
Utilizing Quad–Trees for Efficient Design Space Exploration with Partial
Assignment Evaluation

Kai Neubauer, Christian Haubelt
University of Rostock, Germany

{kai.neubauer, christian.haubelt}@uni-rostock.de

Philipp Wanko, Torsten Schaub
University of Potsdam, Germany

{wanko, torsten}@cs.uni-potsdam.de

Abstract — Recently, it has been shown that constraint-based
symbolic solving techniques offer an efficient way for deciding
binding and routing options in order to obtain a feasible system
level implementation. In combination with various background
theories, a feasibility analysis of the resulting system may already
be performed on partial solutions. That is, infeasible subsets of
mapping and routing options can be pruned early in the decision
process, which fastens the solving accordingly. However, allow-
ing a proper design space exploration including multi-objective
optimization also requires an efficient structure for storing and
managing non-dominated solutions. In this work, we propose
and study the usage of the Quad–Tree data structure in the con-
text of partial assignment evaluation during system synthesis.
Out experiments show that unnecessary dominance checks can
be avoided, which indicates a preference of Quad–Trees over a
commonly used list-based implementation for large combinato-
rial optimization problems.

I. INTRODUCTION

As the complexity of applications and hardware architec-
tures is drastically increasing, system level descriptions of em-
bedded many core systems have gained a lot of attention in the
last decade. That is, the abstraction level is raised allowing
a combined design of hardware and software components in
order to diminish the complexity from lower abstraction such
as transistor or block level. However, the increasing complex-
ity of applications and the introduction of many core systems
with a number of heterogeneous processing and communica-
tion elements leads to vast decision spaces when searching for
feasible implementations. In recent studies, symbolic search
techniques have been shown to be an efficient way for find-
ing feasible system implementations even in stringently con-
strained environments [1, 2], i.e., mapping tasks onto process-
ing resources and routing messages over the communication
infrastructure. A huge advantage of symbolic solving is that
not only complete but rather partial solutions where only a sub-
set of decisions has been made can be checked for feasibility
(e.g., [3]). That is, if a partial solution is already invalid with
respect to some constraints, the search space can be pruned
early in the decision process.

Nonetheless, there often exists no single optimal solution
when multiple objectives (e.g., performance, predictability, en-
ergy efficiency, monetary costs, etc.) are considered in the
evaluation of such systems. Rather, a set of Pareto-optimal so-
lutions exist that represent compromises between variant and

often conflicting objectives. In state-of-the-art frameworks,
multi-objective optimization problems (MOOPs) are solved
using meta heuristics like multi-objective evolutionary algo-
rithms (MOEAs) and multi-objective particle swarm optimiza-
tions (MOPSOs). Those techniques are inspired by biological
processes and work on sets of solutions (populations) concur-
rently. Each individual (i.e., potential solution) is evaluated by
a fitness function before it is either discarded or considered as
the basis for following populations. This process is repeated
until a predefined abort criterion has been reached.

One of the main problems with these techniques is that the
search is generally not executed systematically but based on
combining previously found solutions. As a consequence, after
an arbitrary number of iterations, these algorithms tend to run
into saturation and stop finding novel feasible solutions.

Therefore, we propose using a complete symbolic approach
for solving multi-objective combinatorial optimization prob-
lems (MOCOPs) as a subset of MOOPs with a Boolean param-
eter space (cf. [4]). It is based on conflict-driven clause learn-
ing (CDCL) which originates from the area of Boolean sat-
isfiability (SAT) solving. CDCL-based techniques are able to
directly leverage the concept of partial solutions for dominance
checks of whole regions of the search space whenever the con-
sidered problem is assignment monotonous. That means, mak-
ing an additional decision during solving must not lead to a
better evaluation for any objective function. As this property
holds true for most objective functions considered in system
synthesis, we assume this property to also hold true for the
problems considered in this paper.

