial problem [14]. Currently there are reasonably
efficient implementations (e.g. smodels [18] and dlv [6] available. However, it is
still important to look for better ASP algorithms and improvements of existing
ASP systems.

In this paper we present a general method to improve computation of an-
swer sets for propositional normal logic programs (nLP) by analyzing struc-
tural properties of programs2. For example, if program P contains the two rules
(a ← c, not d) and (b ← c, not d) then both rules always apply together in
the construction of an answer set of P . Thus, there is no need to separately
check their applicability. The aim of this paper is to detect similar situations
where sets of rules behave uniformly wrt all answer sets of a given program. In
particular, we utilize block graphs, which can be used to compute answer sets
for normal logic programs by computing non-standard graph colorings, called
a-colorings [16, 17].

1 The language of logic programs is not the only one suitable for ASP. Others are
propositional logic or DATALOG with constraints [5].

2 The extension to the case where strong negation is permitted is straightforward and
proceeds in the usual way.



The central contribution of this work is the definition of different a-
coloring preserving block graph transformations, which reduce the number of
nodes. By those simplifications of block graphs, we are able to demonstrate that
a-colorings and corresponding answer sets can be computed more efficiently.
Furthermore, we are able to show that there exist no corresponding program
transformations between normal logic programs for the defined graph trans-
formations. Hence block graphs are demonstrated to be more expressive than
normal logic programs. However, it turns out that there are corresponding pro-
gram transformations between normal nested logic programs (nNLP), which
provide a semantics for the block graph transformations. In fact block graph
transformations and program transformations between normal nested programs
are shown to be equivalent. This result has two important consequences. First,
it shows how nested logic programs can used for improving answer set compu-
tation of normal logic programs. And second, answer sets of normal nested logic
programs can be computed by computing answer sets of normal programs.

We have implemented the presented transformations in the noMoRe system.
Our experimental results show that there is a reasonable gain of efficiency (less
time and less space). Observe that our implementation also computes answer sets
of normal nested programs by using the above mentioned equivalence between
graph and program transformations.

2 Background

In this paper we consider a proper subclass of propositional nested logic pro-
grams [14]. Nested logic programs generalize logic programs by allowing bodies
and heads of rules to contain arbitrary nested expressions. Here an expression is
formed from propositional atoms using the operators

, ; not

standing for conjunction, disjunction and default negation, respectively. Literals
are expressions of the form p (positive literals) or not p (negative literals), where
p is some propositional atom. A rule r has the form

h1, . . . , hk ← B1; . . . ; Bn (1)

where h1, . . . , hk are atoms and B1, . . . , Bn are conjunctions of literals or> (true)
or ⊥ (false). A rule r is called a fact if n = 1 and B1 = >; r is called normal if
k ≤ 1 and n = 1. If r contains no default negation not at all r is a basic rule. A
normal nested logic program is a finite set of rules of the form (1). A normal logic
program is a finite set of normal rules. A program is basic if it contains only basic
rules. Let nNLP (nLP ) denote the class of all normal nested logic programs
(normal logic programs), respectively. For a rule r we define the head and the
body of r as Head(r) = {h1, . . . , hk} and Body(r) = {B1, . . . , Bn}, respectively.
For a set of rules P we define Head(P ) = {Head(r) | r ∈ P} and Body(P ) =
{Body(r) | r ∈ P}. If B ∈ Body(P ) s.t. B = (p1, . . . , pl, nots1, . . . , notsm) we let



B+ = {p1, . . . , pl} and B− = {s1, . . . , sm} denote the positive and negative part
of B, respectively. If B = > then we set B+ = B− = ∅. For a normal rule r we
define B+

r = B+ and B−
r = B− where r = Head(r) ← B. Furthermore, Fact(P )

denotes the set of all facts of P and Atom(P ) denotes the set of all atoms of P .
Answer sets for general nested programs were first defined in [15]. Here we

adapt the definition of stable models [10] (answer sets for normal programs) to
normal nested logic programs. A set of atoms X is closed under a basic program
P iff for any r ∈ P , Head(r) ⊆ X whenever there is a B ∈ Body(r) s.t. B+ ⊆ X .
The smallest set of atoms which is closed under a basic program P is denoted by
Cn(P ). The reduct, P X , of a program P relative to a set X of atoms is defined
in two steps. First, let B ∈ Body(P ) and let X be some set of atoms. Then the
reduct BX of B relative to X is defined as

BX =

{

B+ if B− ∩X = ∅
⊥ otherwise.

For a rule of the form (1) we define rX = h1, . . . , hk ← BX
1 ; . . . ; BX

n . Second, for
a normal nested program P we define P X = {rX | r ∈ P and Body(rX ) 6= {⊥}}.
Then P X is a basic program. We say that a set X of atoms is an answer set of a
program P iff Cn(P X)=X . For normal logic programs this definition coincides
with the definition of stable models [14]. The set of all answer sets of program
P is denoted by AS(P ).

