
Reduction-based Solving of Multi-agent Pathfinding on Large
Maps Using Graph Pruning

Matej Husár

Charles University

Prague, Czech Republic

husarmatej@gmail.com

Jiří Švancara

Charles University

Prague, Czech Republic

svancara@ktiml.mff.cuni.cz

Philipp Obermeier

Potassco Solutions, and

University of Potsdam

Potsdam, Germany

phil@cs.uni-potsdam.de

Roman Barták

Charles University

Prague, Czech Republic

bartak@ktiml.mff.cuni.cz

Torsten Schaub

Potassco Solutions, and

University of Potsdam

Potsdam, Germany

torsten@cs.uni-potsdam.de

ABSTRACT
Multi-agent pathfinding is the problem of finding collision-free

paths for a set of agents. Solving this problem optimally is compu-

tationally hard, therefore many techniques based on reductions to

other formalisms were developed. In comparison to search-based

techniques, the reduction-based techniques fall behind on large

maps even for a small number of agents. To combat this phenom-

enon, we propose several strategies for pruning vertices off large

instances that will most likely not be used by agents. First, we

introduce these strategies conceptually and prove which of them

maintain completeness and optimality. Eventually, we conduct an

exhaustive evaluation and show that graph pruning strategies make

reduction-based solvers comparable to search-based techniques on

large maps while maintaining their advantage on small dense maps.

KEYWORDS
Multi-agent pathfinding; Scalability; Answer set programming; Sat-

isfiability; Subgraph; Graph pruning; Logic programming

ACM Reference Format:
Matej Husár, Jiří Švancara, Philipp Obermeier, Roman Barták, and Torsten

Schaub. 2022. Reduction-based Solving of Multi-agent Pathfinding on Large

Maps Using Graph Pruning. In ACM Conference, Washington, DC, USA, July
2017, IFAAMAS, 9 pages.

1 INTRODUCTION
Multi-agent pathfinding (MAPF) is the problem of navigating a

fixed set of mobile agents in a shared environment (map) from their

initial locations to target destinations without any collisions among

the agents [24]. This problem has numerous practical applications

in robotics, logistics, digital entertainment, automatic warehous-

ing and more, and it has attracted significant research focus from

various research communities in recent years [10, 14, 17, 18, 20, 27].

The optimal MAPF solvers can be in general split into two cate-

gories – search-based and reduction-based. The former algorithms

search over possible locations or conflicts among the agents, the

latter reduce the problem to some other well-defined formalism

such as Answer Set Programming (ASP; [7, 19]) or Boolean Satis-

fiability (SAT; [4]). While it is not always the case, it is generally

established that each of the approaches dominates on different

types of instances [14, 28]. The search-based solvers are easily able

to find solutions on large sparsely populated maps while having

trouble dealing with small densely populated maps. On the other

hand, the reduction-based solvers are able to deal with the small

densely populated maps but are unable to find a solution for large

maps even with a small number of agents.

Since the reduction-based solvers have trouble with solving in-

stances on large maps, the main idea of the presented techniques

is to prune the map of vertices that are most likely not needed to

solve the instance while maintaining completeness and optimality.

1.1 Related Work
Our proposed methods are build on top of an existing ASP-based

MAPF solver [9, 11] and SAT-based MAPF solver [2, 3]. We describe

these two solvers in more detail in later sections.

A similar idea can be seen in Corridor-Map-Method (CMM) [12,

13] where an explicit corridor is defined for each agent and the

agent is allowed to move only in that corridor, thus, decreasing the

search space of the problem. As opposed to CMM, our approach

allows the set of the pruned vertices to change over time to maintain

optimality and completeness. In the work on CMM, the authors

do not focus on optimality, since they use the technique for online

planning with dynamic obstacles. Also, they are concerned with

smooth trajectories rather than the shortest possible paths.

A different angle on helping the underlying solver by removing

some unnecessary information is implemented by SMT-CBS [26].

This approach does not include all of the constraints on the agents’

interactions. Only once it is found that a specific interaction needs

to be forbidden, the solver is informed and the information is added.

Similarly, in our techniques, we change the set of the excluded

vertices based on the solutions provided by the underlying solver.

CBS is an optimal MAPF algorithm that is commonly studied

and used in the literature and considered to be the state-of-the-art

approach [5, 22]. We will also compare our results to CBS. It is a

search-based algorithm that can be split into two levels. On the low

level, a single-agent path for each agent is found (this can be done

in polynomial time). The high level checks if there are any conflicts

between the single-agent plans. If there are any, constraints that

disallow this conflict are added and the low level repeatedly finds

single-agent plans in accordance with the constraints. The high

level constraints tree is traversed in a best-first search so that the

first found solution is guaranteed to be optimal.

If there are not many interactions between the agents, CBS is

very successful even on large instances due to the polynomial low

level. In a sense, the purpose of our proposed strategies is to help the

underlying solver find easily some path for each agent (as the low

level of CBS) and use the solver strength to deal with the conflicts

among them (as the high level of CBS).

1.2 Contributions
The first contribution of this paper is identifying the types of in-

stances that makespan optimal reduction-based MAPF solvers have

trouble dealing with. We also reason why these instances are hard.

The examples in this paper are always on a grid map, however, the

idea and proposed techniques are valid for any type of graph.

The second contribution is describing three different strategies

that solve the problematic instances. We also provide a theoretical

analysis of the strategies on whether they maintain completeness

and optimality.

The third contribution of this paper is an empirical evaluation of

the proposed strategies along with different underlying reduction-

based solvers. This also includes exploiting the preprocessing in-

formation commonly used by SAT-based solvers for ASP solving

which is missing in the current encodings.

2 MAPF DEFINITIONS
MAPF instanceM is a pairM = (𝐺,𝐴), where 𝐺 is a graph 𝐺 =

(𝑉 , 𝐸) and 𝐴 is a set of agents. Each agent 𝑎𝑖 ∈ 𝐴 is defined as a

pair 𝑎𝑖 = (𝑠𝑖 , 𝑔𝑖), where 𝑠𝑖 ∈ 𝑉 is a starting location of agent 𝑎𝑖 and

𝑔𝑖 ∈ 𝑉 is a goal location of agent 𝑎𝑖 .

Our task is to find a valid plan 𝜋𝑖 for each agent 𝑎𝑖 ∈ 𝐴 such that

it is a valid path from 𝑠𝑖 to 𝑔𝑖 . We use 𝜋𝑖 (𝑡) = 𝑣 to denote that agent

𝑎𝑖 is located in vertex 𝑣 at timestep 𝑡 . Time is discrete and at each

timestep 𝑡 , an agent can either wait in its current location or move

to a neighboring location.