Compared to MOEAs where only complete solutions are
evaluated, working on partial assignments also implies that
dominance checks have to be executed more regularly. This
leads to a massive overhead in execution time especially for a
high number of objectives and Pareto-optimal solutions. Con-
sequently, an efficient way of performing dominance checking
is imperative. To this end, we propose Quad–Trees as a data
structure to store found non-dominated solutions in archives
for an improved dominance check for partial solutions. The ba-
sic idea of Quad–Trees is that m-dimensional solutions are or-
ganized in a tree where each node represents a non-dominated
solution and is itself the root of at most 2m − 2 children. This
way, only a reduced number of vectors has to be compared in
order to check for dominance of novel solutions. In the paper at
hand, we show for the first time that Quad–Trees are especially
well suited for dominance checking of partial assignments.

II. RELATED WORK

In the following, we present a number of methods that
have been developed to store and manage archives of non-
dominated solutions.

The most simple technique is the utilization of linear lists.
Consequently, in the worst case, each novel solution is com-
pared to all other solutions before it can be added to or rejected
from the archive. The most significant advantage of linear lists
is that solutions of the current archive that are dominated by a
novel solution can be removed from it very efficiently in O(1)
without the need for adjustment of other solutions (e.g., re-
ordering). The drawback, on the other hand, is that the com-
plexity w.r.t. the number of necessary dominance checks is al-
ways O(N) where N is the length of the list.

To overcome this shortcoming, Habenicht [5] first proposed
to use Quad–Trees, a k-ary tree with k depending on the num-
ber of objective functions. In this data structure, solutions are
stored according to an ordered policy that allows faster dom-
inance checks without the need to compare novel solutions
against each existing element. However, deleting solutions
from the tree whenever they are dominated by a new element
is challenging. Therefore, Mostaghim and Teich [6] later in-
troduced and compared three techniques to improve the per-
formance. As Quad–Trees are described thoroughly in the fol-
lowing section, we omit further explanation here.

More recently, the authors of [7] proposed another ap-
proach for managing non-dominated solutions in MOEAs.
The M–Front combines a list-based data structure with a k-
dimensional binary search tree (k-d tree). Here, the solu-
tions are stored into m sorted linked lists (M–List) and the
k-d tree simultaneously where m is the number of objectives.
The basic idea is to select one reference point for each novel
solution and calculate a narrow area that contains a set of so-
lutions for which the dominance checks have to be performed.
To determine this area, they utilize geometric properties of the
dominance relation to convert the problem into interval queries
which can be answered using the M–List. An additional key
requirement to minimize the number of solution that must be
checked and thus the complexity of the algorithm is to find an
appropriate reference point. In order to do so, the authors use
an nearest neighbor search with the help of the k-d tree.

Jaszkiewicz and Lust [8] propose ND–Tree, a technique to
online update Pareto archives. In the tree-based structure, each
node represents a subset of solutions that are contained in a
hypercube defined by its local nadir and optimal points (point-
wise maximum/minimum of all objective functions). The ac-
tual solutions are stored in lists in the leaf nodes whereas in-
ternal nodes represent a union of all of their children storing
the accumulated optimal and nadir points. That is, traversing
the tree from the root to a leaf isolates potentially dominated
candidates without the need to check each solution individu-
ally. Whenever a new solution is, for example, dominated by
the combined nadir point, it can be discarded. On the other
hand, if it dominates the ideal point, the whole sub tree is au-
tomatically dominated and can hence be deleted.

In this work, we address the problem of efficiently managing
the Pareto archives while solving multi-objective combinato-

rial optimization problems (MOCOPs) (cf. [4] for an overview)
based on CDCL and partial assignment checking. All previ-
ously mentioned methods have in common that they were de-
veloped in order to manage the archive for population based
meta-heuristics and do not work directly for CDCL-based solv-
ing techniques with partial assignment checking. M–Front has
the drawback that for every novel solution an appropriate ref-
erence point has to be calculated. That is, this calculation has
to be executed for each partial assignments which would ulti-
mately result in a high complexity.

In recent years, there have been few works that deal with de-
terministic methods for solving MOCOPs. The authors of [9]
propose a method to solve such problems. However, they do
not consider the ability of partial assignments. Though men-
tioning the possibility to utilize Quad–Trees for managing the
archive as an outlook for future work, they only use linear list
to store and update found non-dominated solutions as their fo-
cus lies on the solving process itself.