A directed graph (or digraph) G is a pair G = (V, E) such that V is a finite,
non-empty set (nodes) and E ⊆ V × V is a set (arcs). For a digraph G = (V, E)
and a vertex v ∈ V , we define the set of all predecessors (successors) of v as
Pred(v) = {u | (u, v) ∈ E} (Succ(v) = {u | (v, u) ∈ E}), respectively. Let
M ⊆ V be a subset of nodes of some digraph G = (V, E). We define Pred(M) =
∪v∈MPred(v) and Succ(M) = ∪v∈MSucc(v). The connecting arcs of M wrt G
are defined as CA(M) = ((Pred(M)×M) ∪ (M × Succ(M))) ∩ E. A path from
v to v′ in G = (V, E) is a finite subset Pvv′ ⊆ V such that Pvv′ = {v1, . . . , vn},
v = v1, v′ = vn and (vi, vi+1) ∈ E for each 1 ≤ i < n.

Let G = (V, E) and G′ = (V ′, E′) be digraphs. Then G′ is a subgraph of G
if V ′ ⊆ V and E′ ⊆ E. G′ is an induced subgraph of G if G′ is a subgraph of G
s.t. for each v, v′ ∈ V ′ we have that (v, v′) ∈ E′ iff (v, v′) ∈ E.

G and G′ are isomorph iff there exists a bijective mapping h : V → V ′ s.t.
for all v1, v2 ∈ V we have (v1, v2) ∈ E iff (h(v1), h(v2)) ∈ E′. We write G ≈h G′

if G and G′ are isomorph and h is the underlying isomorphism3.
We need a special kind of arc labeling for digraphs. G = (V, E0, E1) is a

directed graph whose arcs E0 ∪ E1 are labeled zero (E0) or one (E1). Those
graphs are called 0-1-digraphs. The class of all 0-1-digraphs is denoted by
G0,1. We call arcs in E0 and E1 0-arcs and 1-arcs, respectively. For G we
distinguish 0-predecessors (0-successors) from 1-predecessors (1-successors) de-
noted by Pred0(v) (Succ0(v)) and Pred1(v) (Succ1(v)) for v ∈ V , respec-
tively. For 0-1-digraphs we have Pred(v) = Pred1(v) ∪ Pred0(v) and Succ(v) =

3 Note that h in the definition of ≈h is not unique, but the results of this paper hold
for each isomorphism h.



Succ0(v) ∪ Succ1(v). The notations for 0- and 1-predecessors and 0- and 1-
successors are generalized to sets of nodes as for predecessors and successors
(see above).

In this paper we deal with special colorings of graphs. A coloring C of G =
(V, E0, E1) is a mapping C : V → {⊕,	}. We denote the set of all nodes colored
with ⊕ or 	 by C⊕ or C	, respectively. Since we have C⊕ ∩ C	 = ∅, we identify
a coloring C with the pair (C⊕, C	).

3 Block Graphs for Logic Programs

The block graph of a normal logic program was first defined in [16] and further
elaborated as rule dependency graph in [13]. Those graphs contain information
of dependencies between rules. Since we want to apply graph (program) trans-
formations to block graphs which contract sets of nodes (rules) to single nodes
(rules), we need so called assignments to remember the original sets of nodes
(rules). For a set M let 2M denote the power set of M .

Definition 1. Let S and M be sets and let Φ : S → 2M be a total mapping.
Then Φ is an assignment of S to M iff the following conditions hold

1. Φ(s) 6= ∅ for each s ∈ S
2. for all s, s′ ∈ S we have if Φ(s) 6= Φ(s′) then Φ(s) ∩ Φ(s′) = ∅
3. M =

⋃

s∈S Φ(s).

For a subset V ⊆ S we define Φ(V ) =
⋃

v∈V Φ(v). Clearly, there is no unique
assignment of S to M . Let |M | denotes the number of elements in set M .

Definition 2. Let S be some set, let R : 2S → 2S be a mapping s.t. ΦR is
an assignment of R(M) to M for each M ⊆ S. Then R is a reduction iff the
following conditions hold for each M ⊆ S

1. |R(M)| ≤ |M |
2. for all S1, S2 ⊆ R(M) we have if S1 ∩ S2 = ∅ then R(ΦR(S1) ∪ ΦR(S2)) =

R(ΦR(S1)) ∪ R(ΦR(S2)).

Observe, that in the above definition the assignments ΦR has to exist. Condition
2. implies that a reduction R has to be modular wrt ΦR, that is, subsets of
M which are assigned (by ΦR) to a single element in R(M) can be mapped
independently by R. If R is a reduction between programs it is called a program
reduction. Let T be a mapping between 0-1-digraphs. Then T is called a graph
reduction iff the restriction of T to the nodes V is a reduction for each 0-1-digraph
GP = (V, E0, E1).