Furthermore, we require that each pair of plans 𝜋𝑖 and 𝜋 𝑗 , 𝑖 ≠ 𝑗 is

collision-free. Based onMAPF terminology [25], there are five types

of collisions (see Figure 1). In this work, we forbid edge, vertex, and
swapping conflict while allowing following and cycle conflicts since
during the last two conflicts, the agents are not occupying the same

physical location. We call this setting parallel motion, as opposed
to pebble motion [16], where all of the conflicts are forbidden.

Figure 1: Conflicts between two or more agents. (a) edge con-
flict, (b) vertex conflict, (c) following conflict, (d) cycle conflict,
(e) swapping conflict. Figure taken from [25].

In this paper, we are interested in finding a makespan optimal

solution to MAPF problems. Makespan (or sometimes horizon) is

the first timestep 𝑡 at which all of the agents are located at their

goal vertices. Once an agent arrives at its goal location it does not

disappear. It may move out of the goal location again, however, the

plan ends once all of the agents are at the goal location at the same

time. This means that the length of the plan |𝜋𝑖 | is the same for all

of the agents. Another cost function often used in literature is sum
of costs [23]. Note that finding an optimal solution for either of the

cost functions is an NP-Hard problem [21, 29].

3 SOLVING MAPF VIA REDUCTION
3.1 SAT Encoding
Let’s assume that we are looking for a solution to a MAPF problem

with makespan (horizon) 𝐻 using the parallel motion restriction on

allowed conflicts. The SAT encoding in [2, 3] defines the following

two sets of variables: ∀𝑣 ∈ 𝑉 ,∀𝑎𝑖 ∈ 𝐴,∀𝑡 ∈ {0, . . . , 𝐻 } : At (v, i, t)
meaning that agent 𝑎𝑖 is at vertex 𝑣 at timestep 𝑡 ; and ∀(𝑢, 𝑣) ∈
𝐸,∀𝑎𝑖 ∈ 𝐴,∀𝑡 ∈ {0, . . . , 𝐻 − 1} : Pass(u, v, i, t) meaning that agent

𝑎𝑖 goes through an edge (𝑢, 𝑣) at timestep 𝑡 . More specifically, it

starts traversing the edge at timestep 𝑡 and enters the vertex 𝑣 at

timestep 𝑡 +1. This is why the variables are not defined for timestep

𝐻 . An auxiliary loop edge (𝑣, 𝑣) is added to 𝐸, thus Pass(v, v, i, t)
means that agent 𝑎𝑖 stays at vertex 𝑣 at timestep 𝑡 . To model the

MAPF problem, we introduce the following constraints:

∀ai ∈ A : At (si, i, 0) = 1 (1)

∀ai ∈ A : At (gi, i,H) = 1 (2)

∀ai ∈ A,∀t ∈ {0, . . . ,H } :
∑︁
v∈V

At (v, i, t) ≤ 1 (3)

∀v ∈ V ,∀t ∈ {0, . . . ,H } :
∑︁
ai∈A

At (v, i, t) ≤ 1 (4)

∀u ∈ V ,∀ai ∈ A,∀t ∈ {0, . . . ,H − 1} :

At (u, i, t) =⇒
∑︁
(u,v) ∈E

Pass(u, v, i, t) = 1 (5)

∀(u, v) ∈ E,∀ai ∈ A,∀t ∈ {0, . . . ,H − 1} :
Pass(u, v, i, t) =⇒ At (v, i, t + 1) (6)

∀(u, v) ∈ E : u ≠ v,∀t ∈ {0, . . . ,H − 1} :∑︁
ai∈A
(Pass(u, v, i, t) + Pass(v, u, i, t)) ≤ 1 (7)

Constraints (1) and (2) ensure that the starting and goal positions

are valid. Constraints (3) and (4) ensure that each agent occupies at

most one vertex and every vertex is occupied by at most one agent.

The correct movement in the graph is forced by constraints (5) –

(7). In sequence, they ensure that if an agent is in a certain vertex,

it needs to leave it by one of the outgoing edges (5). If an agent

is using an edge, it needs to arrive at the corresponding vertex in

the next timestep (6). Finally, (7) forbids two agents to traverse

two opposite edges at the same time (forbidding swapping conflict).

To find the optimal makespan, we iteratively increase 𝐻 until a

satisfiable formula is generated.

We provide the constraints as a set of inequalities rather than

a CNF formula since it is more readable and there are tools that

automatically translate such inequalities into a CNF that is solvable

by any SAT-solver.

3.2 ASP Encoding
To describe both movement actions and positional changes of

agents, we use the ASP encoding
1
of an action theory for MAPF in

Listing 1, introduced by [9, 11]. The encoding assumes that graph

𝐺 is a grid and plans agents (here called robots) in parallel within a

makespan while avoiding conflicts. Specifically, the plan’s timesteps

are bound by the horizon (or makespan) in Line 1. Line 3 gives the

four cardinal directions, used in Line 4 to represent all transitions

on the grid with its x,y-coordinates stated by predicate position/1.
Possible movement actions, at most one per agent and timestep, are

generated by Line 8. Related preconditions and positional changes

are described in Lines 10-12: position(R,C,T) states that agent R
is at x,y-coordinates C at time T. For an agent R sitting idle at time T,
the frame axiom in Lines 14-15 propagates its unchanged position.

Swapping conflicts are prevented by Lines 17-19, and both edge

and vertex conflicts by Line 21.

1 time (1.. horizon).

3 direction ((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.

4 nextto ((X,Y),(DX,DY),(X',Y ')) :-

5 direction ((DX,DY)), position ((X,Y)), position ((X',Y ')),

6 (X,Y)=(X'-DX,Y '-DY), (X',Y ')=(X+DX,Y+DY).

8 { move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

10 position(R,C,T) :-

11 move(R,D,T), position(R,C ',T -1), nextto(C',D,C).

12 :- move(R,D,T), position(R,C ,T -1), not nextto(C ,D,_).

14 position(R,C,T) :-

15 position(R,C,T -1), not move(R,_,T), isRobot(R), time(T).

17 moveto(C',C,T) :-

18 nextto(C',D,C), position(R,C ',T -1), move(R,D,T).

19 :- moveto(C',C,T), moveto(C,C ',T), C < C'.

21 :- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

Listing 1: Action theory for agent movements.

Further, we augment the action theory encoding with the goal

condition in Listing 2 to enforce that every agent R has reached its

goal coordinates C, stated by goal(R,C), at the time horizon.

1 :- not position(R,C,horizon), goal(R,C).

Listing 2: Goal condition for agents and assigned nodes.

Overall, our ASP encoding consists of the action theory (Listing 1)

in conjunction with the goal condition (Listing 2) and expects an

MAPF instance in form of the aforementioned ASP facts as input.