ASPRIN (ASP for preference handling) [10] is a frame-
work for defining and computing preferred (optimal) solutions
among stable models of logic programs. It offers a wide spec-
trum of different predefined preference types such as cardinal-
ity minimization as well as composite (i.e., multi-objective)
preference types such as lexicographic and Pareto optimiza-
tion. With ASPRIN, MOCOPs can be solved using the sta-
ble model semantics. However, no archive is used to store
non-dominated solutions. Rather, constraints are added that
exclude found and dominated solutions from the search space.

Note that the details of the solving process itself are out of
scope of this paper and we refer to [11] and [12] for further in-
formation. Instead, we focus on the management of the Pareto
archive that can be included into other frameworks directly.

III. PREREQUISITES

In this section, we will lay out basic definitions of multi-
objective optimization as well as the fundamental idea and the
basic operations of the Quad–Tree data structure.

A. Multi-objective Optimization

Given an electronic system specification containing various
applications that have to be executed on complex heteroge-
neous processing architectures, the space of possible design
decisions is enormous. While performing the design space ex-
ploration (DSE), the intertwined synthesis sub-problems allo-
cation, binding, and scheduling are being solved. The result-
ing systems are characterized by quality indicators (i.e., objec-
tive functions) such as response time, energy consumption, and
chip area. However, depending on the decisions that have been
made in the individual synthesis steps, some objectives may be
evaluated better than other objectives. The overall aim of the
DSE is to find solutions that are optimal w.r.t. all objectives
simultaneously. Generally, such multi-objective optimization
problems (MOOPs) do not consist of a single optimal solution
but rather a set of Pareto-optimal solutions (Pareto front).

Each found solution is evaluated by m objective functions
corresponding to the criteria of the MOOP which results in an
m-dimensional fitness vector. Comparing two solution vectors

x and y, there are three possible relations between them: x
is dominated by y, x dominates y or x is incomparable to y.
Formally, the dominance relation is defined as follows:

Def. 1. Given two solution vectors x = 〈x1, . . . , xm〉 and y =
〈y1, . . . , ym〉, x dominates y if and only if ∀i = 1, . . . ,m :
xi � yi and ∃i : xi � yi with m representing the number of
objectives and � as well as � indicate ”better or equal” and
”better” relations, respectively.

Given above definition, two solutions x and y are incompa-
rable to each other if neither x dominates y nor y dominates x.
Finally, Pareto-optimality is defined as follows:

Def. 2. A solution x is said to be Pareto-optimal if it is not
dominated by any other solution.

Hence, all solutions located on the Pareto front are mutually
non-dominated and all solutions not located on the front are
dominated by at least one other solution.

Without loss of generality, we assume in the following min-
imization problems only.

B. Quad–Tree data structure
When solving an MOOP, the true Pareto front is generally

unknown. Therefore, newly found solutions are often inserted
into a dominance free archive. This property is achieved by
consequently deleting dominated solutions from the archive
whenever a better solution is found during the search. To this
end, the Quad–Tree data structure offers an efficient imple-
mentation as unnecessary comparisons can be avoided.

The basic structure (Fig. 1) of a Quad–Tree for an m-
dimensional multi-objective optimization problem consists of
a single root node that holds up to 2m − 2 child nodes. An
m-bit index number, the k-successor, is associated with each
child and is calculated as follows [5, 6]:

∀i ∈ [0,m[: ki =

{
1, if n[i] ≥ r[i]

0, else.
(1)