Definition 3. Let G = (V, E0, E1) be a 0-1-digraph and let P be a normal nested
logic program. Then GP = (G, ΦP ) is an assigned 0-1-digraph for P iff ΦP is an
assignment of V to P .

In order to define correct graph transformations for block graphs we have to
delete unnecessary literals and rules in logic programs.



Definition 4. Let P be a normal (nested) logic program. A rule r ∈ P is cap-
tured (in P ) iff for each B ∈ Body(r) and for each p ∈ B+ ∪ B− there exists
r′ ∈ P s.t. p∈Head (r′). P is captured iff all rules in P are captured.

Clearly, each normal nested logic program can be transformed to some captured
program with same answer sets. Hence for the rest of the paper we assume every
program to be captured.

The block graph of a normal nested logic program is a generalization of the
block graph as defined in [16] for normal programs.

Definition 5. Let P be a normal nested logic program. The block graph ΓP =
(V, E0, E1) of P is a directed graph with nodes V = P and labeled arcs

E0 = {(r′, r) | r′, r ∈ P and Head(r′) ∩ B+ 6= ∅ for some B ∈ Body(r)}
E1 = {(r′, r) | r′, r ∈ P and Head(r′) ∩ B− 6= ∅ for some B ∈ Body(r)}.

If we define the mapping IP : P → 2P s.t. IP (r) = {r} for each r ∈ P then
obviously IP is an assignment of P to P . Therefore (ΓP , IP ) is an assigned
0-1-digraph for each normal nested program P .

In order to define so-called application colorings or shortened a-colorings for
assigned 0-1-digraphs we need the following definitions.

Definition 6. A normal nested logic program (set of rules) P is grounded iff
there exists an enumeration 〈ri〉i∈I of P such that for all i ∈ I there is some
B ∈ Body(ri) s.t. B+ ⊆ Head({r1, . . . , ri−1}).

Next we define applicability of a rule wrt to a set of rules.

Definition 7. Let P be a normal nested program and let r be a rule (possibly not
in P ). Then r is applicable wrt P iff there exists B ∈ Body(r) s.t. the following
two conditions hold:

1. there exist Pr ⊆ P s.t. Pr is grounded and B+ ⊆ Head(Pr)
2. B− ∩ Head(P ) = ∅.

A set of rules S is applicable wrt P iff each rule in S is applicable wrt P . Now
we are ready to define a-colorings for assigned 0-1-digraphs for normal nested
logic programs.

Definition 8. Let P be a normal nested logic program, let GP = (G, ΦP ) be
some assigned 0-1-digraph for P s.t. G = (V, E0, E1) and let C be a total coloring
of G. Then C is an a-coloring of GP iff for each v ∈ V we have

AP v ∈ C⊕ iff ΦP (v) is applicable wrt ΦP (C⊕).

Let AC(GP ) denote the set of all a-colorings of GP . Clearly, for normal programs
Definition 8 coincides with the original definition of a-colorings as given in [16,
17]. However, Definition 8 generalizes the former definition in two aspects. First,
Definition 8 deals with the more general class of normal nested logic programs.
Additionally, a-colorings are defined for assigned 0-1-digraphs where a single
node may correspond to a subset of rules of the underlying program.

Next we define equivalence between a-colorings and answer sets.



Definition 9. Let P and P ′ be normal nested logic programs and let GP =
(G, ΦP ) be an assigned 0-1-digraph for P . Then we define AC(GP ) ∼=f,Φ AS(P ′)
iff there exists a bijective mapping f : AC(GP ) → AS(P ′) and there exists an
assignment Φ of P ′ to P s.t. ΦP (C⊕) = Φ(GR(P ′, f(C))) for each C ∈ AC(GP ).

Observe, that we omit the index f in ∼=f,Φ whenever there is no need to refer
to the actual bijective mapping in Definition 9. The main results in [16, 17]
directly imply that we have AC((ΓP , IP )) ∼=IP

AS(P ) for each normal program
P . Hence answer sets of normal programs can be computed by computing a-
colorings. Consider program P = {a← b, not c. c← d, not a. b←>. d←>. }
and define GP = (G, ΦP ) s.t. G = ({x, y}, ∅, {(x, y), (y, x)}), ΦP (x) = {a ←
b, not c. , b ← >. } and ΦP (y) = {c ← d, not a. , d ← >. }. Then GP is an
assigned 0-1-digraph for P . GP has two a-colorings C1 = ({x}, {y}) and C1 =
({y}, {x}) corresponding to the two answer sets X1 = {b, a} and X2 = {d, c}
of P , respectively. For example, for C = C1 we have that condition AP holds
for each v ∈ C⊕ iff ΦP (x) is applicable wrt to itself. This it true iff each rule in
ΦP (x) is applicable wrt ΦP (x). Rule b←> is applicable by definition, because
we have if B = > then B+ = ∅. For rule a← b, not c we have B = (b, not c)
and thus for B+ = {b} and B− = {c} conditions 1. and 2. of Definition 7 hold,
because Head(ΦP (x)) = {a, b}.

