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Abstract. We take up an idea from the folklore of Answer Set Programming

(ASP), namely that choices, integrity constraints along with a restricted rule for-

mat is sufficient for ASP. We elaborate upon the foundations of this idea in the

context of the logic of Here-and-There and show how it can be derived from the

logical principle of extension by definition. We then provide an austere form of

logic programs that may serve as a normalform for logic programs similar to con-

junctive normalform in classical logic. Finally, we take the key ideas and propose

a modeling methodology for ASP beginners and illustrate how it can be used.

1 Introduction

Many people like Answer Set Programming (ASP [20]) because its declarative ap-

proach frees them from expressing any procedural information. In ASP, neither the

order of rules nor the order of conditions in rule antecedents or consequents matter and

thus leave the meaning of the overall program unaffected. Although this freedom is usu-

ally highly appreciated by ASP experts, sometimes laypersons seem to get lost without

any structural guidance when modeling in ASP.

We address this issue in this (preliminary) paper and develop a methodology for

ASP modeling that targets laypersons, such as biologists, economists, engineers, and

alike. As a starting point, we explore an idea put forward by Ilkka Niemelä in [25],

although already present in [10,16] as well as the neighboring area of Abductive Logic

Programming [9,7]. To illustrate it, consider the logic program encoding a Hamiltonian

circuit problem in Listing 1.1. Following good practice in ASP, the problem is separated

1 node(1..4). start(1).

2 edge(1,2). edge(2,3). edge(2,4). edge(3,1).

3 edge(3,4). edge(4,1). edge(4,3).

4

5 { hc(V,U) } :- edge(V,U).

6 reached(V) :- hc(S,V), start(S).

7 reached(V) :- reached(U), hc(U,V).

8 :- node(V), not reached(V).

9 :- hc(V,U), hc(V,W), U!=W.

10 :- hc(U,V), hc(W,V), U!=W.

Listing 1.1. A logic program for a Hamiltonian circuit problem

http://arxiv.org/abs/2111.06366v2
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into the specification of the problem instance in lines 1-3 and the problem class in

lines 5-10. This strict separation, together with the use of facts for problem instances,

allows us to produce uniform3 and elaboration tolerant4 specifications. Building upon

the facts of the problem instance, the actual encoding follows the guess-define-check

methodology of ASP. A solution candidate is guessed in Line 5, analyzed by auxiliary

definitions in Line 6 and 7, and finally checked through integrity constraints in lines 8-

10.

A closer look reveals even more structure in this example. From a global perspec-

tive, we observe that the program is partitioned into facts, choices, rules, and integrity

constraints, and in this order. From a local perspective, we note moreover that the pred-

icates in all rule antecedents are defined beforehand. This structure is not arbitrary and

simply follows the common practice that concept formation is done linearly by building

concepts on top of each other. Moreover, it conveys an intuition on how a solution is

formed. Importantly, such an arrangement of rules is purely methodological and has no

impact on the meaning (nor the performance5) of the overall program. From a logical

perspective, it is interesting to observe that the encoding refrains from using negation

explicitly, except for the integrity constraints. Rather this is hidden in Line 5, where the

choice on hc(V,U) amounts to the disjunction hc(V,U)∨¬hc(V,U), an instance

of the law of the excluded middle. Alternatively, hc(V,U) can also be regarded as an

abducible that may or may not be added to a program, as common in Abductive Logic

Programming.

Presumably motivated by similar observations, Ilkka Niemelä already argued in [25]

in favor of an ASP base language based on choices, integrity constraints, and stratified

negation. 6 We also have been using such an approach when initiating students to ASP

as well as teaching laypersons. Our experience has so far been quite positive and we

believe that a simple and more structured approach helps to get acquainted with posing

constraints in a declarative setting.

We elaborate upon this idea in complementary ways. First of all, we lift it to a

logical level to investigate its foundations and identify its scope. Second, we want to

draw on this to determine a syntactically restricted subclass of logic programs that still

warrants the full expressiveness of traditional ASP. Such a subclass can be regarded

as a normalform for logic programs in ASP. This is also interesting from a research

perspective since it allows scientists to initially develop their theories in a restricted

setting without regarding all corner-cases emerging in a full-featured setting. And last

but not least, inspired by this, we want to put forward a simple and more structured

modeling methodology for ASP that aims at beginners and laypersons.

3 A problem encoding is uniform, if it can be used to solve all its problem instances.
4 A formalism is elaboration tolerant if it is convenient to modify a set of facts expressed in the

formalism to take into account new phenomena or changed circumstances [24].
5 Shuffling rules in logic programs has an effect on performance since it affects tie-breaking

during search; this is however unrelated to the ordering at hand.
6 This concept eliminates the (problematic) case of recursion through negation.
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2 Background

The logical foundations of ASP rest upon the logic of Here-and-There (HT [17]) along

with its non-monotonic extension, Equilibrium Logic [26].

We start by defining the monotonic logic of Here-and-There (HT). LetA be a set of

atoms. A formula ϕ overA is an expression built with the grammar:

ϕ ::= a | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ

for any atom a ∈ A. We also use the abbreviations: ¬ϕ def= (ϕ → ⊥), ⊤ def= ¬⊥, and

ϕ↔ ψ def= (ϕ→ ψ)∧(ψ → ϕ). Given formulasϕ, α and β, we write ϕ[α/β] to denote

the uniform substitution of all occurrences of formula α in ϕ by β. This generalizes to

the replacement of multiple formulas in the obvious way. As usual, a theory overA is a

set of formulas over A. We sometimes understand finite theories as the conjunction of

their formulas.

An interpretation overA is a pair 〈H,T 〉 of atoms (standing for “here” and “there”,

respectively) satisfying H ⊆ T ⊆ A. An interpretation is total whenever H = T .

An interpretation 〈H,T 〉 satisfies a formula ϕ, written 〈H,T 〉 |= ϕ, if the following

conditions hold:

〈H,T 〉 |= p if p ∈ H
〈H,T 〉 |= ϕ ∧ ψ if 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ
〈H,T 〉 |= ϕ ∨ ψ if 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ
〈H,T 〉 |= ϕ→ψ if 〈H ′, T 〉 6|= ϕ or 〈H ′, T 〉 |= ψ for both H ′ ∈ {H,T }

A formula ϕ is valid, written |= ϕ, if it is satisfied by all interpretations. An interpre-

tation 〈H,T 〉 is a model of a theory Γ , written 〈H,T 〉 |= Γ , if 〈H,T 〉 |= ϕ for all

ϕ ∈ Γ .

Classical entailment is obtained via the restriction to total models. Hence, we define

the classical satisfaction of a formula ϕ by an interpretation T , written T |= ϕ, as

〈T, T 〉 |= ϕ.

A total interpretation 〈T, T 〉 is an equilibrium model of a theory Γ if 〈T, T 〉 is a

model of Γ and there is no other model 〈H,T 〉 of Γ with H ⊂ T . In that case, we also

say that T is a stable model of Γ . We denote the set of all stable models of Γ by SM [Γ ]
and use SM V [Γ ]

def= {T ∩V | T ∈ SM [Γ ] } for their projection onto some vocabulary

V ⊆ A.