Here, n and r are m-dimensional vectors containing the fitness
values for each objective and represent the child and the root,
respectively and ki represents the i-th bit of k. The k-successor
expresses which objectives of a solution are better (ki = 0)
or worse (ki = 1) w.r.t a reference vector and determines on
which position a new solution must be inserted. For instance,
node B in Fig. 1a is a 110b-successor of the root 〈15, 18, 35〉
as its first two objectives evaluate worse (k0 = k1 = 1) and the
third objective better (k2 = 0). Note that no children with a k-
successor equal to 0 and 2m−1 exist as they would dominate or
be dominated by the reference point, respectively. Informally,
an m-dimensional solution vector x represents the origin of
2m adjoining hyperboxes numbered from 0 to 2m−1 that are
occupied by different solution vectors. Note that all solutions
located in hyperbox 0 (2m−1) are better (worse) than x for
all objective values. Thus, solutions of these regions must not
be saved as the archive would not be dominance free anymore.
This results in a maximum of 2m− 2 children per solution.
For example, assuming a two-dimensional solution vector x,
hyperbox 0 located left below of x and hyperbox 3 located
right above of x can not contain incomparable solutions.

18
15

35

19
14

32

010

16
12

37

001

19
12

36

011

14
18

26

100

13
21

37

101

20
20

21

110

B

19
17

21 A

(a) Original Quad–Tree

18
15

35

19
14

32

010

16
12

37

001

19
12

36

011

14
18

26

100

13
21

37

101

20
20

21

110

B

19
17

21 A

(b) Updated Quad–Tree

Fig. 1. Example Quad–Tree with three objectives. The novel solution A (red)
dominates and thus replaces solution B (green).

Using Quad–Trees, a new solution can be efficiently
checked for non-dominance. Given above definitions, solution
vectors in the Quad–Tree which may dominate a novel solution
n are located in the sub trees of a root r whose indices contain
zeros in the same location as n. To this end, for each k, the
k-sets S0(k) and S1(k) specify all positions of zeros and ones,
respectively and are defined as follows:

S0(k) = {i | ki = 0, i = 1, . . . ,m} (2)
S1(k) = {i | ki = 1, i = 1, . . . ,m} (3)

Formally, only l-successors of r with l < k and S0(k) ⊂ S0(l)
have to be traversed. Consider for example the novel solution
vector A in Fig. 1a. First, the k-successor is determined ac-
cording to Eq. (1). The new solution may be dominated by
children whose index l is smaller or equal to k and contains
zeros at the same position as k. Hence, with k = 110b, the
novel solution may be dominated by the children with indices
010b, 100b, and 110b.

Analogously, in order to check which solutions of the Quad–
Tree are dominated by a new solution, only l-successors of
r with l > k and S1(k) ⊂ S1(l) have to be traversed. For
solution A in Fig. 1a with k = 110b, only the sub tree with
index l = 110b has to be checked.

In the example, A is not dominated by any previously in-
serted solution but it dominates vector B = 〈20, 20, 21〉. Note
that the calculation of the k-successor as described by [6] is
insufficient to test if a new vector dominates a solution in the
tree. That is, A would be wrongly declared as 001b-successor
of B and hence be inserted in the sub tree of B at index 001b al-
though A clearly dominates B. Using this method, the archive
would not be dominance free anymore. As a consequence, we
propose to use an additional calculation, called k*-successor,
to test if a new vector dominates an already found solution.
The differentiation between k and k∗ will be explained and
discussed in the following section.

After identifying a dominated solution in the archive, it has
to be deleted (Fig. 1b). However, deleting a solution from the
Quad–Tree is not trivial in the general case. When deleting
a node that itself contains child sub trees, those children have
to be reinserted into the tree. The authors of [6] addressed
this problem by proposing different strategies for updating the
Quad–Tree and deleting dominated solutions in the context of
multi-objective evolutionary algorithms (MOEAs). As their
experiments show that processing the reinsertion in lower lev-
els of the Quad–Tree leads to best results, we take that concept
as a starting point for our approach detailed in the next section.