4 GRAPH PRUNING
4.1 Motivation
There are two commonly used techniques to speed up computation,

both applicable to the described reduction-based solvers. First, using

a lower bound for the makespan instead of starting with 𝐻 = 1. A

simple lower bound is to compute for each agent 𝑎𝑖 the shortest

1https://github.com/potassco/asprilo-encodings/blob/master/m/
action-M.lp

path from agent’s start location 𝑠𝑖 to agent’s goal location 𝑔𝑖 . The

lower bound for 𝐻 is then the longest of these shortest paths.

Another enhancement is to preprocess the variables representing

the agent’s location. These variables correspond to an agent being

present at some location at a time. However, for some locations,

we can determine, that the specific agent cannot be present at the

specific time, because we know where the agent needs to be present

at times 0 and 𝐻 . Specifically, for agent 𝑎𝑖 , if vertex 𝑣 is distance

𝑑 away from start location 𝑠𝑖 , we know that the agent 𝑎𝑖 cannot

be present in vertex 𝑣 at times 0, . . . , (𝑑 − 1) because it cannot

travel the distance in time. Similarly, if vertex 𝑣 is distance 𝑑 away

from goal location 𝑔𝑖 , agent 𝑎𝑖 cannot be present in vertex 𝑣 at

times 𝐻 −𝑑 + 1, . . . , 𝐻 . For SAT encoding, we set the corresponding

variablesAt (v, i, t) to False. For ASP, we add the integrity constraint
in Listing 3 to ensure that agent R occupies an eligible position C at

time T, expressed by a fact poss_loc(R,C,T).

1 :- not poss_loc(R,C,T), position(R,C,T), isRobot(R),

2 poss_loc(_,_,_).

Listing 3: Eligible agent locations from pre-processing.

(a) (b)

Figure 2: An agent moving on a grid map from a corner to
the opposite one. The numbers represent at what timesteps
the agent can reach the given vertex.

Both of these techniques maintain completeness and optimality.

However, there are situations, where too many possibilities for the

agent’s location remain, which may overwhelm the underlying

solver. As a motivation example, see Figure 2a. The agent is placed

on a 4-connected grid map going from one corner to the diagonally

opposite corner. With just one agent and no obstacles, there are(
2(𝑁−1)
𝑁−1

)
possible shortest paths if the size of the grid is 𝑁 × 𝑁 .

As seen in the figure, the preprocessing correctly finds at what

timesteps the agent can be located at which vertices, noted by

the number in the corner of each vertex. However, the number of

choices for the solver is still too large. We propose to pick just one

of the shortest paths and treat the other vertices as an impassable

obstacle. Hence, for these vertices, there are no variables entering

the solver. Such pruning of the graph can be seen in Figure 2b.

Another example where this approach is helpful can be seen

in Figure 3a. The two agents have different lengths of shortest

paths. For the orange agent with the longer path, preprocessing

correctly finds the only shortest path. However, the blue agent

with a much shorter path may move anywhere in the shaded area

since it has enough time. Recall that we are computing makespan

optimal solutions, so we are interested in the timestep when all

agents are at their goal locations. This time is prolonged by the

orange agent, therefore the blue agent has many more choices.

https://github.com/potassco/asprilo-encodings/blob/master/m/action-M.lp
https://github.com/potassco/asprilo-encodings/blob/master/m/action-M.lp

(a) (b)

Figure 3: An instance with two agents, one with longer path
allowing the other to move freely.

If we use our pruning technique the number of choices reduces

dramatically. The blue agent can still choose when to move to the

goal location, or even move back and forth a few times, however, it

may use significantly fewer vertices.

Figure 4: An instance with two agents that want to swap their
positions.

Of course, this pruning does not maintain completeness in gen-

eral. A simple counterexample can be seen in Figure 4. The two

agents want to swap their location (ie. their goal location is identical

with the starting location of the other agent). To do this, the only

solution is for both of them to travel to the right and use the top

vertex to switch their position. If we were to use our pruning tech-

nique, this would not be possible, making the example unsolvable.

To mitigate these instances, we propose several strategies how to

change which vertices are pruned.

4.2 Solving Strategies
First, we establish some notation. Let 𝑆𝑃𝑖 be the vertices on a chosen

shortest path for agent 𝑎𝑖 ∈ 𝐴 (ie. a single shortest path from 𝑠𝑖
to 𝑔𝑖). The length of the path is |𝑆𝑃𝑖 |. The union of vertices on the

shortest paths of all agents is 𝑆𝑃𝐴 =
⋃

𝑎𝑖 ∈𝐴 𝑆𝑃𝑖 . Note that for each

agent we consider just one shortest path. If multiple shortest paths

exist for an agent, one is chosen at random. Given this notation

the lower bound on makespan of an instanceM = (𝐺,𝐴) can be

written as 𝐿𝐵𝑚𝑘𝑠 (𝐺,𝐴) = max𝑎𝑖 ∈𝐴 |𝑆𝑃𝑖 |. For short, we refer to

such lower bound just by 𝐿𝐵.

A k-restricted graph 𝐺𝑟𝑒𝑠𝑆𝑃𝐴
𝑘

is a subgraph of 𝐺 containing only

vertices in 𝑆𝑃𝐴 and vertices that are at most distance 𝑘 away from

some vertex in 𝑆𝑃𝐴 , ie. 𝐺𝑟𝑒𝑠
𝑆𝑃𝐴
𝑘

= {𝑣 ∈ 𝑉 | ∃𝑢 ∈ 𝑆𝑃𝐴, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≤
𝑘}. Since we always fix 𝑆𝑃𝐴 , we write for simplicity only 𝐺𝑟𝑒𝑠𝑘 .

Note that 𝐺𝑟𝑒𝑠𝑘 ⊆ 𝐺𝑟𝑒𝑠𝑘 ′ for 𝑘 ≤ 𝑘′. An example of such k-

restricted graph can be seen in Figure 5. For a 0-restricted graph,

only the shortest path is part of the graph. A 3-restricted graph is

the whole initial graph in case of the example in Figure 5.

Figure 5: An instance with a single agent. Each vertex is
labeled into which k-restricted graph it belongs.

Since finding the makespan optimal solution is done by itera-

tively increasing the makespan, we define a makespan-restricted
MAPF instanceM = (𝐺,𝐴,𝐻). This is the same problem as finding

the solution forM = (𝐺,𝐴) in makespan 𝐻 .