Since ASP is a non-monotonic formalism, it may happen that two different formulas

share the same equilibrium models but behave differently in different contexts. The

concept of strong equivalence captures the idea that two such formulas have the same

models regardless of any context. More precisely, given two theories Γ andΠ and a set

V ⊆ A of atoms, we say that Γ and Π are V -strongly equivalent [2], written Γ ∼=V Π ,

if SM V [Γ ∪ ∆] = SM V [Π ∪ ∆] for any theory ∆ over A′ such that A′ ⊆ V . For

formulas ϕ and ψ, we write ϕ ∼=V ψ if {ϕ} ∼=V {ψ}.
A rule is a (reversed) implication of the form

l1 ∨ · · · ∨ lm ← lm+1 ∧ · · · ∧ ln (1)
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where each li is a literal, that is, either an atom or a negated atom, for 1 ≤ i ≤ n. If

n = 1, we refer to the rule as a fact and write it as l1 by dropping the trailing implication

symbol. A rule is said to be normal whenever m = 1 and l1 is an atom. A negation-

free normal rule is called definite. An integrity constraint is a rule with m = 0 and

equivalent to ⊥ ← lm+1 ∧ · · · ∧ ln. Finally, the law of the excluded middle a ∨ ¬a
is often represented as {a} and called a choice. Accordingly, a rule with a choice on

the left-hand side is called a choice rule. A logic program is a set of rules. It is called

normal, if it consists only of normal rules and integrity constraints, and definite if all its

rules are definite.

3 Logical Foundations

We begin by investigating the logical underpinnings of the simple format of logic pro-

grams discussed in the introductory section. Although the discussion of the exemplary

logic program has revealed several characteristic properties, not all of them can be cap-

tured in a logical setting, such as order related features. What remains is the division

of the encoding into facts, rules, choices, and integrity constraints. In logical terms, the

first two amount to negation-free formulas, choices are instances of the law of the ex-

cluded middle, and finally integrity constraints correspond to double-negated formulas

in HT. While the first two types of formulas are arguably simpler because of their re-

stricted syntax, the latter’s simplicity has a semantic nature and is due to the fact that in

HT double negated formulas can be treated as in classical logic.

In what follows, we show that any formula can be divided into a conjunction of cor-

responding subformulas. This conjunction is strongly equivalent (modulo the original

vocabulary) to the original formula and the translation can thus also be applied to sub-

stitute subformulas. Interestingly, the resulting conjunction amounts to a conservative

extension of the original formula and the underlying translation can be traced back to

the logical principle of extension by definition, as we show below.

To this end, we associate with each formula ϕ overA a new propositional atom xϕ.

We then consider defining axioms of the form (xϕ ↔ ϕ). We can now show that replac-

ing any subformula ϕ by xϕ while adding a corresponding defining axiom amounts to

a conservative extension of ψ.

Proposition 1. Let ψ and ϕ be formulas overA and xϕ 6∈ A.

Then, ψ ∼=A (ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ)).

Moreover, we get a one-to-one correspondence between the stable models of both for-

mulas.

Proposition 2. Let ψ and ϕ be formulas overA and xϕ 6∈ A.

1. If T ⊆ A is a stable model of ψ, then T ∪ {xϕ | T |= ϕ} is a stable model of

(ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ)).

2. If T ⊆ (A ∪ {xϕ}) is a stable model of (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)), then T ∩ A is a

stable model of ψ.
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Clearly, the above results generalize from replacing and defining a single subformula ϕ
to several such subformulas.

With this, we can now turn our attention to negated subformulas: Given a formulaψ,

let N (ψ) stand for the set of all maximal negated subformulas occurring in ψ. This leads

us to the following variant of Proposition 1.

Corollary 1. Let ψ be a formula overA and xϕ 6∈ A.

Then, ψ ∼=A ψ
[

ϕ/xϕ | ϕ ∈ N (ψ)
]

∧
∧

ϕ∈N (ψ)(ϕ↔ xϕ).

Given that we exclusively substitute negated subformulas, we can actually treat the

defining axiom as in classical logic. This is because in HT, we have 〈H,T 〉 |= ¬ϕ iff

(classically) T |= ¬ϕ. The classical treatment of the defining axiom is then accom-

plished by replacing (ϕ ↔ xϕ) by ¬¬(ϕ ↔ xϕ) and (¬xϕ ∨ xϕ). This results in the

following decomposition recipe for formulas.

Definition 1. Let ψ be a formula overA and xϕ 6∈ A.

Then, we define

ψ⋆ = ψ
[

ϕ/xϕ | ϕ ∈ N (ψ)
]

∧
∧

ϕ∈N (ψ)

(¬xϕ ∨ xϕ) ∧
∧

ϕ∈N (ψ)

¬¬(ϕ↔ xϕ) .

Example 1. Let ψ be ¬a→ b ∨ ¬¬(c ∧ ¬d). Then,

N (ψ) = {¬a,¬¬(c ∧ ¬d)}

ψ⋆ = (x¬a → b ∨ x¬¬(c∧¬d)) ∧

(x¬a ∨ ¬x¬a) ∧ (x¬¬(c∧¬d) ∨ ¬x¬¬(c∧¬d))

¬¬(¬a↔ x¬a) ∧ ¬¬(¬¬(c ∧ ¬d)↔ x¬¬(c∧¬d))

With the translation from Definition 1, we obtain an analogous conservative exten-

sion result as above.

Theorem 1. Let ψ be a formula overA.

Then, we have ψ ∼=A ψ⋆.

In analogy to Proposition 2, we get a one-to-one correspondence between the stable

models of both formulas.

Theorem 2. Let ψ be a formula overA.

1. If T ⊆ A is a stable model of ψ, then T ∪{xϕ | ϕ ∈ N (ψ) and T |= ϕ} is a stable

model of ψ⋆.

2. If T ⊆ (A ∪ {xϕ | ϕ ∈ N (ψ)}) is a stable model of ψ⋆, then T ∩ A is a stable

model of ψ.

For instance, {b} is a stable model of the formula ψ = ¬a → b ∨ ¬¬(c ∧ ¬d) from

Example 1. From Theorem 1, {x¬a, b} is a stable model of ψ⋆. Conversely, from the

stable model {x¬a, b} of ψ⋆, we get the stable model {b} of ψ by dropping the new

atoms.
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4 Austere Answer Set Programming

In this section, we restrict the application of our formula translation to logic programs.

Although we focus on normal programs, a similar development with other classes of

logic programs, like disjunctive ones, can be done accordingly.

For simplicity, we write ā instead of x¬a for a ∈ A and let {ā} stand for ā ∨ ¬ā.

Note that, for a rule r as in (1), the set N (r) consists of negative literals only. The next

two definitions specialize our translation of formulas to logic programs.

Definition 2. Let r be a rule over A as in (1) with m ≥ 1.