We are able to generalize the former result in [16, 17] to normal nested pro-
grams.

Theorem 1. For each P ∈ nNLP we have AC((ΓP , IP )) ∼=IP
AS(P ).

Definition 10. Let GP = (G, ΦP ) and GP ′ = (G′, ΦP ′) be assigned 0-1-digraphs
for normal nested programs P and P ′ s.t. G = (V, E0, E1) and G′ = (V ′, E′

0, E
′
1).

Then we define AC(GP ) ∼=h,Φ AC(GP ′ ) iff there exists a bijective mapping h :
AC(GP ) → AC(GP ′) and there exists an assignment Φ of V ′ to V . s.t. C⊕ =
Φ(h(C)⊕) for each C ∈ AC(GP ).

As for Definition 9, if possible we omit the index h in ∼=h,Φ. We have the fol-
lowing result relating equivalences between a-colorings and equivalences between
a-colorings and answer sets.

Theorem 2. Let GP and GP ′ be assigned 0-1-digraphs for normal nested pro-
grams P and P ′, respectively, s.t. AC(GP ) ∼=Φ AC(GP ′) and AC(GP ′) ∼=Φ

P ′

AS(P ′). Then we have AC(GP ) ∼=Φ′ AS(P ′).

4 Block Graph Transformations

The block graph of a logic program can be used to apply some graph transfor-
mations, which reduce the number of nodes. The basic idea is to contract a set
of nodes to a single node when each node of the original set has the same color
for all a-colorings. For example, two nodes corresponding to rules like d←c and
c←a , respectively, have the same color for all a-colorings (see Examples 2). Ob-
serve that situations like this heavily appear in many ASP-problems, e.g. blocks
world planning (see Table 1 Section 6).



Formally, we define graph transformations which contract sets of nodes to
single nodes as follows.

Definition 11. Let G = (V, E0, E1) be a 0-1-digraph and let v, v′ ∈ V be two

nodes s.t. Pred(v′) = Pred0(v′) = {v}. Define graph transformation T
(v,v′)
0 (G) :

G0,1 → G0,1 for G s.t. T
(v,v′)
0 (G) = (V ′, E′

0, E
′
1) where

V ′ = V \ {v′}
E′

0 = (E0 \ CA({v′})) ∪ ({v} × Succ0({v′}))
E′

1 = (E1 \ CA({v′})) ∪ ({v} × Succ1({v′})).

Transformation T
(v,v′)
0 contracts nodes v and v′ to node v if v is the only 0-

predecessor of v′ and v′ has no 1-predecessors. If we consider the arcs in a graph
as dependencies between its nodes then v′ depends on a single node v through
0-arc (v, v′). On the level of logic programs this means that a rule corresponding
to v applies iff a rule corresponding to v′ applies wrt some answer set.

Let G = (V, E0, E1) be a 0-1-digraph and let v, v′ ∈ V be two nodes. We
define graph transformation T (v,v′)(G) : G0,1 → G0,1 s.t. for T (v,v′)(G) =
(V ′, E′

0, E
′
1) we have

V ′ = V \ {v′}
E′

0 = (E0 \ CA({v′})) ∪ (Pred0({v′})× {v}) ∪ ({v} × Succ0({v′}))
E′

1 = (E1 \ CA({v′})) ∪ (Pred1({v′})× {v}) ∪ ({v} × Succ1({v′})).

Definition 12. Let G = (V, E0, E1) be a 0-1-digraph and let v, v′ ∈ V be two

nodes s.t. Pred(v) = Pred(v′). Define graph transformation T
(v,v′)
B (G) : G0,1 →

G0,1 for G as T
(v,v′)
B (G) = T (v,v′)(G).

If v and v′ have the same predecessors then they depend on the same set of
nodes and thus are contracted to one node. For programs this means that two
rules corresponding to v and v′, respectively, have the same body.

Definition 13. Let G = (V, E0, E1) be a 0-1-digraph and let v, v′ ∈ V be two

nodes s.t. Succ(v) = Succ(v′) 6= ∅. Define graph transformation T
(v,v′)
H (G) :

G0,1 → G0,1 for G as T
(v,v′)
H (G) = T (v,v′)(G).

In Definition 13 the idea is to contract two nodes if they have the same successors,
because their influence on those successors is the same. We cannot contract nodes
if they do not have any successors, since they do not influence other nodes. Two
rules of some normal program corresponding to v and v′, respectively, have
to have the same head. In order to contract nodes, each of the above three
definitions takes different dependencies into account.

Let (G, ΦP ) be an assigned 0-1-digraph for P s.t. G = (V, E0, E1) and for

i ∈ {0, H, B} let T
(v,v′)
i (G) = (V ′, E′

0, E
′
1) for nodes v, v′ ∈ V . Define Φ

(v,v′)
P :

V ′ → 2P for each u ∈ V ′ as

Φ
(v,v′)
P (u) =

{

ΦP (v) ∪ ΦP (v′) if u = v
ΦP (u) otherwise.