The (k,m)-relaxation of M is the makespan-restricted MAPF

instance

M𝑘,𝑚 = (𝐺𝑟𝑒𝑠𝑘 , 𝐴, 𝐿𝐵 +𝑚)
This relaxationmeans that instead of thewhole graph𝐺 we consider

only 𝐺𝑟𝑒𝑠𝑘 and we are finding a solution with extra makespan𝑚 –

extra over the lower bound on makespan. Also note that 𝐺𝑟𝑒𝑠𝑘 is

constructed such that 𝐿𝐵𝑚𝑘𝑠 (𝐺,𝐴) = 𝐿𝐵𝑚𝑘𝑠 (𝐺𝑟𝑒𝑠𝑘 , 𝐴) for any 𝑘 ,

therefore, we do not need to change the notation of 𝐿𝐵.

We can build a partial order ≺𝑟𝑒𝑙𝑎𝑥 over the (𝑘 ,𝑚)-relaxations

M𝑘,𝑚 such that

M𝑘,𝑚 ≺𝑟𝑒𝑙𝑎𝑥 M𝑘 ′,𝑚′

if 𝑘 ≤ 𝑘′,𝑚 ≤ 𝑚′ and 𝑘 +𝑚 < 𝑘′ +𝑚′
There is an upper bound on 𝑘 such that for some 𝑘𝑚𝑎𝑥 we have

𝐺𝑟𝑒𝑠𝑘𝑚𝑎𝑥
= 𝐺 . There is also a theoretical upper bound onmakespan

for a given MAPF instance of O(𝑉 3) [16], however, in this pa-

per we work only with solvable instances (this can be checked by

polynomial-time algorithm) and we do not need to know the exact

upper bound on makespan. Just for the next example assume that

𝑘𝑚𝑎𝑥 = 3 and𝑚𝑚𝑎𝑥 = 2. Then, Figure 6 depicts the space of pos-

sible relaxations induced by ≺𝑟𝑒𝑙𝑎𝑥 . Note that the partial ordering
forms a lattice.

Figure 6: MAPF instance relaxations for 𝑘𝑚𝑎𝑥 = 3,𝑚𝑚𝑎𝑥 = 2.

The generic algorithm to solve MAPF using the relaxed instances

can be seen in Algorithm 1. First, we build an initial (𝑘 ,𝑚)-relaxation

and we iteratively change 𝑘 and𝑚 until the instance is solvable.

This corresponds to a traversal of the lattice formed by the partial

ordering ≺𝑟𝑒𝑙𝑎𝑥 . Note that the shortest path for each agent is fixed

for all of the iterations. Next we identify four reasonable traversals.

Algorithm 1 Generic algorithm solving MAPF using relaxation.

function Generic MAPF relaxation(M = (𝐺,𝐴))
𝐿𝐵 = max𝑎𝑖 ∈𝐴 |𝑆𝑃𝑖 |
(𝑘,𝑚) ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ()
while not solve_MAPF(M𝑘,𝑚) do
(𝑘,𝑚) ← 𝑅𝑒𝑙𝑎𝑥 ()

end while
return 𝐿𝐵 +𝑚

end function

4.2.1 Baseline Strategy. The classical approach to solving MAPF

makespan optimally can be expressed in the relaxed instances as

follows. We start with an initial candidate of 𝑘𝑚𝑎𝑥 (ie. the whole

graph 𝐺) and 𝑚 = 0. If the relaxed instance is unsolvable, only

the additional makespan is increased as 𝑚 = 𝑚 + 1. In terms of

the Figure 6, the first solved relaxation isM3,0 and then we are

moving only to the right-hand side. We shall refer to this strategy

as baseline or B for short.

Proposition 1. If a MAPF instanceM has a solution, baseline
strategy finds an optimal solution.

Proof. SinceM has a solution, there needs to be an optimal

solution with some makespan 𝐻 such that 𝐿𝐵 ≤ 𝐻 . The baseline
strategy will try all of the possible makespans 𝐿𝐵, . . . , 𝐻 , with 𝐻

being the first solvable. □

4.2.2 Makespan-add Strategy. The first smarter solution is to keep

only the vertices on the shortest paths and the immediately adjacent

ones. The initial candidate is 𝑘 = 1 and 𝑚 = 0. Otherwise, the

strategy is the same as the baseline strategy – if the relaxed instance

is unsolvable, we increase𝑚 =𝑚 + 1 while the 𝑘 is never changed.

We refer to this strategy as makespan-add orM for short.

Proposition 2. Makespan-add strategy is both suboptimal and
incomplete.

Proof. For a simple example where makespan-add cannot find

a solution recall Figure 4. No matter how the initial constant of 𝑘 is

set, we can create a graph where the extra vertex needed for the

two agents to swap is not part of 𝐺𝑟𝑒𝑠𝑘 .

For an example wheremakespan-add finds a suboptimal solution

see figure 8 with blue agent choosing the blue path. In this case

makespan-add needs to increase 𝑚 two times to find a solution,

while it would be possible to find a solution in 𝐿𝐵 steps if the

vertices of the black path were included. □

On the other hand, in most cases, this simple strategy can find

a solution, and due to the great reduction of vertices of the graph,

the solution may be found quickly. We choose to start with 𝑘 = 1

rather than 𝑘 = 0 to increase the probability for a solution to exist

while keeping the number of vertices to a minimum.

In terms of Figure 6, the strategy first moves to the left once and

then only to the right.

4.2.3 Prune-and-cut Strategy. The previous strategies either use
unnecessary large restricted graph or do not guarantee to find

a solution. Strategy prune-and-cut (P for short) guarantees both

completeness and optimality. We start with initial candidate 𝑘 = 0

and𝑚 = 0. In case the relaxed instance is unsolvable, we cannot

be sure if the reason is the restriction on 𝑘 or on 𝑚. However,

since we do not want to overestimate𝑚, we first need to increase

𝑘 potentially up to 𝑘𝑚𝑎𝑥 . Once a restricted instanceM𝑘𝑚𝑎𝑥 ,𝑚 is

unsolvable, we are sure that 𝑚 needs to be increased. Since we

proved that we require at least 𝑚 + 1 extra makespan, we can

optimistically assume that the whole𝐺𝑟𝑒𝑠𝑘𝑚𝑎𝑥
is not needed and

we restrict the graph back to 𝑘 = 0 producingM0,𝑚+1.

Proposition 3. If a MAPF instanceM has a solution, prune-and-
cut strategy finds an optimal solution.

Proof. Before 𝑚 is increased, we always check if there is a

solution using the original 𝐺 . The rest of the proof is the same as

for Proposition 1. □

During our initial experiments, it turned out that the whole

𝐺𝑟𝑒𝑠𝑘𝑚𝑎𝑥
is usually not necessary. Therefore, increasing 𝑘 by 1 each

time may prove inefficient, since most of the calls are unsolvable

and we just need to prove that we can increase𝑚. For this reason

we increase 𝑘 by powers of 2 (ie. 𝑘 = 𝑘 + 1, 𝑘 = 𝑘 + 2, 𝑘 = 𝑘 + 4, . . .).
Another implementation improvement is to not increase up to

𝑘𝑚𝑎𝑥 but rather to some 𝑘 ≤ 𝑘𝑚𝑎𝑥 that produces 𝐺𝑟𝑒𝑠𝑘 that in-

cludes all of the vertices reachable in given 𝐿𝐵 +𝑚 by some agent.