Algorithm 1: ISDOMINATED
Input: Partial solution fitness 〈nm〉, Archive root 〈rm〉
Output: Dominated by archive

1 k = KSUCC(n, r)
2 if k = 0 then return False // n dominates r
3 elif k = 2m − 1 then return True // r dominates n
4 else
5 L = 〈l〉 | l = [1, k] ∧ l→ k = 2m − 1
6 ∀l ∈ L : if ISDOMINATED(n, r.getChild(l)) then
7 return True // child dominates n

8 return False

IV. QUAD–TREES FOR PARTIAL ASSIGNMENT EVALUATION

Compared to MOEAs, CDCL-based approaches can lever-
age partial assignment evaluation. That is, an incomplete solu-
tion (where not all decisions have been made) can be discarded
if it is already dominated by a solution in the archive. In turn,
this excludes all solutions containing the incomplete solution.
That way, a large area of the search space can be pruned earlier
during the solving process. Note that this approach is only fea-
sible for assignment monotonous problems, i.e., an additional
decision must not improve the evaluation of a partial solution.
Thus, in the following, we will always assume this property.

As each partial solution has to be checked if it is dominated,
the ratio of dominance checking to inserting (and hence delet-
ing) grows with the number of decisions necessary to com-
plete a solution. Consequently, the need for an efficient dom-
inance check becomes apparent. However, as partial solutions
are subject to deterioration throughout the solving, checking
whether a novel solution dominates solutions from the archive
must be delayed until the assignment is complete. As a con-
sequence, the management strategy described in [6] cannot be
used as it performs dominance checks for both direction (i.e.,
dominates and is dominated) per step. We therefore split the
algorithm into two separate steps, namely the dominance check
(Alg. 1) and the update (Alg. 2) steps described below.

A. Dominance Check
Algorithm 1 outlines the necessary steps to check if a partial

assignment n is dominated by a vector in the archive. First, the
k-successor for the current fitness w.r.t. the root node r is de-
termined (line 1) which corresponds to Eq. (1). If k equals to
0, the partial assignment still dominates the root and the algo-
rithm returns False (line 2). This signals the solver that the so-
lution is still feasible. Otherwise, if k equals to 2m−1 (all bits
are set to 1), the root of the tree already dominates the novel
solution. Thus, the algorithm will return True and the solver
can exclude the partial solution and prune the search space ac-
cordingly. For every other value of k (lines 4 to 8), the children
of r have to be tested. Therefore, first, the l-successors (line
5) are calculated which complies to the constraints described
in the previous section and ”→” represents the bitwise imply-
operator. Finally, the corresponding children l of r are tested
recursively if they dominate n (line 6). This process is repeated
until all decisions have been made and the solution is complete.

B. Update
At this point, it is clear that the new solution n is not dom-

inated by any vector of the archive. Hence, we are able to

Algorithm 2: UPDATE
Input: New 〈nm〉, Root 〈rm〉, insert, parentAlive
Output: List of Solutions to be reinserted

1 k∗ = K∗SUCC(n, r)
2 if k∗ = 0 then // r is dominated by n
3 L = 〈l〉 | l ∈ [1, 2m − 2]
4 foreach l ∈ L do
5 reinsert += UPDATE(n, r.getChild(l), False, False)
6 r.removeChild(l) // Remove Child

7 if parentAlive ∧ insert then
8 r = n
9 ∀node ∈ reinsert : INSERTSUB(r, node)

10 return 〈〉 // Nothing to reinsert
11 elif parentAlive ∧ ¬insert then
12 if |reinsert| ≥ 1 then
13 r = reinsert.pop ()
14 ∀node ∈ reinsert : INSERTSUB(r, node)

15 else DELETE(r)
16 return 〈〉 // Nothing to reinsert
17 elif ¬parentAlive ∧ ¬insert then
18 return reinsert

19 else // r is incomparable to n
20 if parentAlive then
21 if r.hasChild(k∗) then
22 UPDATE(n, r.getChild(k*), insert, True)
23 elif insert then
24 r.addChild(n, k∗)

25 L = 〈l〉 | l ∈]k∗, 2m − 2] ∧ k∗ → l = 2m − 1
26 ∀l ∈ L : UPDATE(n, r.getChild(l), False, True)
27 else // Ancestor is dominated
28 L = 〈l〉 | l ∈ [1, 2m − 2]
29 foreach l ∈ L do // Check all children
30 reinsert += UPDATE(n, r.getChild(l), False, False)
31 r.removeChild(l) // Remove Child

32 reinsert += r

33 return reinsert

prune such tests from the final update algorithm (Alg. 2) such
that we only have to consider the cases where the novel solu-
tion n either dominates (lines 2 to 18) or is incomparable (lines
19 to 33) to the root r. Besides n and r, two Boolean values
insert and parentAlive complete the input parameters of the al-
gorithm. While insert determines whether the new solution n
is supposed to be inserted into the sub tree of root r or not,
parentAlive provides the information if one or more predeces-
sor nodes of r were already dominated by n.