If (G, ΦP ) is an assigned 0-1-digraph for P then obviously (T w
i (G), Φw

P ) is an
assigned 0-1-digraph for P for each i ∈ {0, H, B} where w = (v, v′).

Lemma 1. Let P be a normal nested logic program with block graph ΓP and let
r, r′ ∈ P be two nodes s.t. Pred(r′) = Pred0(r′) = {r} or Pred(r) = Pred(r′) or
Succ(r) = Succ(r′) 6= ∅. Then for each C ∈ AC((ΓP , IP )) we have {r, r′} ⊆ C⊕
or {r, r′} ⊆ C	.

This lemma justify our intuition, that nodes in a block graph which may be
contracted according to definitions 11, 12 and 13 have the same color for each
a-coloring.

For the rest of the paper we give all results for all three defined graph transfor-
mations simultaneously through index i. Let G = (GP , ΦP ) be some 0-1-digraph,
let i ∈ {0, B, H} and let wj = (vj , v

′
j) for each 1 ≤ j ≤ n + 1 where vj and v′j

are nodes of GP . Then T wn

i ◦ . . . ◦ T w1

i is a maximal graph transformation for
G iff it is the composition of graph transformations T w1

i for G, . . . , T wn

i for
T n−1

i ◦ . . . ◦ T w1

i (G) and for the graph T wn

i ◦ . . . ◦ T w1

i (G) there is no further
graph transformation T

wn+1

i possible. We have the following theorem stating
that there is a unique maximal composition of those graph transformations.

Lemma 2. Let G be some 0-1-digraph and let Ti = T wn

i ◦ . . . ◦ T w1

i be some
maximal graph transformation for G where wj = (vj , v

′
j) for nodes vj and v′j of

G (1 ≤ j ≤ n). Then Ti(G) is unique for i ∈ {0, H, B}.

With Ti we denote the unique maximal graph transformation T wn

i ◦ . . .◦T w1

i (G)
for each i ∈ {0, H, B}. We define Φi

P = Φwn

P . According to Lemma 2, Φi
P is

well-defined. We have the following result.

Lemma 3. The graph transformation Ti : G0,1 → G0,1 is a graph reduction for
i ∈ {0, H, B}.

Lemma 3 implies that for graph transformation Ti there exists a corresponding
assignment of the nodes of Ti(GP ) to nodes in GP (see Definition 2). We denote
this assignment with Φi for i∈{0, H, B}.

Theorem 3. Let (G, ΦP ) be some assigned 0-1-digraph for normal nested pro-
gram P . Then (Ti(G), Φi

P ) is an assigned 0-1-digraph for P for each i ∈ {0, H, B}
where Φi

P = ΦP ◦ Φi.4

This theorem tells us that if we apply graph transformations T0, TH and TB in
any order then we end up with some assigned 0-1-digraph for P .

For example graph transformation T0 contracts 0-paths without incoming
arcs to single nodes as much as possible. For logic program

P =







r1 : a←not b. r2 : b←not a.
r3 : c←a. r4 : c←b.
r5 : d←c.







(2)

4 Observe that ΦP ◦ Φi(v) = ΦP (Φi(v)) for each v ∈ V where V is the set of nodes of
G.



it is possible to apply block graph transformations T r1,r3

0 and T r2,r4

0 . Figure 1
shows the block graph ΓP of program (2) on the left and the resulting graph
T0(ΓP ) on the right side. Additionally, on the left and right of ’/’ we have
depicted the two a-colorings of (ΓP , IP ), respectively. We also have depicted
the two a-colorings of (T0(ΓP ), Φ0

P ). Observe, that we obtain the two corre-
sponding answer sets X1 = {a, c, d} and X2 = {b, c, d} directly from those
a-colorings by collecting the heads of rules corresponding to ⊕-colored nodes.
Let V ′ = {v1, v2, v5} be the set of nodes of T0(ΓP ). Then for the rule assignment

r1 r2

r3 r4

r5

v1 v2

v5

⊕/	

⊕/	

	/⊕

	/⊕

⊕/⊕

⊕/	 	/⊕

⊕/⊕

11

0 0

0 0

11

0 0

Fig. 1. Block graph ΓP of program (2) on the left and resulting graph T0(ΓP ) on the
right.

Φ0
P we have Φ0

P (v5) = {r5}, Φ0
P (v1) = {r1, r3} and Φ0

P (v2) = {r2, r4}. Ob-
serve, that node v5 is applicable wrt both a-colorings of (T0(ΓP ), Φ0

P ), because
Body(r5) = {c} and c ∈ Head(C⊕). Thus we have v5 ∈ C⊕ for both a-colorings
of (T0(ΓP ), Φ0

P ). We have the following result.