Then, we define

r⋆ = r
[

¬a/ā | ¬a ∈ N (r)] ∪
⋃

¬a∈N (r) {{ā} ←} ∪
⋃

¬a∈N (r)

{

← a ∧ ā
← ¬a ∧ ¬ā

}

Definition 3. Let P be a logic program over A. Then, P ⋆ =
⋃

r∈P r
⋆.

This translation substitutes negated literals in rule bodies with fresh atoms and adds a

choice rule along with a pair of integrity constraints providing an equivalence between

the eliminated negated body literals and the substituted atoms.

By applying the above results in the setting of logic programs, we get that a logic

program and its translation have the same stable models when restricted to the original

vocabulary.

Corollary 2. Let P be a logic program over A.

Then, we have P ∼=A P ⋆

In other words, every stable model of a logic program can be extended to a stable model

of its translation and vice versa.

Corollary 3. Let P be a logic program over A.

1. If T ⊆ A is a stable model of P , then T ∪ {ā | ¬a ∈ N (P ) and a 6∈ T } is a stable

model of P ⋆.

2. T ⊆ (A∪ {ā | ¬a ∈ N (P )} is a stable model of P ⋆, then T ∩A is a stable model

of P .

For illustration, consider the following example.

Example 2. Consider the normal logic program P :

a←
b← ¬c
c← ¬b
d← a ∧ ¬c

Then, P ⋆ is:
a← {b̄} ← {c̄} ←
b← c̄ ← b ∧ b̄ ← c ∧ c̄
c← b̄ ← ¬b ∧ ¬b̄ ← ¬c ∧ ¬c̄
d← a ∧ c̄

The stable models of P are {a, b, d} and {a, c} and the ones of P ⋆ are {a, b, d, c̄} and

{a, c, b̄}, respectively.
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The example underlines that our translation maps normal rules to definite ones along

with choices and pairs of integrity constraints. In other words, it can be seen as a means

for expressing normal logic programs in the form of programs with facts, definite rules,

choice rules and integrity constraints over an extended vocabulary. We call this class of

programs austere logic programs, and further elaborate upon them in the following.

4.1 Austere Logic Programs

We define austere logic programs according to the decomposition put forward in the

introduction.

Definition 4 (Austere logic program). An austere logic program is a quadruple

(F,C,D, I) consisting of a set F of facts, a set C of choices,7 a set D of definite rules,

and a set I of integrity constraints.

A set of atoms is a stable model of an austere logic program, if it is a stable model of

the union of all four components.

In view of the above results, austere logic programs can be regarded as a normalform

for normal logic programs.

Corollary 4. Every normal logic program can be expressed as an austere logic pro-

gram and vice versa.

The converse follows from the fact that choice rules are expressible by a pair of normal

rules [27].

In fact, the (instantiation of) Listing 1.1 constitutes an austere logic program. To see

this observe that

– lines 1-3 provide facts, F , capturing the problem instance, here giving the specifi-

cation of a graph;

– Line 5 provides choices,C, whose instantiation is derived from facts in the previous

lines. Grounding expands this rule to several plain choice rules with empty bodies;

– lines 5-6 list definite rules, D, defining (auxiliary) predicates used in the integrity

constraints;

– finally, integrity constraints, I , are given in lines 7-9, stating conditions that solu-

tions must satisfy.

This example nicely illustrates a distinguishing feature of austere logic programs,

namely, the compartmentalization of the program parts underlying ASP’s guess-define-

check encoding methodology (along with its strict separation of instance and encoding):

The problem instance is described by means of

– the facts in F

and the problem encoding confines

– non-deterministic choices to C,

– the deterministic extension of the taken decisions to D, and

7 That is, choice rules without body literals.
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– the test of the obtained extension to I .

This separation also confines the sources of multiple or non-existing stable models to

well-defined locations, namely, C and I , respectively (rather than spreading them over

several circular rules; see below). As well, the rather restricted syntax of each compart-

ment gives rise to a very simple operational semantics of austere logic programs, as we

see in the next section.

4.2 Operational Semantics

In our experience, a major factor behind the popularity of the approach sketched in

the introductory section lies in the possibility to intuitively form stable models along

the order of the rules in a program. In fact, the simple nature of austere logic pro-

grams provides a straightforward scheme for computing stable models by means of the

well-known immediate consequence operator, whose iteration mimics this proceeding.

Moreover, the simplicity of the computation provides the first evidence of the value of

austere logic programs as a normalform.

The operational semantics of austere logic programs follows ASP’s guess-define-

check methodology. In fact, the only non-determinism in austere logic programs is com-

prised of choice rules. Hence, once choices are made, we may adapt well-known deter-

ministic bottom-up computation techniques for computing stable models. However, the

results of this construction provide merely candidate solutions that still need to satisfy

all integrity constraints. If this succeeds, they constitute stable models of the austere

program.

Let us make this precise for an austere logic program (F,C,D, I) in what follows.

To make choices and inject them into the bottom-up computation, we translate the entire

set of choices, C, into a set of facts:

FC = {a← | {a} ← ∈ C}

A subset of FC , the original facts F , along with the definite programD are then passed

to a corresponding consequence operator that determines a unique stable model candi-

date. More precisely, the TP operator of a definite program P is defined for an interpre-

tation X as follows [23]:

TP (X) = {l1 | (l1 ← lm+1 ∧ · · · ∧ ln) ∈ P, X |= lm+1 ∧ · · · ∧ ln}

With this, the candidate solutions of an austere program can be defined.

Definition 5. Let (F,C,D, I) be an austere logic program overA.

We define a set X ⊆ A of atoms as a candidate stable model of (F,C,D, I), if X
is the least fixpoint of TF∪C′∪D for some C′ ⊆ FC .

The existence of the least fixpoint is warranted by the monotonicity of TF∪C′∪D [23].

Similar to traditional ASP, several candidate models are obtained via the different choices

of C′.

While the choice of C′ constitutes the guess part and the definite rules in D the

define part of the approach, the check part is accomplished by the integrity constraints

in I .
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Proposition 3. Let (F,C,D, I) be an austere logic program over A and X ⊆ A.

Then, X is a stable model of (F,C,D, I) iff X is a candidate stable model of

(F,C,D, I) such that X |= I .

We illustrate the computation of stable models of austere logic programs in the

following example.

Example 3. Consider the austere logic program P

a←
{b} ←
c← b
← a ∧ ¬c

We get the candidate stable models {a, b, c} and {a} from the first three rules depending

on whether we choose b to be true or not, that is, whether we add the fact b ← or not.

Then, on testing them against the integrity constraint expressed by the fourth rule, we

see that {a, b, c} is indeed a stable model, since it satisfies the integrity constraint, while

set {a} is not a stable model since checking the integrity constraint fails.

A major intention of austere logic programs is to confine the actual guess and check

of an encoding to dedicated components, namely, the choices in C and constraints in I .

The definite rules in D help us to analyze and/or extend the solution candidate induced

by the facts F and the actual choices in C′. The emerging candidate is then evaluated

by the integrity constraints in I . This stresses once more the idea that the extension

of a guessed solution candidate should be deterministic; it elaborates the guess but

refrains from introducing any ambiguities. This is guaranteed by the definite rules used

in austere programs.