As indicated in the example for Fig. 1a, the original
k-successor is unable to detect if a new solution dominates a
vector from the archive in every case. Hence, for the update
algorithm, we use the k*-successor (line 1) defined as follows:

∀i ∈ [0,m[: k∗i =

{
1, if n[i] > r[i]

0, else.
(4)

Though the only difference between k and k∗ are the ”≥” and
”>” operators, respectively, the k*-successor correctly deter-
mines whether a vector A dominates another vector B if one
or more objectives of A are smaller than the corresponding ob-
jectives of B and at least one objective is indifferent (cf. A and
B in Fig. 1a). Formally, the k*-successor is necessary if there
exist two complementary proper subsets I, J of all indices in
the interval from 0 to m − 1 such that A is better in all i ∈ I

as well as A and B are indifferent in all j ∈ J objectives:

∃I, J ([0,m[| J = [0,m[\ I :

∀i ∈ I : A[i] < B[i] ∧ ∀j ∈ J : A[j] = B[j].

If k∗ evaluates to 0, i.e., r is dominated by n, all children
of r have to be checked recursively whether they are also
dominated by n and otherwise have to be marked for rein-
sertion into the Quad–Tree (lines 3 to 6). As n will replace
r (insert = True) or will be inserted into another sub tree
(insert = False), i.e., it will not be inserted into one of the
children, and r is dominated, the recursive call of the update
routine is parameterized with both insert and parentAlive
equal to False (line 5). Afterwards, insert and parentAlive
are analyzed. If both parameters are true (lines 7 to 10), n re-
places r and marked nodes are being reinserted into the sub tree
with the new root r = n. Otherwise, if parentAlive = True
and insert = False, the first vector to be reinserted be-
comes the new root (line 13) and the remaining nodes will
be reinsert there (line 14). However, if there are no nodes to
be reinserted, r is simply deleted (line 15). Finally, if both
parentAlive and insert are False, the list of vectors to be
reinserted is returned (line 18). Note that the combination
parentAlive = False, insert = true cannot occur.

In case n is incomparable to r, i.e., k∗ 6= 0, n has to
be inserted in the sub tree k∗ of r if parentAlive = True
(lines 21 to 26) or r and its sub trees have to marked for
reinsertion if parentAlive = False (lines 28 to 32). In
the former case, UPDATE is called recursively with the pa-
rameters parentAlive = True and insert derived from the
current context if there is already a solution at position k∗

(lines 21-22). Otherwise, n is simply added at position k∗ if
insert = True. Subsequently, all sub trees of r whose posi-
tion indices are greater than k∗ and contain ones at the same
position i as k∗ are checked if they are dominated by n (lines
25-26). In the latter case (ancesterAlive = False), all chil-
dren of r have to be checked if they are dominated by n and
marked for reinsertion (including r itself). Finally, the nodes
marked for reinsertion are returned to the parent of r.

C. Discussion on k and k*

Note that the k*-successor in Alg. 2 cannot detect whether
A is dominated by B if all objectives are indifferent but one
objective is worse in A as it is in B. However, as it is al-
ready known that the new solution is not dominated by a vec-
tor in the archive, it is unnecessary to detect this anyway. In
general, the k*-successor evaluates a solution better (regard-
ing the number of zeros) than the k-successor. As the inser-
tion of new solutions is based on k∗, this leads to a mismatch
between check (Alg. 1) and insertion (Alg. 2) if one or more
objectives are indifferent to each other. Exemplary, consider
the root node r = 〈5, 5, 5〉 and a new solution n = 〈6, 5, 4〉.
With k∗ = 100b, both vectors are indifferent to each other and
thus, n will be inserted as the child 100b of r. Later, another
solution m = 〈7, 5, 4〉 is found that is dominated by n. Even
though the check is based on the k-successor which evaluates
m w.r.t. r to k = 110b, it detects the dominance by also search-
ing l-successors that include 100b. That is, the difference be-
tween k and k∗ does not create problems in the detection of