Theorem 4. Let P be a normal nested logic program. Then
AC((Ti(ΓP ), Φi

P )) ∼=IP
AS(P ) for each i ∈ {0, H, B}.

According to this theorem answer sets of normal programs can be computed by
computing a-colorings. Similar results to Theorem 4 also hold for compositions
of Ti and Tj for i, j ∈ {0, H, B} (see Theorem 3).

Definition 14. Let T be a graph reduction and let R be a program reduction.
Then T and R are corresponding to each other iff the following conditions hold
for each program P ∈ nNLP

1. T (ΓP ) ≈h ΓR(P )

2. AC((T (ΓP ), ΦT )) ∼=h,Φ AC((ΓR(P ), Φ
R)).

Observe, that in the above definition T and R are reductions and therefore the
assignments ΦT and ΦR are given implicitly through Definition 2. According to
Definition 14, a graph reduction corresponds to a program reduction if the trans-
formed block graph T (ΓP ) is isomorphic to the block graph of the transformed
program R(P ) (cond. 1. of Definition 14). Furthermore, the a-colorings of both
graphs should be equivalent (cond. 2. of Definition 14). Also observe that both



conditions rely on the same bijective mapping h which means that the equiva-
lence of the a-colorings has to hold wrt graph isomorphism h. At first sight, one
may think that a transformed block graph should be the block graph of some
normal logic program which is “equivalent” to the original one. Surprisingly,
this is not the case.

Theorem 5. For the graph reduction Ti there is no corresponding program re-
duction Ri : nLP→ nLP for i ∈ {0, H, B}.

For example, let P denote program (2) and consider ΓP and T0(ΓP ) (see Fig-
ure 1). Let P ′ ∈ nLP be some normal program s.t. its ΓP ′ is isomorphic to
the transformed graph T0(ΓP ). Then Theorem 5 says that the a-colorings of
(ΓP ′ , IP ′) are not equivalent to the depicted a-colorings of (T0(ΓP ), Φ0

P ) in Fig-
ure 1. First, we show that the rule in P ′ corresponding to node v5 in T0(ΓP )
cannot have a single positive head atom like in (x←y ). Assume (x←y ) ∈ P ′

would be the rule corresponding to node v5. This would imply that the two
rules corresponding to nodes v1 and v2 would both have head x (see Defini-
tion 5). Since rules corresponding to nodes v1 and v2 block each other, each
of them would also blocks itself. This is a contradiction, because it is not
the case in the graph T0(ΓP ). Therefore for each normal program P ′ with
block graph T0(ΓP ) node rd has to correspond to a rule with two positive
body atoms, lets say ΦP ′(v5) = (x ← y, y′ ). Let us take normal program
P ′ = {(y ← not y′ ), (y′ ← not y ), (x ← y, y′ )} where the first two rules
correspond to nodes v1 and v2, respectively. Then the block graph of P ′ is iso-
morphic to T0(ΓP ). But it is easy to see that node v5 (corresponding to rule
x←y, y′ ) cannot be in C⊕ for some C ∈ AC((ΓP ′ , IP ′)). In other words, we have
v5 ∈ C	 for each C ∈ AC((ΓP ′ , IP ′)). The same holds for each normal program
P ′ which has a block graph isomorphic to T0(ΓP ). Hence for all normal logic
programs s.t. condition 1. of Definition 14 holds we have that condition 2. of Def-
inition 14 does not hold. Similar examples can be found for the transformations
TH and TB.

5 Program Transformations

In the last section we have seen that there are simple a-coloring preserving block
graph transformations s.t. in general for the transformed block graph there is no
corresponding normal program. Next, we will see that it is possible to define
program transformations between normal nested logic programs corresponding
to block graph transformations.

Definition 15. Let P be a normal nested program and let r, r′ ∈ P rules. Then

the mappings Rr,r′

0 , Rr,r′

H , Rr,r′

B : nNLP→ nNLP for P are defined as follows.
If Body(r) = {B}, B+ ⊆ Head(r′), Head(P \ {r′})∩B+ = ∅ and Head(P )∩

B− = ∅ then define

Rr,r′

0 (P ) = (P \ {r, r′}) ∪ {(Head(r) ∪ Head(r′))← Body(r′)}.



If Head(r) = Head(r′) then define

Rr,r′

H (P )=(P \ {r, r′}) ∪ {Head(r)←(Body (r) ∪ Body(r′))}.

If Body(r) = Body(r′) then define

Rr,r′

B (P )=(P \ {r, r′}) ∪ {(Head(r) ∪ Head(r′))←Body (r)}.