Observation 1 For any austere logic program (F,C,D, I) and C′ ⊆ FC , the logic

program F ∪ C′ ∪D has a unique stable model.

This principle is also in accord with [25], where stratified logic programs are used in-

stead of definite ones (see below).

5 Easy Answer Set Programming

Austere logic programs provide a greatly simplified format that reflects ASP’s guess-

define-check methodology [20] for writing encodings. Their simple structure allows

for translating the methodology into an intuitive process that consists of making non-

deterministic choices, followed by a deterministic bottom-up computation, and a final

consistency check.

In what follows, we want to turn the underlying principles into a modeling method-

ology for ASP that aims at laypersons. To this end, we leave the propositional setting

and aim at full-featured input languages of ASP systems like clingo [14] and dlv [19].

Accordingly, we shift our attention to predicate symbols rather than propositions and

let the terms ‘logic program’, ‘rule’, etc. refer to these languages without providing a

technical account (cf. [12,5]). Moreover, we allow for normal rules instead of definite
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ones as well as aggregate literals in bodies in order to accommodate the richness of

existing ASP modeling languages.

The admission of normal rules comes at the expense of losing control over the origin

of multiple or non-existing stable models as well as over a deterministic development

of guessed solutions. In fact, the idea of Easy Answer Set Programming (ezASP) is to

pursue the principles underlying austere logic programs without enforcing them through

a severely restricted syntax. However, rather than having the user fully absorb the loss in

control, we shift our focus to a well-founded development of ASP encodings, according

to which predicates are defined on top of previously defined predicates (or facts). This

parallels the structure and the resulting operational semantics of austere logic programs.

To this end, we start by capturing dependencies among predicates [3].

Definition 6. Let P be a logic program.

– A predicate symbol p depends upon a predicate symbol q, if there is a rule in P
with p on its left-hand side and q on its right-hand side.

If p depends on q and q depends on r, then p depends on r, too.

– The definition of a predicate symbol p is the subset of P consisting of all rules with

p on their left-hand side.

We denote the definition of a predicate symbol p in P by def (p) and view integrity

constraints as rules defining⊥.

Our next definition makes precise what we mean by a well-founded development of

a logic program. 8

Definition 7. Let P be a logic program.

We define a partition (P1, . . . , Pn) of P as a stratification of P , if

1. def (p) ⊆ Pi for all predicate symbols p and some i ∈ {1, . . . , n} and

2. if p depends on q, def (p) ⊆ Pi, and def (q) ⊆ Pj for some i, j ∈ {1, . . . , n}, then

(a) i > j unless q depends on p, and

(b) i = j otherwise

Any normal logic program has such a stratification. One way to see this is that mutually

recursive programs can be trivially stratified via a single partition. For instance, this

applies to both programs {a ← b, b ← a} and {a ← ¬b, b ← ¬a} in which a and

b mutually depend upon each other. Accordingly, similar recursive structures in larger

programs are confined to single partitions, as required by (2b) above.

With it, we are ready to give shape to the concept of an easy logic program.

Definition 8 (Easy logic program). An easy logic program is a logic program having

stratification (F,C,D1, . . . , Dn, I) such that F is a set of facts, C is a set of choice

rules, Di is a set of normal rules for i = 1, . . . , n, and I is a set of integrity constraints.

As in traditional ASP, we often divide a logic program into facts representing a problem

instance and the actual encoding of the problem class. For easy programs, this amounts

to separating F from (C,D1, . . . , Dn, I).

8 The term stratification differs from the one used in the literature [3].
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Clearly, an austere logic program is also an easy one.

Thus, the program in Listing 1.1 is also an easy logic program having the stratifica-

tion

({1, 2, 3}, {5}, {6, 7}, {8, 9, 10})

where each number stands for the rules in the respective line.

Predicatesnode/1,edge/2, and start/1 are only used to form facts or occur in

rule bodies. Hence, they do not depend on any other predicates and can be put together

in a single component, F . This makes sense since they usually constitute the problem

instance. Putting them first reflects that the predicates in the actual encoding usually

refer to them. The choices in C provide a solution candidate that is checked by means

of the rules in the following components. In our case, the guessed extension of predicate

hc/2 in Line 5 is simply a subset of all edges provided by predicate edge/2. Tests for

being a path or even a cycle are postponed to the define-check part: The rules in {6, 7},
that is, D1, define the auxiliary predicate reached/1, and aim at analyzing and/or

extending our guessed solution candidate by telling us which nodes are reachable via

the instances of hc/2 from the start node. The actual checks are then conducted by

the integrity constraints, I , in the final partition {8, 9, 10}. At this point, the solution

candidate along with all auxiliary atoms are derived and ready to be checked. Line 8

tests whether each node is reached in the solution at hand, while lines 9 and 10 make

sure that a valid cycle never enters or leaves any node twice.

Finally, it is instructive to verify that strata {5} and {6, 7} cannot be reversed or

merged. We observe that

– hc/2 depends on edge/2 only,

while

– reached/1 depends on hc/2, edge/2, start/1, and itself,

and no other dependencies. The rules defining hc/2 and reached/1 must belong

to the same partition, respectively, as required by (2a) above. Thus, {5} ⊆ Pi and

{6, 7} ⊆ Pj for some i, j. Because reached/1 depends on hc/2 and not vice versa,

we get i < j. This dependency rules out an inverse arrangement, and the fact that it is

not symmetric excludes a joint membership of both definitions in the same partition, as

stipulated by (2b) above.

5.1 Modeling Methodology

The backbone of easy ASP’s modeling methodology is the structure imposed on its

programs in Definition 8. This allows us to encode problems by building concepts on

top of each other. Also, its structure allows for staying in full tune with ASP’s guess-

define-check methodology [20] by offering well-defined spots for all three parts.

Easy logic programs tolerate normal rules in order to encompass full-featured ASP

modeling languages. Consequently, the interplay of the guess, define, and check parts of

an easy logic program defies any control. To tame this opening, we propose to carry over

Observation 1 to easy logic programs: For any easy logic program (F,C,D1, . . . , Dn, I)
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and C′ ⊆ FC , the logic program F ∪ C′ ∪D1 ∪ · · · ∪Dn should have a unique stable

model. Even better if this can be obtained in a deterministic way.

This leads us to the following advice on easy ASP modeling:

1. Compartmentalize a logic program into facts, F , choice rules, C, normal rules,

D1 ∪ · · · ∪Dn, and integrity constraints I ,

such that the overall logic program has stratification (F,C,D1, . . . , Dn, I).
2. Aim at defining one predicate per stratum Di and avoid cycles within each Di for

i = 1, . . . , n.

3. Ensure that F ∪ C′ ∪D1 ∪ · · · ∪Dn has a unique stable model for any C′ ⊆ FC .

While the first two conditions have a syntactic nature and can thus be checked automat-

ically, the last one refers to semantics and, to the best of our knowledge, has only suffi-

cient but no known necessary syntactic counterparts. One is to restrict D1∪· · · ∪Dn to

definite rules as in austere programs, the other is to use stratified negation, as proposed

in [25] and detailed in the next section.