This information can be obtained by the preprocessing.

The visualization of solver calls of the prune-and-cut strategy
over the lattice can be seen in Figure 7.

Figure 7: The traversal of the lattice by strategy prune-and-
cut. The highlighted relaxed instances are being solved.

4.2.4 Combined Strategy. The drawback of the prune-and-cut strat-
egy is that in the case the makespan needs to be increased, we first

increase 𝑘 up to 𝑘𝑚𝑎𝑥 before increasing𝑚. To mitigate this problem,

we present the combined strategy (C for short). The initial candidate

is again 𝑘 = 0 and𝑚 = 0. If the relaxed instance is unsolvable, we

increase both 𝑘 = 𝑘 + 1 and𝑚 =𝑚 + 1 at the same time. This way,

we save the number of calls to the solver because we do not need

to explore all of the possible reductions in the 𝑘 direction. On the

other hand, this strategy is no longer optimal.

Proposition 4. If a MAPF instanceM has a solution, combined

strategy is guaranteed to find a solution (completeness) but not neces-
sarily an optimal one.

Proof. If it is necessary to use all of the vertices in the graph

𝐺 to find a solution, combined strategy will eventually increase 𝑘

up to 𝑘𝑚𝑎𝑥 since 𝑘𝑚𝑎𝑥 is a finite number. However, in doing so, it

may overestimate the𝑚 needed. Figure 8 with blue agent choosing

the blue path is again such an example. □

Figure 8: An example instance where the blue agent has two
choices of the shortest path. If the blue path is chosen, the
proposed strategies perform worse.

The described strategies (with the exception of baseline) may

suffer from poor choices of the initial shortest paths for each agent.

See example in Figure 8. The blue agent has two possible shortest

paths. If the algorithm by random chooses the blue path, none of

the sophisticated strategies is able to solve the relaxed instance in

the first solver call.Makespan-add would find a suboptimal solution

with makespan 𝐿𝐵 + 2, prune-and-cut would require to increase 𝑘

two times to be able to use the black path, and combined strategy

would also find a suboptimal solution with makespan 𝐿𝐵 + 2.
This issue can be mitigated by including all of the vertices on

all of the possible shortest paths into the𝐺𝑟𝑒𝑠𝑘 , however, this goes

against the logic of the motivational example in Figure 2, therefore

we still include only one of the shortest paths for each agent.

5 EXPERIMENTAL EVALUATION
To test and compare the proposed strategies and the underlying

solvers, we set up empirical experiments
2
.

The SAT-based solver is implemented in Picat programming

language [30] and is run on Picat version 3.1. For ASP, we used the

grounding-and-solving system clingo [6, 15] version 5.5.1.

Furthermore, we used an implementation of a makespan optimal

CBS algorithm [1] to compare to a state-of-the-art search-based

approach. We are using CBS as a black-box without influencing

which shortest paths the algorithm chooses. As shown in previous

examples, using poorly chosen paths may lead to worse perfor-

mance in our strategies. On the other hand, one of the first steps

of CBS is to choose different shortest paths if the initial ones are

chosen poorly. Therefore, we argue that this comparison is fair

even if the initial paths are chosen differently by our strategies and

the CBS algorithm.

2https://github.com/potassco/mapf-subgraph-system

We ran the experiments on an Intel Xeon E5-2650v4 under De-

bian GNU/Linux 9, with each instance limited to 300s processing

time and 28 GB of memory.

5.1 Instances
The instances used in our experiments are inspired by commonly

used benchmark instances available online [25]. To see the effect of

the increase in the size of the map, we chose maps such that they

fall into one of three size categories – small (32 by 32), medium
(64 by 64), and large (128 by 128). Furthermore, the structure of

the impassable obstacles in the map may affect the paths of the

agents and thus the solver performance. We picked the following

types – empty, maze, random, and room (see Figure 9 for reference).

Unfortunately, some of the combinations of size and type were not

available in the benchmark set, therefore, we had to create our own

following the structure of the existing maps.

Figure 9: Types of maps used in the experimental evaluation.
From left to right: maze, random, and room.

For the placement of the agents (called scenarios), we used the

available scenarios from the benchmark sets or, if not present, cre-

ated our own. For each map, we used 5 different scenarios. Fur-

thermore, we created new scenarios for each map such that the

distance from start to goal of each agent is similar and the paths

of the agents need to cross more often. We did this because the

makespan optimal solution for the random scenarios rarely differ

from the lower bound. This is caused by one of the agents having a

much longer path than the others leaving them with enough time

to solve any conflicts. The behavior of our strategies may be gravely

affected by many conflicts and the need to increase the makespan.

We are also using 5 different scenarios with this setting.

The intended way to use the benchmark set is to create an in-

stance of MAPF from a map and a number of agents from a scenario.

If the instance is solved in the given time-limit, additional agents

from the same scenario are added and thus a new MAPF instance is

produced. Once the instance cannot be solved in the time-limit, it is

reasoned that increasing further the number of agents cannot make

the instance solvable. We are aware that using reduction-based

solvers, this may not always hold. Also, some of our strategies may

benefit from additional agents which change the restricted graph.

However, these cases are extremely rare and therefore, we decided

to use the benchmark as intended starting with 5 agents, adding 5

more each time the instance is solvable in given time-limit.

5.2 Results
Table 1 shows the measured results for all of the possible com-

binations of strategies and underlying solvers we used. For the

ASP-based solver, we differentiate between using and not using pre-

processing, since the preprocessing is a new addition to the existing

encoding. For the SAT-based solver, we did not include the setting

https://github.com/potassco/mapf-subgraph-system

ASP ASP with preprocessing SAT with preprocessing

CBSOptimal Sub-optimal Optimal Sub-optimal Optimal Sub-optimal

size B P M C B P M C B P M C

Solved

instances

32 816 (0.91) 806 (0.90) 801 (0.89) 832 (0.93) 851 (0.95) 836 (0.93) 845 (0.94) 860 (0.96) 472 (0.53) 475 (0.53) 486 (0.54) 526 (0.59) 199 (0.22)

64 459 (0.68) 567 (0.84) 522 (0.77) 610 (0.91) 516 (0.77) 612 (0.91) 573 (0.85) 670 (0.99) 141 (0.21) 325 (0.48) 324 (0.48) 369 (0.55) 172 (0.26)