50

100

50

100

50

100

x

z

y

(a) Pareto front

50
100

50
100

50

100

x

z

y

(b) All solution vectors
(c) Intermediate steps

Fig. 2. Experimental setup for three objectives showing (a) the Pareto front,
(b) all solutions and (c) the intermediate steps for one solution

dominated solutions but is necessary for their identification as
shown in the example in section III.B.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed Quad–Tree imple-
mentation for partial assignment checking against a list-based
approach. Therefore, we compare the scalability by generat-
ing solutions that are split into a fixed number of intermediate
steps in order to reflect the ability for partial assignment check-
ing of CDCL-based solving. All tests were carried out on an
Intel Core i7-4770 with 32 GiB RAM and prototypically im-
plemented in Python 2.7.

A. Scalability
For testing the scalability of our approach, we simulate a de-

sign space exploration for various complex problems by creat-
ing a set of different solutions that are evaluated by arbitrary
objective functions. More precisely, we first created an m-
dimensional spherical Pareto front that consists of a varying
number of mutually non-dominated points (Fig. 2a). Second,
along the trajectory from the coordinate origin to each of the
points, we randomly calculated a specific number of dominated
solutions xi (Fig. 2b) that consist of a fixed length list (hops)
of intermediate valuations (i.e xi = 〈xi1, . . . , xihops〉) to sim-
ulate partial assignments (Fig. 2c). Finally, each solution xi

is inserted into the archive. That is, the partial solutions are
checked if they are non-dominated w.r.t. all solutions in the
archive. If xij is already dominated, xi must not be inserted.

In our experiments, we generated several instances with
two to five objectives resulting in a varying number of non-
dominated solutions and inserted them into a Quad–Tree and
a list-based archive, respectively. Furthermore, we varied the
number of intermediate solutions from 50 to 200 to achieve a
wide range of granularity for the partial assignment evaluation.
For each test case, 20 independent runs were performed.

Fig. 3 shows two important results. First, the bar chart de-
picts the overall number of comparisons carried out that are
needed to filter the Pareto-optimal solutions. Here, one com-
parison corresponds to one calculation of k (k∗) in the Quad–
Tree and one dominance check for the list-based implementa-
tion. The results indicate a significant advantage of the Quad–
Tree data structure (blue) over the list (orange) with one or-
der of magnitude difference in most of the test cases. Sec-
ond, the average time in seconds needed to filter the Pareto

107

108

109

#C
om

pa
ri

so
ns

102 103 104

101

102

103

Pareto front size

Ti
m

e
in

s

Quad–Tree
List

Fig. 3. Run times and number of comparisons for our experiments of various
numbers of non-dominated solutions

front from the complete set of solutions is represented by the
line chart. For any test with more than two objectives (all but
the first three), the Quad–Tree implementation outperforms the
list. Note that the list even timed out for the last two test
cases (timeout set to 3600 s). However, the Quad–Trees are
not able to keep the same advantage as indicated by the num-
ber of comparisons. The main reason for this is, that the update
and deletion procedures are much more complex than for linear
list where deleting a particular solution always takes constant
time. Nevertheless, especially test cases with numerous mutu-
ally non-dominated solutions benefit from Quad–Trees as the
dominance checks outnumber the deletion procedures.

B. Ordering

In the previous set of experiments, the order in which the
solutions are inserted into the archive were random. Now, we
first consider an ordered (solutions near the Pareto front are
inserted first) and second an inversely ordered insertion strat-
egy. That is, solutions that are already in the archive are less or
more often dominated by new solutions, respectively.