Let P be some normal nested program, let i ∈ {0, H, B} and let wj = (rj , r
′
j)

for each 1 ≤ j ≤ n+1 where rj , r
′
j ∈ P . Then Rwn

i ◦. . .◦R
w1

i is a maximal program
transformation for P iff it is the composition of program transformations Rw1

i

for P , . . . , Rwn

i for R
wn−1

i ◦ . . .◦Rw1

i (P ) and for the program Rwn

i ◦ . . .◦R
w1

i (P )
there is no further program transformation R

wn+1

i possible. RB (RH) is a well-
known transformation where all rules with same body (head) are transformed
to one new rule with a nested head (body), respectively. According to [15] we
have that programs P , RB(P ) and RH(P ) have the same answer sets. It is easy
to see that the same holds for R0, that is, AS(P ) = AS(R0(P )).

We have the following result corresponding to Lemma 2.

Lemma 4. Let Ri = Rwn

i ◦ . . . ◦Rw1

i be some maximal program transformation
for P ∈ nNLP where wj = (rj , r

′
j) for rules rj , r

′
j ∈ P (1 ≤ j ≤ n). Then Ri(P )

is unique for i ∈ {0, H, B}.

We also have a result corresponding to Lemma 3.

Lemma 5. The program transformation Ri : nNLP → nNLP is a program
reduction for i ∈ {0, H, B}.

Observe, that if Ri is a program reduction then ΦRi exists according to Defini-
tion 2. For program transformations we get a result similar to Theorem 3.

Theorem 6. Let P be some normal nested program. Then (ΓRi(P ), Φ
Ri) is an

assigned 0-1-digraph for P for each i ∈ {0, H, B}.

Finally, we obtain a result stating that Ri is a program reduction corresponding
to Ti.

Theorem 7. For each i ∈ {0, H, B} we have that Ti corresponds to Ri.

This theorem tells us that the program reduction Ri between nested logic pro-
grams provide a semantics for the block graph transformation Ti. Furthermore,
Theorems 2, 4, 6 and 7 imply the following corollary.

Corollary 1. Let ΓP be the block graph of a normal nested logic program P .
Then AC((Ti(ΓP ), Φi

P )) ∼=ΦRi AS(Ri(P )) for i ∈ {0, H, B}.

This corollary justifies Definition 14, since the application of Ti to block graphs
is equivalent to the application of Ri to normal nested programs.



p1 p2 p3 p4

no Trans no Trans no Trans no Trans

rules 1343 354 2783 645 7595 1242 21539 2794
ass 23657 14326 80549 45321 35494 18575 21308644 15214111

time 0.36 0.22 1.19 1.18 1.03 0.87 408 312

Table 1. Number of rules, color assignments (ass), as well as time in seconds for small
planning examples.

6 Empirical Results and Discussion

We have implemented block graph transformation Ti for each i ∈ {0, H, B} in
the noMoRe system [1]5. According to Corollary 1 this can be interpreted as
answer sets computation of normal nested logic programs. Table 1 shows the cu-
mulative influence of applying all presented transformations together (indicated
by Trans). Invoking only one of the three transformations leads to similar but
weaker improvements. The tested problem instances are taken from [7], where
p1 and p3 are four step blocks world planning problems whereas p2 and p4 are
five step blocks world planning problems. All result are given for computing all
answer sets. The first line shows the number of rules, the second one gives the
number of color assignments6 and the last line contains the time in seconds used
to compute all solutions. Depending on the structure of the examples we may
save time and space when using graph transformations.

7 Related Work and Conclusion

In the literature we find many graph-based approaches to logic programming.
Obviously, graphs are used to detect structural properties of programs, such as
stratification [2], existence of answer sets [9, 3] or the actual characterization of
answer sets or well-founded semantics [4, 3, 16, 17]. The usage of rule-oriented
dependency graphs like block graphs is common to [4, 3, 16, 13]. In fact, the
coloration of such graphs for characterizing answer sets was independently de-
veloped in [3] and [16] and further investigated in [13].

However, the aim of this paper is to detect answer set preserving subsets of
rules which can be reduced to smaller subsets by means of block graph trans-
formations. Since there is a one to one correspondence between a-colorings and
answer sets [16, 13] different a-coloring preserving block graph transformations
reducing the number of nodes are defined. Furthermore, we are able to show that
block graphs together with transformations are more expressive than normal pro-
grams, because there exist no corresponding program transformations between
normal programs. However, there are polynomial, faithful and non-modular

5 http://www.cs.uni-potsdam.de/∼linke/nomore
6 By a color assignment we mean the action of coloring a node which is currently

uncolored.



program transformations between normal nested logic programs, which are
shown to be equivalent to the proposed graph transformations (see [12] for de-
tails on faithful transformations). This result has two important consequences.
First, nested logic programs can be used for improving answer set computation
of normal logic programs, since a-colorings and corresponding answer sets can be
computed more efficiently after applying graph transformations as demonstrated
in the noMoRe system. Basicly the computation of the deterministic consequences
of noMoRe is improved by providing a more compact representation of block
graphs. This distinguishes our work from [8] where heuristics are utilized for the
same reasons. Second, as a byproduct, answer sets of normal nested logic pro-
grams can be computed by computing a-colorings of transformed block graphs
corresponding to normal nested logic programs. In fact, the current version of
noMoRe also directly computes answer sets of normal nested programs.