128 162 (0.42) 287 (0.74) 280 (0.72) 335 (0.86) 194 (0.50) 315 (0.81) 332 (0.86) 382 (0.98) 15 (0.04) 178 (0.46) 173 (0.45) 216 (0.56) 119 (0.31)

∑
IPC

32 422.4 520.2 506.4 640.7 546.8 582.5 647.6 773.3 46.9 84.7 108.6 132.3 87.1

64 129.3 347.1 265.9 452.7 210.6 417.0 387.0 611.1 9.4 55.2 71.1 95.5 82.1

128 24.8 147.9 116.4 198.3 42.6 203.1 213.6 314.7 0.1 38.3 38.6 58.5 72.0

total 576.5 1015.2 888.8 1291.7 799.9 1202.6 1248.2 1699.1 56.3 178.1 218.3 286.3 241.3

Max. agents

32 102 101 100 104 107 105 106 108 59 59 61 66 25

64 57 71 65 76 65 77 72 84 18 41 41 46 22

128 20 36 35 42 24 39 42 48 2 22 22 27 15

Conflicts

32 396 380 385 408 269 334 310 317 - - - - -

64 242 110 204 187 172 91 169 134 - - - - -

128 272 68 119 86 176 72 151 89 - - - - -

Constraints

[millions]

32 22,7 17,6 21,4 17,6 8,1 6,6 7,8 6,6 - - - - -

64 37,7 11,0 20,0 11,0 10,3 3,1 6,0 3,1 - - - - -

128 43,4 7,9 11,3 7,4 2,6 0,3 0,5 0,3 - - - - -

Table 1: Number (ratio) of solved instances, IPC score, average maximal number of agents in a solved scenario, average number
of conflicts, and average number of constraints. The results are split by the map size. Strategies are baseline (B), prune-and-cut
(P), makespan-add (M), and combined (C).

without preprocessing, since these results were not competitive

at all. For all of the underlying reduction-based solvers, we used

all of the four proposed strategies. Lastly, we also include results

obtained by CBS. The results are split by the size of the maps.

The number of solved instances (absolute value and ratio to

the total number of instances) indicates that the most successful

combination is ASP with preprocessing with C. This combination

was the most successful on all sizes and in fact on all of the types of

instances. The strategies are clearly ordered with C being the most

successful, closely followed by M and P with B being the worst.

This ordering is maintained for all of the underlying solvers. Also

using the preprocessing maintains this ordering.

WhileB is similarly successful on the smallest instances,With the

increase of the map size, the success ratio of B falls drastically, while

for all of the remaining proposed strategies the ratio decreases only

slightly. This is an indication that the motivation of the strategies

– to make reduction-based approaches more competitive on large

maps – is indeed fulfilled. Also note, that for the CBS the ratio

increases with the increase of the map size. This also indicates that

the intuition that CBS is more successful on sparse maps is valid.

The IPC score (introduced at International Planing Competition,

hence the name) is computed as 0 if the solver did not finish in

time, otherwise as
min. time
solver time , where min. time is the time it took

the fastest solver and solver time is the time it took the solver in

question. This produces a score in the range from 0 to 1, where the

bigger the number the better. The scores of all instances are summed

in Table 1. The IPC score tells a similar story as the solved instances.

The ordering of the strategies is maintained and the preprocessing

also helps. On the other hand, we can see that B lacks behind even

on the smallest instances. This means that while it managed to

solve many of the smallest instances, it did not solve them fast.

This trend can also be seen in Figure 10 which shows the instances

ordered by their runtime. For better readability, we omitted the

results of SAT-based solver, since they are not competitive.

Among all algorithms and map sizes, the maximum number of

successfully planned agents was 225, solved for some small maps

by ASP with P and C. The average number of maximum agents

Figure 10: Number of instances (x-axis) solved in a given
time-limit (y-axis).

per scenario solved on different map sizes is shown in Table 1. The

number falls with the increase in map size as excepted. Again, we

observe that the decrease of the maximal number of agents solved

is higher for strategy B than the other strategies, even though

B solves the most agents on the smallest maps. On larger maps,

strategy P with ASP with preprocessing is the most successful

optimal approach, while strategy C with ASP with preprocessing is

the most successful overall. The least successful approach on large

maps is SAT with B followed by CBS. If we inspect the results of

individual instances (not included in the table due to readability

and space limitations, but available in our repository
2
), we can see

that the easiest map types (ie. most solved agents) are empty and

random, while for maps maze and room the algorithms were able

to solve only instances with fewer agents.

The SAT-based solver lacks behind ASP-based solver signifi-

cantly, with CBS reaching similar results as the SAT-based solver.

We conjecture that the reason for the poor performance of CBS

is threefold. (1) The map types maze and room are much more

challenging for CBS because of the extra congestion [14, 28]. The

success ratio and IPC score for empty and random are much higher

for CBS than for the other types of maps. (2) The scenario setting

where agents’ paths cross each other is more challenging for the

same reason. Again, we can see this in both the IPC score and

success ratio. We do not include map types and agent start/goal

locations in Table 1 since, for the other solvers, the difference is

less significant. (3) The two previous reasons are based on our ob-

servation of the results, however, even on the favorable setting,

the CBS lacks behind the ASP-based solver. We conjecture that the

makespan objective is harder for CBS than the sum of cost objective

which is the objective used in most CBS publications. There are

significantly more solutions with the same makespan than with

the same sum of costs making the best-first search of CBS less

prominent.

The ordering of the performance of the strategies can be ex-

plained by looking at the average number of vertices and number

of calls to the underlying solver. Strategies C, M, and P used on

average 22%, 24%, and 20% of the vertices used by B. ForM it was

unnecessary in some cases to start with 𝑘 = 1. On the other hand

in the cases where 𝑚 needed to be increased, P needed to solve

greater number of relaxed instances. C takes the best of both, which

explains its prominent results.

As for optimality, both B and P are optimal. C found an optimal

solution in 85% of cases, whileM found an optimal solution in 76% of

cases. When the found solution was not optimal, it was on average

only 4% and 6.4% over the optimum for C andM respectively.

Figure 11: Solver time to total runtime ratio per number of
agents for specific scenariomaze 32 by 32.

Since our strategies performed best in conjunction with ASP-

based solving, we focus on an in-depth analysis of the related bench-

mark runs, as summarized in the first two main columns of Table 1.