Our favorite is to stipulate that F ∪ C′ ∪D1 ∪ · · · ∪Dn has a total well-founded

model [28] for any C′ ⊆ FC but unfortunately, we are unaware of any syntactic class

of logic programs warranting this condition beyond the ones mentioned above.

5.2 Stratified Negation

The purpose of stratified negation is to eliminate the (problematic) case of recursion

through negation. What makes this type of recursion problematic is that it may eliminate

stable models and that the actual source may be spread over several rules. To give some

concise examples, consider the programs {a ← ¬a} and {a ← ¬b, b ← ¬c, c ← ¬a}
admitting no stable models. Following the dependencies in both examples, we count

one and three dependencies, respectively, all of which pass through negated body lit-

erals. More generally, cyclic dependencies traversing an odd number of negated body

literals (not necessarily consecutively) are known sources of incoherence. Conversely,

an even number of such occurrences on a cycle is not harmful but spawns alterna-

tives, usually manifested in multiple stable models. To see this, consider the program

{a← ¬b, b← ¬a} producing two stable models. Neither type of rule interaction is ad-

mitted in austere logic programs. Rather the idea is to confine the sources of multiple

and eliminated stable models to dedicated components, namely, choices and integrity

constraints. The same idea was put forward by Niemelä in [25] yet by admitting a more

general setting than definite rules by advocating the concept of stratified negation.

To eliminate the discussed cyclic constellations, stratified negation imposes an ad-

ditional constraint on the stratification of a logic program: Given the prerequisites of

Definition 7, we define:

3. If a predicate symbol q occurs in a negative body literal of a rule in Pi, then

def (q) ⊆ Pj for some j < i.

In other words, while the definitions of predicates appearing positively in rule bodies

may appear in a lower or equal partition, the ones of negatively occurring predicates are

restricted to lower components. Although this condition tolerates positive recursion as
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in {a← b, b← a}, it rules out negative recursion as in the above programs. Since using

programs with stratified negation rather than definite programs generalizes austere logic

programs, their combination with choices and integrity constraints is also as expressive

as full ASP [25].

An example of stratified negation can be found in Listing 1.3. The negative literal

in Line 5 refers to a predicate defined — beforehand — in Line 8.

An attractive feature of normal logic programs with stratified negation is that they

yield a unique stable model, just as with austere programs (cf. Observation 1). Hence,

they provide an interesting generalization of definite rules maintaining the property of

deterministically extending guessed solution candidates.

5.3 Complex Constraints

As mentioned, we aim at accommodating complex language constructs as aggregates

in order to leverage the full expressiveness of ASP’s modeling languages. For instance,

we may replace lines 9 and 10 in Listing 1.1 by

9 :- { hc(U,V) } >= 2, node(U).

10 :- { hc(U,V) } >= 2, node(V).

without violating its stratification.

More generally, a rule with an aggregate ‘#op{l1, . . . , lm} ≺ k’ in the consequent

can be represented with choice rules along with an integrity constraint, as shown in [27].

That is, we can replace any rule of form

#op{l1, . . . , lm} ≺ k← lm+1 ∧ · · · ∧ ln

by9

{li} ← lm+1 ∧ · · · ∧ ln for i = 1, . . . ,m and

⊥ ← ¬(#op{l1, . . . , lm} ≺ k) ∧ lm+1 ∧ · · · ∧ ln .

This allows us to integrate aggregate literals into easy logic programs without sacrificing

expressiveness.

In fact, many encodings build upon restricted choices that are easily eliminated by

such a transformation. A very simple example is graph coloring. Assume a problem

instance is given in terms of facts node/1, edge/2, and color/1. A corresponding

encoding is given by the following two rules:

1 { assign(X,C) : color(C)} = 1 :- node(X).

2 :- edge(X,Y), assign(X,C), assign(Y,C).

Note that the aggregate in the consequent of Line 1 is a shortcut for a #count aggregate.

To eliminate the restricted choice from the consequent in Line 1, we may apply the

above transformation to obtain the following easy encoding:

9 In practice, a set of such choice rules can be represented by a single one of form

{l1, . . . , lm} ← lm+1 ∧ · · · ∧ ln.
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1 { assign(X,C) } :- node(X), color(C).

2 :- not { assign(X,C) : color(C)} = 1, node(X).

3 :- edge(X,Y), assign(X,C), assign(Y,C).

Given some set of facts, F , this encoding amounts to the easy logic programs

(F, {1}, {2}, {3}).
The decomposition into a choice and its restriction may appear unnecessary to the

experienced ASP modeler. However, we feel that such a separation adds clarity and is

preferable to language constructs combining several aspects, at least for ASP beginners.

Also, it may be worth noting that this decomposition is done anyway by an ASP system

and hence brings about no performance loss.

Two further examples of easy logic programs are given in Listing 1.2 and 1.3, solv-

ing the Queens and the Tower-of-Hanoi puzzles both with parameter n. 10 While the

1 { queen(1..n,1..n) }.

2

3 d1(I,J,I-J+n) :- I = 1..n, J = 1..n.

4 d2(I,J,I+J-1) :- I = 1..n, J = 1..n.

5

6 :- { queen(I,1..n) } != 1, I = 1..n.

7 :- { queen(1..n,J) } != 1, J = 1..n.

8

9 :- { queen(I,J) : d1(I,J,D) } > 1, D=1..n*2-1.

10 :- { queen(I,J) : d2(I,J,D) } > 1, D=1..n*2-1.

Listing 1.2. An easy logic program for the n-Queens puzzle

easy logic program for the n-Queens puzzle has the format

(∅, {1}, {3, 4}, {6, 7}, {9, 10}),

the one for the Tower-of-Hanoi puzzle can be partitioned into

({1, 2, 3, 4}, {6}, {8}, {10, 11, 12}, {14, 15}, {17, 19, 20, 21, 23}) .

5.4 Limitations

The methodology of ezASP has its limits. For instance, sometimes it is convenient to

make choices depending on previous choices. Examples of this are the combination of

routing and scheduling, as in train scheduling [1], or the formalization of frame axioms

in (multi-valued) planning advocated in [18]. Another type of encodings escaping our

methodology occurs in meta programming, in which usually a single predicate, like

holds, is used and atoms are represented as its arguments. Thus, for applying the

10 This parameter is either added from the command line via option --const or a default added

via directive #const (see [13] for details).
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1 peg(a;b;c).

2 disk(1..4).

3 init_on(1..4,a).

4 goal_on(1..4,c).

5

6 { move(D,P,T) : disk(D), peg(P) } :- T = 1..n.

7

8 move(D,T) :- move(D,_,T).

9

10 on(D,P,0) :- init_on(D,P).

11 on(D,P,T) :- move(D,P,T).

12 on(D,P,T+1) :- on(D,P,T), not move(D,T+1), T < n.

13

14 blocked(D-1,P,T+1) :- on(D,P,T), T < n.

15 blocked(D-1,P,T) :- blocked(D,P,T), disk(D).

16

17 :- { move(D,P,T) : disk(D), peg(P) } != 1, T = 1..n.