A related method which reduces nested programs where the bodies can be
any nested expression to extended programs is introduced in [20]. However, this
method transformas a nested program into an extended one which in general
has more rules than the original one. Although our approach relies on similar
transformations, they are applied in the other direction, that is, possibly large
sets of rules in the “simpler” language of normal programs are transformed
to smaller sets of rules in the more expressive language of nested programs.
Usually a rather simple core language is used and then more advanced syntactical
constructs are translated to the core language (see [19] for an example). Our work
indicates that it is sometimes reasonable to implement a more expressive version
of the language to obtain more efficient systems. Of course one has to pay a price
for this: the underlying algorithms have to deal with the more expressive syntax,
which often is more difficult to implement. In particular, other ASP systems, not
relying on block graphs, may benefit from our results if their implementation
technique can be directly generalized to normal nested logic programs. In this
case, we suspect positive effects similar to those obtained for the noMoRe system.
If this is not possible then a system cannot benefit from our results.

Acknowledgements

The author was partially supported by the German Science Foundation (DFG)
under grant FOR 375/1 and SCHA 550/6, TP C and the Information Society
Technologies programme of the European Commission, Future and Emerging
Technologies under the IST-2001-37004 WASP project.

References

1. C. Anger, K. Konczak, and T. Linke. NoMoRe: Non-monotonic reasoning with logic
programs. In G. Ianni and S. Flesca, editors, (JELIA’02), volume 2424 of LNAI.
Springer Verlag, 2002.

2. K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
chapter 2, pages 89–148. Morgan Kaufmann Publishers, 1987.



3. G. Brignoli, S. Costantini, O. D’Antona, and A. Provetti. Characterizing and
computing stable models of logic programs: the non-stratified case. In C. Baral
and H. Mohanty, editors, Proc. of Conference on Information Technology, pages
197–201, Bhubaneswar, India, December 1999. AAAI Press.

4. Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and
default theories. Theoretical Computer Science, 170:209–244, 1996.

5. D. East and M. Truszczyński. dcs: An implementation of datalog with constraints.
In Proceedings of the National Conference on Artificial Intelligence. MIT Press,
2000.

6. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for
nonmonotonic reasoning. In J. Dix, U. Furbach, and A. Nerode, editors, LPNMR,
volume 1265 of LNAI, pages 363–374. Springer Verlag, 1997.

7. W. Faber, N. Leone, and G. Pfeifer. Pushing goal derivation in dlp computations.
In M. Gelfond, N. Leone, and G. Pfeifer, editors, LPNMR’99, volume 1730 of
LNAI, pages 177–191, El Paso, Texas, USA, 1999. Springer Verlag.

8. W. Faber, N. Leone, and G. Pfeifer. Experimenting with heuristics for answer
set programming. In B. Nebel, editor, IJCAI, pages 635–640. Morgan Kaufmann
Publishers, 2001.

9. F. Fages. Consistency of clark’s completion and existence of stable models, 1992.
10. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

In Proceedings of the International Conference on Logic Programming, pages 1070–
1080. The MIT Press, 1988.

11. M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive
databases. New Generation Computing, 9:365–385, 1991.

12. T. Janhunen. Comparing the expressive power of some syntactically restricted
classes of logic programs. In Dix J, L. Feriñas del Cerro, and U. Furbach, editors,
Proceedings of the 1st International Conference on Computational Logic, number
1861 in LNAI, pages 852–866. Springer Verlag, 2000.

13. K. Konczak, T. Linke, and T. Schaub. Graphs and colorings for answer set pro-
gramming: Abridged report. 2003. Submitted to LPNMR.

14. V. Lifschitz. Answer set planning. In Proceedings of the 1999 International Con-
ference on Logic Programming, pages 23–37. MIT Press, 1999.

15. V. Lifschitz, L. Tang, and H. Turner. Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence, 25(3-4):369–389, 1999.

16. T. Linke. Graph theoretical characterization and computation of answer sets. In
B. Nebel, editor, IJCAI, pages 641–645. Morgan Kaufmann Publishers, 2001.

17. T. Linke, C. Anger, and K. Konczak. More on nomore. In G. Ianni and S. Flesca,
editors, JELIA’02, volume 2424 of LNAI. Springer Verlag, 2002.

18. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and
well-founded semantics for normal logic programs. In J. Dix, U. Furbach, and
A. Nerode, editors, LPNMR, pages 420–429. Springer, 1997.

19. I. Niemelä and P. Simons. Extending the smodels system with cardinality and
weight constraints. Logic-Based Artificial Intelligence, pages 491–521, 2000.

20. J. You, L. Yuan, and M. Zhange. On the equivalence between answer sets and
models of completion for nested logic programs. In Proc. IJCAI03, page to appear,
2003.