The last two main rows state, per clingo solve call, the average

number of search conflicts and the size of the internal problem

representation in terms of number of constraints. At first, let us

consider the strategies without preprocessing, detailed in the left-

most main column of Table 1. In comparison to our baseline B, the
strategies using a graph pruning (viz. P,M and C) show a signifi-

cant gain in solved instances and IPC score, for medium and large

instances. E.g. for large instances (size 128), B solves 162 instances

and has IPC score of 24.8 whereas the graph pruning, optimal strat-

egy P solves 287 instances and has an IPC score of 147.9. Similarly,

the graph pruning strategies reduce the number of constraints by

one order of magnitude, for large instances, e.g. B has 44.2 million

constraints whereas P has only 7.8 million. Secondly, augmenting

the strategies with preprocessing, detailed in the mid column of

Table 1, leads to another substantial increase of solved instances

and IPC scores. Analogously, preprocessing reduces the number

of constraints by an additional order of magnitude. E.g. for large

instances, P improves from 286 to 315 solved instances, from 147.9

to 203.1 IPC score and from 7.8 down to 0.3 million constraints.

Independent of the employed strategy or preprocessing, the number

of encountered conflicts, an indicator for the complexity of clingo’s
search for a solution, stays very low, ranging between 67 and 760

conflicts. Based on these observations, we conjecture that — on

their own and in combination — the graph pruning strategies and

the addition of preprocessing information lead to a significant sim-

plification of clingo’s grounding of the ASP input program which

is, eventually, reflected by the substantial decrease of the internal

problem size and overall runtime improvement. Hence, in general,

the ASP computation seems to be dominated by grounding whereas

the search difficulty is trivial. However, this trend does not apply

to every single problem instance: a closer look into the consecutive

test runs on single scenarios, such as the specific maze 32 by 32

scenario in Figure 11, shows that the ratio between solve time and

overall runtime will gradually increase, over the course of adding

more and more agents. That is, as witnessed in [14], a higher con-

gestion of agents will generally lead to a higher number of potential

agent collisions and, by that, to more conflicts during search. Con-

sidering that ASP typically outperforms search-based MAPF solvers

for highly congested maps, we selected the top 20 instances with

the most search conflicts still solvable before timeout by ASP with

our best-performing, optimal strategy P and preprocessing. Out of

those instances, 6 could be also solved by ASP with P but without

preprocessing, 8 by SAT with preprocessing and P, and 2 by CBS.

6 DISCUSSION
We proposed several graph pruning strategies to mitigate the lack of

scalability of reduction-based MAPF solvers on large maps. We did

this by removing some of the vertices from the map thus lowering

the number of variables entering the underlying solvers.We showed

that one of the strategies maintains completeness and optimality.

In our empirical evaluation, the strategies were able to solve more

instances than both the baseline approach and the CBS algorithm.

The best performance was achieved by the suboptimal combined
strategy that while suboptimal was able to find an optimal solution

in most cases and was on average only 4% away from optimum.

In future work, we aim to modify the strategies to be able to find

the sum of costs optimal solutions rather than makespan optimal

to provide a better comparison to search-based algorithms.

ASP is the most effective approach in conjunction with our strate-

gies. However, in most cases the computation is dominated by (re)-

grounding of the problem. Fortunately, clingo offers an advanced

methodology called multi-shot solving [8] that supports the op-

erative processing of multiple consecutive problems. Instead of

restarting clingo whenever we relax the instance, we may reuse the

process by directly updating its internal knowledge base.

ACKNOWLEDGMENTS
Research is supported by project P103-19-02183S of the Czech Sci-

ence Foundation, the Czech-USA Cooperative Scientific Research

Project LTAUSA19072, and DFG grant SCHA 550/15, Germany.

REFERENCES
[1] Dor Atzmon, Roni Stern, Ariel Felner, GlennWagner, Roman Barták, and Neng-Fa

Zhou. 2018. Robust Multi-Agent Path Finding. In Proceedings of the Eleventh
International Symposium on Combinatorial Search, SOCS 2018, Stockholm, Sweden
- 14-15 July 2018, Vadim Bulitko and Sabine Storandt (Eds.). AAAI Press, 2–9.

https://aaai.org/ocs/index.php/SOCS/SOCS18/paper/view/17954
[2] Roman Barták and Jirí Svancara. 2019. On SAT-Based Approaches for Multi-

Agent Path Finding with the Sum-of-Costs Objective. In Proceedings of the Twelfth
International Symposium on Combinatorial Search, SOCS 2019, Napa, California,
16-17 July 2019, Pavel Surynek and William Yeoh (Eds.). AAAI Press, 10–17.

https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18323
[3] Roman Barták, Neng-Fa Zhou, Roni Stern, Eli Boyarski, and Pavel Surynek.

2017. Modeling and Solving the Multi-agent Pathfinding Problem in Picat. In

29th IEEE International Conference on Tools with Artificial Intelligence, ICTAI
2017, Boston, MA, USA, November 6-8, 2017. IEEE Computer Society, 959–966.

https://doi.org/10.1109/ICTAI.2017.00147
[4] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2009.

Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications,

Vol. 185. IOS Press.

[5] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betza-

lel, and Solomon Eyal Shimony. 2015. ICBS: Improved Conflict-Based Search

Algorithm for Multi-Agent Pathfinding. In Proceedings of the Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015. 740–746. http://ijcai.org/Abstract/15/110

[6] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero,

T. Schaub, and S. Thiele. 2019. Potassco User Guide (version 2.2.0 ed.). http:
//potassco.org

[7] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. 2012. Answer Set Solving in
Practice. Morgan and Claypool Publishers.

[8] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. 2019. Multi-shot ASP

solving with clingo. Theory and Practice of Logic Programming 19, 1 (2019), 27–82.
https://doi.org/10.1017/S1471068418000054

[9] M. Gebser, P. Obermeier, T. Otto, T. Schaub, O. Sabuncu, V. Nguyen, and T. Son.

2018. Experimenting with robotic intra-logistics domains. Theory and Practice
of Logic Programming 18, 3-4 (2018), 502–519. https://doi.org/10.1017/
S1471068418000200

[10] M. Gebser, P. Obermeier, T. Schaub, M. Ratsch-Heitmann, and M. Runge. 2018.

Routing Driverless Transport Vehicles in Car Assembly with Answer Set Pro-

gramming. Theory and Practice of Logic Programming 18, 3-4 (2018), 520–534.

[11] M. Gebser, P.Obermeier, T. Schaub, and P. Wanko. 2020. Collection of ASP

encodings for asprilo. https://github.com/potassco/asprilo-encodings
[12] R. Geraerts. 2010. Planning short paths with clearance using explicit corridors.