18

19 :- move(D,P,T), blocked(D-1,P,T).

20 :- move(D,T), on(D,P,T-1), blocked(D,P,T).

21 :- not 1 { on(D,P,T) } 1, disk(D), T = 1..n.

22

23 :- goal_on(D,P), not on(D,P,n).

Listing 1.3. An easy logic program for a Towers-of-Hanoi puzzle (for plans of length n)

ezASP methodology, one had to refine the concept of stratification to access the term

level in order to capture the underlying structure of the program. And finally, formal-

izations of planning and reasoning about actions involve the formalization of effect and

inertia laws that are usually self-referential on the predicate level (sometimes resolved

on the term level, through situation terms or time stamps). A typical example of circular

inertia laws is the following:

holds(F,T) :- holds(F,T-1), not -holds(F,T).

-holds(F,T) :- -holds(F,T-1), not holds(F,T).

Here, ‘-’ denotes classical negation, and F and T stand for (reified) atoms and time

points. On the other hand, the sophistication of the given examples illustrates that they

are usually not addressed by beginners but rather experts in ASP for which the strict

adherence to ezASP is less necessary.

6 Related Work

Apart from advocating the idea illustrated in the introduction, Ilkka Niemelä also showed

in [25] that negative body literals can be replaced by a new atom for which a choice

needs to be made whether to include it in the model or not; and such that a model cannot

contain both the new atom and the atom of the replaced literal but one of them needs
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to be included. This technique amounts exactly to the transformation in Definition 2

and traces back to Abductive logic programming [9,7]. Indeed, it was already shown in

[16] that for DATALOG queries the expressive power of stable model semantics can be

achieved via stratified negation and choices.

We elaborated upon this idea in several ways. First, we have shown that the full

expressiveness of normal logic programs can even be achieved with definite rules rather

than normal ones with stratified negation. Second, we have provided a strong equiva-

lence result that allows for applying the transformation in Definition 2 to selected rules

only. Third, we have generalized the idea by means of the logic of Here-and-There,

which made it applicable to other fragments of logic programs. And finally, this investi-

gation has revealed that the roots of the idea lie in the logical principle of extension by

definition.

Over the last decades many more related ideas were presented in the literature.

For instance, in [10], normal logic programs are translated into positive disjunctive

programs by introducing new atoms for negative literals. Also, strong negation is usu-

ally compiled away via the introduction of new atoms along with integrity constraints

excluding that both the original atom and the atom representing its strong negation

hold [15]. The principle of extension by definition was also used in [11] to prove prop-

erties about programs with nested expressions. EzASP is closely related to the paradigm

of IDP [6], where the program parts F , C and I are expressed in first-order logic, while

the Di’s form inductive definitions. Finally, in [8], the authors propose an informal

semantics for logic programs based on the guess-define-check methodology, that are

similar to the easy logic programs that we introduce in this paper.

7 Conclusion

We have revisited an old idea from the literature on logic programming under stable

model semantics and elaborated upon it in several ways. We started by tracing it back

to the principle of extension by definition. The resulting formalization in the setting of

the logic of Here-and-there provides us with a logical framework that can be instantiated

in various ways. Along these lines, we have shown that normal logic programs can be

reduced to choices, definite rules, and integrity constraints, while keeping the same

expressiveness as the original program. A major advantage of this austere format is that

it confines non-determinism and incoherence to well-defined spots in the program. The

resulting class of austere logic programs could play a similar role in ASP as formulas

in conjunctive normal form in classical logic.

Drawing on the properties observed on austere logic program, we put forward the

modeling methodology of ezASP. The idea is to compensate for the lacking guaran-

tees provided by the restricted format of austere programs by following a sequential

structure when expressing a problem in terms of a logic program. This makes use of

the well-known concept of stratification to refine ASP’s traditional guess-define-check

methodology. Although the ordering of rules may seem to disagree with the holy grail

of full declarativeness, we evidence its great value in introducing beginners to ASP.

Also, many encodings by experienced ASP users follow the very same pattern.
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Moreover, the ezASP paradigm aligns very well with that of achievements [21] that

aims not only at easily understandable but moreover provably correct programs. To

this end, formal properties are asserted in between a listing of rules to express what

has been achieved up to that point. Extending ezASP with achievements and automat-

ically guiding the program development with ASP verifiers, like anthem [22], appears

to us as a highly interesting avenue of future research. In this context, it will also be

interesting to consider the components of an easy logic program as modules with an

attached input-output specification, so that the meaning of the overall program emerges

from the composition of all components. This would allow for successive refinements

of programs’ components, while maintaining their specification.
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A Proofs

Lemma 1. Let ψ and ϕ be formulas over A, xϕ 6∈ A and H ⊆ T ⊆ (A ∪ {xϕ}).
Then, 〈H,T 〉 |= (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)) if and only if 〈H ∩ A, T ∩ A〉 |= ψ and

H\A = {xϕ | 〈H ∩ A, T ∩ A〉 |= ϕ}.

Proof. Since xϕ /∈ A, ϕ and ψ are formulas over A, (by structural induction) we get

that 〈H,T 〉 |= ϕ iff 〈H ∩A, T ∩ A〉 |= ϕ and 〈H,T 〉 |= ψ iff 〈H ∩ A, T ∩ A〉 |= ψ.

=⇒ Suppose 〈H,T 〉 |= (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)). By the rule substitution of

equivalents, we get 〈H,T 〉 |= (ψ ∧ (ϕ ↔ xϕ)) and it follows that 〈H,T 〉 |= ψ and

〈H∩A, T∩A〉 |= ψ. So, if 〈H,T 〉 |= (ψ[ϕ/xϕ]∧(ϕ↔ xϕ)), then 〈H∩A, T∩A〉 |= ψ.

https://doi.org/10.1017/S1471068418000054
http://jmc.stanford.edu/articles/elaboration/elaboration.pdf
https://doi.org/10.1007/s10472-006-9028-z
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Also, since 〈H,T 〉 |= (ϕ ↔ xϕ), we know that xϕ ∈ H iff 〈H,T 〉 |= ϕ. Conse-

quently, xϕ ∈ H\A iff 〈H ∩ A, T ∩ A〉 |= ϕ. It follows that if 〈H,T 〉 |= (ψ[ϕ/xϕ] ∧
(ϕ↔ xϕ)), then 〈H ∩A, T ∩ A〉 |= ψ and H\A = {xϕ | 〈H ∩A, T ∩ A〉 |= ϕ}.

⇐= Suppose 〈H∩A, T ∩A〉 |= ψ andH\A = {xϕ | 〈H∩A, T ∩A〉 |= ϕ}. Then

〈H,T 〉 |= ψ, and H\A = {xϕ | 〈H,T 〉 |= ϕ}. It implies that 〈H,T 〉 |= (ψ ∧ (ϕ ↔
xϕ)) and by the rule substitution of equivalents, we get 〈H,T 〉 |= ψ[ϕ/xϕ]∧(ϕ↔ xϕ).