An ordered inserting of the solutions results in a significant
decrease of delete operations as newly found solutions are al-
ready dominated by the archive. Thus, the Quad–Tree data
structure loses its disadvantage over the list. While the relation
w.r.t. number of comparisons is nearly identical to the random
test cases, the run time for Pareto filtering decreases for the
Quad–Trees especially for large archive sizes. Considering a
archive size of approx. 2500 solutions, the Quad–Tree imple-
mentation requires only 400 s while the list-based method runs
3250 s. For the largest considered test case (8412 solutions),
the list times out while the Quad–Tree finishes in under 550 s.

For the other extreme, the inversely ordered insertion strat-
egy, the execution times of both approaches are generally
higher and also closer together as solutions from the archive
must be deleted more regularly. However, even here, the
Quad–Tree outperforms the list in most test cases. Only small
two-dimensional optimization problems are filtered by the list
(19 s) slightly faster than by the Quad–Tree (31 s). Similar to
random test cases, the Quad–Tree is two times faster than the
list for large test cases with three and more objectives.

VI. CONCLUSION

In this work, we proposed and studied Quad–Trees as the
data structure to store and manage the Pareto archive for
CDCL-based multi-objective optimizations with partial as-
signment evaluation. In contrast to multi-objective evolution-

ary algorithms (MOEAs), dominance checks must be addi-
tionally performed for incomplete solutions. We have shown
that Quad–Trees therefore offer a fast dominance identifica-
tion for newly found solutions as unnecessary comparisons
can be avoided. Though deleting dominated solutions from the
archive is arduous in Quad–Trees, the experiments showed that
the state-of-the-art list-based implementation performs worse
than the Quad–Tree due to a significantly higher number of
comparisons for each test case with more than two objectives.

ACKNOWLEDGMENTS

This work was funded by the German Science Foundation
(DFG) under grants HA 4463/4-1 and SCHA 550/11-1.

REFERENCES

[1] B. Andres, M. Gebser, T. Schaub, C. Haubelt, F. Reimann, and M. Glaß.
Symbolic system synthesis using answer set programming. In Proc. of
LPNMR, pages 79–91, 2013.

[2] A. Biewer, J. Gladigau, and C. Haubelt. A novel model for system-level
decision making with combined ASP and SMT solving. Proc. of DATE
2014, pages 1–4, 2014.

[3] K. Neubauer, P. Wanko, T. Schaub, and C. Haubelt. Enhancing symbolic
system synthesis through ASPmT and partial assignment evaluation. In
Proc. of DATE, pages 306–309, 2017.

[4] C. A. Coello Coello, C. Dhaenens, and L. Jourdan. Multi-objective com-
binatorial optimization: Problematic and context. In Advances in multi-
objective nature inspired computing, pages 1–21. Springer, 2010.

[5] W. Habenicht. Essays and Surveys on Multiple Criteria Decision Mak-
ing, chapter Quad Trees, a Datastructure for Discrete Vector Optimiza-
tion Problems, pages 136–145. Springer Berlin Heidelberg, 1983.

[6] S. Mostaghim and J. Teich. Evolutionary Multiobjective Optimization,
chapter Quad-trees: A Data Structure for Storing Pareto Sets in Multiob-
jective Evolutionary Algorithms with Elitism, pages 81–104. Springer
London, 2005.

[7] M. Drozdı́k, Y. Akimoto, H. Aguirre, and K. Tanaka. Computational cost
reduction of nondominated sorting using the m-front. IEEE Transactions
on Evolutionary Computation, 19(5):659–678, Oct 2015.

[8] A. Jaszkiewicz and T. Lust. Nd-tree: a fast online algorithm for updating
a pareto archive and its application in many-objective pareto local search.
arXiv preprint arXiv:1603.04798, 2016.

[9] R. Marinescu. Exploiting problem decomposition in multi-objective con-
straint optimization. In Ian P. Gent, editor, Principles and Practice of
Constraint Programming, pages 592–607, Springer Berlin Heidelberg,
2009.

[10] G. Brewka, J. Delgrande, J. Romero, and T. Schaub. asprin: Customiz-
ing answer set preferences without a headache. In Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[11] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187:52 – 89,
2012.

[12] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
P. Wanko. Theory solving made easy with clingo 5. In Technical Com-
munications of ICLP, 2016.