In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA’10). IEEE, 1997–2004. https://doi.org/10.1109/ROBOT.2010.5509263

[13] R. Geraerts and M. Overmars. 2007. The Corridor Map Method: Real-Time High-

Quality Path Planning. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA’07). IEEE, 1023–1028. https://doi.org/10.
1109/ROBOT.2007.363119

[14] Rodrigo N. Gómez, Carlos Hernández, and Jorge A. Baier. 2021. A Compact

Answer Set Programming Encoding of Multi-Agent Pathfinding. IEEE Access 9
(2021), 26886–26901. https://doi.org/10.1109/ACCESS.2021.3053547

[15] R. Kaminski, J. Romero, T. Schaub, and P. Wanko. 2020. How to build your own

ASP-based system?! CoRR abs/2008.06692 (2020). https://arxiv.org/abs/
2008.06692

[16] Daniel Kornhauser, Gary L.Miller, and Paul G. Spirakis. 1984. Coordinating Pebble

Motion on Graphs, the Diameter of Permutation Groups, and Applications. In

25th Annual Symposium on Foundations of Computer Science, West Palm Beach,
Florida, USA, 24-26 October 1984. 241–250. https://doi.org/10.1109/SFCS.
1984.715921

[17] Jiaoyang Li, Zhe Chen, Yi Zheng, Shao-Hung Chan, Daniel Harabor, Peter J.

Stuckey, Hang Ma, and Sven Koenig. 2021. Scalable Rail Planning and Replan-

ning: Winning the 2020 Flatland Challenge. In Proceedings of the Thirty-First

International Conference on Automated Planning and Scheduling, ICAPS 2021,
Guangzhou, China (virtual), August 2-13, 2021, Susanne Biundo, Minh Do, Robert

Goldman, Michael Katz, Qiang Yang, and Hankz Hankui Zhuo (Eds.). AAAI Press,

477–485. https://ojs.aaai.org/index.php/ICAPS/article/view/15994
[18] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Ku-

mar, and Sven Koenig. 2020. Lifelong Multi-Agent Path Finding in Large-Scale

Warehouses. In Proceedings of the 19th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13,
2020, Amal El Fallah Seghrouchni, Gita Sukthankar, Bo An, and Neil Yorke-Smith

(Eds.). International Foundation for Autonomous Agents and Multiagent Systems,

1898–1900. https://dl.acm.org/doi/abs/10.5555/3398761.3399020
[19] Vladimir Lifschitz. 2019. Answer Set Programming. Springer. https://doi.

org/10.1007/978-3-030-24658-7
[20] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William

Yeoh. 2017. Generalized Target Assignment and Path Finding Using Answer Set

Programming. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,
Carles Sierra (Ed.). ijcai.org, 1216–1223. https://doi.org/10.24963/ijcai.
2017/169

[21] Daniel Ratner andManfred K.Warmuth. 1990. NxN Puzzle and Related Relocation

Problem. J. Symb. Comput. 10, 2 (1990), 111–138. https://doi.org/10.1016/
S0747-7171(08)80001-6

[22] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2012. Conflict-

Based Search For Optimal Multi-Agent Path Finding. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada. http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/
5062

[23] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2011. The Increasing

Cost Tree Search for Optimal Multi-Agent Pathfinding. In IJCAI 2011, Proceedings
of the 22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011. 662–667. https://doi.org/10.5591/978-
1-57735-516-8/IJCAI11-117

[24] David Silver. 2005. Cooperative Pathfinding. In Artificial Intelligence and Interac-
tive Digital Entertainment (AIIDE). 117–122.

[25] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták,

and Eli Boyarski. 2019. Multi-Agent Pathfinding: Definitions, Variants, and Bench-

marks. In Proceedings of the Twelfth International Symposium on Combinatorial
Search, SOCS 2019, Napa, California, 16-17 July 2019, Pavel Surynek and William

Yeoh (Eds.). AAAI Press, 151–159. https://aaai.org/ocs/index.php/SOCS/
SOCS19/paper/view/18341

[26] Pavel Surynek. 2019. Lazy Compilation of Variants of Multi-robot Path Planning

with Satisfiability Modulo Theory (SMT) Approach. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2019, Macau, SAR, China,
November 3-8, 2019. IEEE, 3282–3287. https://doi.org/10.1109/IROS40897.
2019.8967962

[27] Pavel Surynek. 2019. Unifying Search-based and Compilation-based Approaches

to Multi-agent Path Finding through Satisfiability Modulo Theories. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 1177–
1183. https://doi.org/10.24963/ijcai.2019/164

[28] Jirí Svancara and Roman Barták. 2019. Combining Strengths of Optimal Multi-

Agent Path Finding Algorithms. In Proceedings of the 11th International Conference
on Agents and Artificial Intelligence, ICAART 2019, Volume 1, Prague, Czech Repub-
lic, February 19-21, 2019, Ana Paula Rocha, Luc Steels, and H. Jaap van den Herik

(Eds.). SciTePress, 226–231. https://doi.org/10.5220/0007470002260231
[29] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal

Multi-Robot Path Planning on Graphs. In Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA.
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6111

[30] Neng-Fa Zhou, Håkan Kjellerstrand, and Jonathan Fruhman. 2015. Constraint
Solving and Planning with Picat. Springer. https://doi.org/10.1007/978-3-
319-25883-6

https://aaai.org/ocs/index.php/SOCS/SOCS18/paper/view/17954
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18323
https://doi.org/10.1109/ICTAI.2017.00147
http://ijcai.org/Abstract/15/110
http://potassco.org
http://potassco.org
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000200
https://doi.org/10.1017/S1471068418000200
https://github.com/potassco/asprilo-encodings
https://doi.org/10.1109/ROBOT.2010.5509263
https://doi.org/10.1109/ROBOT.2007.363119
https://doi.org/10.1109/ROBOT.2007.363119
https://doi.org/10.1109/ACCESS.2021.3053547
https://arxiv.org/abs/2008.06692
https://arxiv.org/abs/2008.06692
https://doi.org/10.1109/SFCS.1984.715921
https://doi.org/10.1109/SFCS.1984.715921
https://ojs.aaai.org/index.php/ICAPS/article/view/15994
https://dl.acm.org/doi/abs/10.5555/3398761.3399020
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.24963/ijcai.2017/169
https://doi.org/10.24963/ijcai.2017/169
https://doi.org/10.1016/S0747-7171(08)80001-6
https://doi.org/10.1016/S0747-7171(08)80001-6
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5062
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5062
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-117
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-117
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18341
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18341
https://doi.org/10.1109/IROS40897.2019.8967962
https://doi.org/10.1109/IROS40897.2019.8967962
https://doi.org/10.24963/ijcai.2019/164
https://doi.org/10.5220/0007470002260231
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6111
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 MAPF Definitions
	3 Solving MAPF via Reduction
	3.1 SAT Encoding
	3.2 ASP Encoding

	4 Graph Pruning
	4.1 Motivation
	4.2 Solving Strategies

	5 Experimental evaluation
	5.1 Instances
	5.2 Results

	6 Discussion
	Acknowledgments
	References