Proof (Proposition 1). =⇒ Let a set of atoms T overA be a stable model of ψ. Then

〈T, T 〉 |= ψ. Consider a set of atoms T ′ = T ∪ {xϕ | 〈T, T 〉 |= ϕ}. Then from Lemma

1, 〈T ′, T ′〉 |= ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ).

Suppose some interpretation 〈H ′, T ′〉 where H ′ ⊂ T ′, is a model of ψ[ϕ/xϕ] ∧
(ϕ↔ xϕ). Then, from Lemma 1, ((H ′ ∩A)∪{xϕ | 〈H ′ ∩A, T 〉 |= ϕ}) ⊂ (T ∪{xϕ |
〈T, T 〉 |= ϕ}) and 〈H ′ ∩ A, T 〉 |= ψ. But since T is a stable model of ψ, we get that

H ′ ∩A = T , this leads us to a contradiction. So T ′ is a stable model (ψ[ϕ/xϕ]∧ (ϕ↔
xϕ)).

⇐= Let a set of atoms T ′ overA ∪ {xϕ} be a stable model of (ψ[ϕ/xϕ] ∧ (ϕ↔
xϕ)). Then 〈T ′, T ′〉 |= (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)). Suppose T = T ′ ∩ A. Then from

Lemma 1, 〈T, T 〉 |= ψ with and T ′\A = {xϕ | 〈T, T 〉 |= ϕ}.

Suppose some interpretation 〈H,T 〉 where H ⊂ T , is a model of ψ. Also, H ′ =
H ∪ {xϕ | 〈H,T 〉 |= ϕ} ⊂ T ∪ {xϕ | 〈H,T 〉 |= ϕ}. By persistence, if 〈H,T 〉 |= ϕ,

then 〈T, T 〉 |= ϕ. So H ′ ⊂ T ′ and by Lemma 1, 〈H ′, T ′〉 |= (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)).
But T ′ is a stable model of (ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ)) and we get a contradiction. So T is

a stable model of ψ.

It follows that ψ and (ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ)) overA and hence ψ ∼=A (ψ[ϕ/xϕ] ∧
(ϕ↔ xϕ)).

Proof (Proposition 2). It follows from the proof of Proposition 1.

Lemma 2. Let φ1 and φ2 be two formulas over any vocabulary. Then,

(¬φ1 ↔ φ2) ⊢ (¬φ2 ∨ φ2)
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Proof.

1 ¬φ1 ↔ φ2

2 ¬φ1 ← φ2 ↔E, 1

3 φ2 ← ¬φ1 ↔E, 1

4 ¬φ1 ∨ ¬¬φ1 Weak Excluded Middle

5 ¬φ1

6 φ2 ←E, 3, 5

7 φ2 ∨ ¬φ2 ∨I, 6

8 ¬¬φ1

9 φ2

10 ¬φ1 ←E, 2, 9

11 ⊥ ⊥I, 8, 10

12 ¬φ2 ¬I, 9–11

13 ¬φ2 ∨ φ2 ∨I, 12

14 ¬φ2 ∨ φ2 ∨E, 4

Lemma 3. For any pair of formulas φ1 and φ2, the following conditions hold:

1. (¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) ∼= (¬¬(¬φ1 ↔ φ2))

2. (¬¬(¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2)) ∼= ((¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2))

Proof. For any two formulas φ1 and φ2 overA,

First, we prove that

(φ1 ∨ ¬φ2) ⊢ (φ1 ← φ2) (2)
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1 φ1 ∨ ¬φ2

2 φ2

3 φ1

4 φ1 R, 3

5 ¬φ2

6 ⊥ ¬E, 2, 5

7 φ1 ⊥E, 7

8 φ1 ∨E, 1, 3–4, 5–7

9 φ1 ← φ2 ←I, 2–8

Then, we can prove that,

(¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) ⊢ ¬¬(¬φ1 ↔ φ2) (3)

1 ¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)

2 ¬(φ1 ∧ φ2) ∧E, 1

3 ¬φ1 ∨ ¬φ2 De Morgan’s law , 2

4 ¬φ1 ← φ2 (2), 3

5 ¬¬(¬φ1 ← φ2) ¬¬φ← φ, 4

6 ¬(¬φ1 ∧ ¬φ2) ∧E, 1

7 ¬¬(φ2 ∨ φ1) De Morgan’s law , 6

8 ¬¬(φ2 ∨ ¬¬φ1) ¬¬φ← φ, 7

9 ¬¬(φ2 ← ¬φ1) (2), 8

10 ¬¬(¬φ1 ← φ2) ∧ ¬¬(φ2 ← ¬φ1) ∧I, 5, 9

11 ¬(¬(¬φ1 ← φ2) ∨ ¬(φ2 ← ¬φ1)) De Morgan’s law , 10

12 ¬¬((¬φ1 ← φ2) ∧ (φ2 ← ¬φ1)) De Morgan’s law , 11

13 ¬¬(¬φ1 ↔ φ2) ↔I, 12

We prove that,

¬¬(¬φ1 ↔ φ2) ⊢ (¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) (4)
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1 ¬¬(¬φ1 ↔ φ2)

2 φ1 ∧ φ2

3 ¬φ1 ↔ φ2

4 ¬φ1 ← φ2 ↔E, 3

5 φ2 ∧E, 2

6 ¬φ1 ←E, 3, 4

7 φ1 ∧E, 2

8 ⊥ ⊥I, 6, 7

9 ¬(¬φ1 ↔ φ2) ⊥E, 3–8

10 ⊥ ⊥I, 1, 9

11 ¬(φ1 ∧ φ2) ⊥E, 2–10

12 ¬φ1 ∧ ¬φ2

13 ¬φ1 ↔ φ2

14 ¬φ1 ← φ2 ↔E, 13

15 ¬φ1 ∧E, 12

16 φ2 ←E, 13, 14

17 ¬φ2 ∧E, 12

18 ⊥ ⊥I, 16, 17

19 ¬(¬φ1 ↔ φ2) ⊥E, 13–18

20 ⊥ ⊥I, 11, 19

21 ¬(¬φ1 ∧ ¬φ2) ⊥E, 12–20

22 (¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) ∧I, 11, 21

So from (3) and (4),

(¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) ∼= (¬¬(¬φ1 ↔ φ2)) (5)

We prove that,

(¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2) ∧ (¬φ2 ∨ φ2)) ⊢ (¬φ1 ↔ φ2) (6)
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1 ¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2) ∧ (¬φ2 ∨ φ2)

2 ¬(φ1 ∧ φ2) ∧E, 1

3 ¬φ1 ∨ ¬φ2) De Morgan’s law , 2

4 ¬φ1 ← φ2) (2), 3

5 ¬(¬φ1 ∧ ¬φ2) ∧E, 1

6 ¬¬φ1 ∨ ¬¬φ2) De Morgan’s law , 5

7 ¬¬φ2 ← ¬φ1) (2), 6

8 ¬φ2 ∨ φ2 ∧E, 1

9 ¬φ2

10 ¬¬¬φ2 ¬¬¬φ← ¬φ, 9

11 ¬¬¬φ2 ∨ φ2 ∨I, 10

12 φ2

13 φ2 R, 12

14 φ2 ∨ ¬¬¬φ2 ∨I, 13

15 φ2 ∨ ¬¬¬φ2 ∨E, 8, 9–11, 12–14

16 φ2 ← ¬¬φ2 (2), 15

17 φ2 ← ¬φ1 ←E, 7, 16

18 ¬φ1 ↔ φ2 ↔I, 4, 17

Then from (5) and (6),

(¬¬(¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2)) ⊢ (¬φ1 ↔ φ2) (7)

We know that,

(¬φ1 ↔ φ2) ⊢ (¬¬(¬φ1 ↔ φ2)) (8)

So from (7) and (8),

(¬¬(¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2)) ∼= ((¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2)) (9)

Proof (Theorem 1). Let N (ψ) = {ϕ1, ..., ϕn}. For 1 ≤ i ≤ n, we define a sequence of

formulas as:

ψ0 =ψ (10)

ψi =ψi−1 ∧ (ϕi ↔ xϕi
) (11)
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Then ψn = ψ ∧
∧

ϕ∈N (ψ)(ϕ ↔ xϕ). From Proposition 1, we know that ψ ∼=A

(ψ[ϕ1/xϕ1
] ∧ (ϕ1 ↔ xϕ1

)) and on substitution of the equivalents, we get ψ ∼=A

(ψ ∧ (ϕ1 ↔ xϕ1
)) and it follows that ψ0

∼=A ψ1. So, for 1 ≤ i ≤ n, ψi−1
∼=A ψi

and ψ0
∼=A ψn, that is,

ψ ∼=A (ψ ∧
∧

ϕ∈N (ψ)

(ϕ↔ xϕ))

By substitution of equivalents,

ψ ∼=A ψn ∼= (ψ
[

ϕ/xϕ | ϕ ∈ N (ψ)
]

∧
∧

ϕ∈N (ψ)

(ϕ↔ xϕ))

For ϕ ∈ N (ψ), from Lemma 2, we can see that, (ϕ↔ xϕ) ⊢ (¬xϕ ∨ xϕ). So,

ψ ∼=A ψn ∼= (ψ
[

ϕ/xϕ | ϕ ∈ N (ψ)
]

∧
∧

ϕ∈N (ψ)

(ϕ↔ xϕ) ∧
∧

ϕ∈N (ψ)

(¬xϕ ∨ xϕ))

From Lemma 3 part 2,

((ϕ↔ xϕ) ∧ (¬xϕ ∨ xϕ)) ∼= (¬¬(ϕ↔ xϕ) ∧ (¬xϕ ∨ xϕ))

It follows that,

ψ ∼=A ψn ∼= (ψ
[

ϕ/xϕ | ϕ ∈ N (ψ)
]

∧
∧

ϕ∈N (ψ)

¬¬(ϕ↔ xϕ)∧
∧

ϕ∈N (ψ)

(¬xϕ∨xϕ)) = ψ⋆

Hence, ψ ∼=A ψ⋆.

Proof (Theorem 2). Let N (ψ) = {ϕ1, ..., ϕn}. Similar to proof of Theorem 1, for

1 ≤ i ≤ n, we define a sequence of formulas as:

ψ0 =ψ (12)

ψi =ψi−1 ∧ (ϕi ↔ xϕi
) (13)

Then ψn = ψ ∧
∧

ϕ∈N (ψ)(ϕ↔ xϕ).
For 1 ≤ i ≤ n, we define a sequence of set of atoms as:

T0 =T (14)

Ti =Ti−1 ∪ {xϕi
| 〈T, T 〉 |= ϕi} (15)

Then, Tn = T ∪ {xϕ | ϕ ∈ N (ψ), 〈T, T 〉 |= ϕ}. By the substitution of equivalents, we

can see that, ψ1
∼= (ψ

[

ϕ1/xϕ1

]

∧ (ϕ1 ↔ xϕ1
)). Additionally, from Proposition 2 we

get that T is a stable model of ψ if and only if T ∪ {xϕ1
| 〈T, T 〉 |= ϕ1} is a stable

model of (ψ
[

ϕ1/xϕ1

]

∧ (ϕ1 ↔ xϕ1
)). It follows that T is a stable model of ψ if and

only if T1 is a stable model of ψ1. Similarly, for 1 ≤ i ≤ n, Ti−1 is a stable model of

ψi−1 if and only if Ti is a stable model of ψi. It follows that T is a stable model of ψ
if and only if Tn is a stable model of ψn. From the proof of Theorem 1, we know that

ψn ∼= ψ⋆. It follows that T is a stable model of ψ if and only if Tn is a stable model of

ψ⋆ and hence the Theorem’s statements follows.
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Proof (Corollary 2). From part 1 of Lemma 3, we can see that (¬¬(¬a ↔ ā)) can be

expressed in form of integrity constraints as

←a ∧ ā

←¬a ∧ ¬ā

Also, the disjunction ā ∨ ¬ā is a choice rule of form {ā} ←. So from Theorem 1,

r ∼=A r⋆ and P ∼=A P ⋆.

Proof (Corollary 3). From the proof of Corollary 2, we can see that for a rule r, r⋆ using

Definition 1 can be expressed alternatively as shown in Definition 2. So, the Corollary

follows from program translation in Definition 3 and from Theorem 2.

Proof (Proposition 3). =⇒ Let a set of atoms X be a stable model of (F,D,C, I).
Suppose C′ ⊆ C be the set of choice rules of form

{a} ← (16)

where a ∈ X . We know 〈X,X〉 |= (F ∪C′ ∪D). Also, a rule r ∈ (F ∪ FC′ ∪D) can

be expressed as

a← B (17)

where a is an atom and B is a set of atoms. It follows that a ∈ X if B ⊆ X and

T(F∪FC′∪D)(X) ⊆ X .

SupposeX ′ is a pre-fixpoint of T(F∪FC′∪D) whereX ′ ⊂ X . So T(F∪FC′∪D)(X
′) ⊆

X ′ and then for a rule r ∈ (F ∪ FC′ ∪ D) expressed as (17), a ∈ X ′ if B ⊆ X ′ if

B ⊆ X . It follows that 〈X ′, X〉 |= (F ∪ FC′ ∪ D). Since 〈X ′, X〉 |= FC′ , then for a

rule r ∈ FC′ of form

{a} ← (18)

we see that a ∈ X ′, 〈X ′, X〉 |= a, 〈X ′, X〉 |= (a;¬a) and hence 〈X ′, X〉 |= C′.

For r ∈ C\C′ of form (16), we know that a 6∈ X , 〈X,X〉 6|= a, 〈X ′, X〉 |= ¬a,

〈X ′, X〉 |= (a;¬a) and hence 〈X ′, X〉 |= C\C′. So 〈X ′, X〉 |= (F ∪ C ∪D ∪ I) but

since X is the stable model of (F ∪C ∪D ∪ I), we get a contradiction. It follows that

X is the least fixpoint of T(F∪FC′∪D) where C′ ⊆ C. So X is a candidate stable model

of (F,C,D, I) and 〈X,X〉 |= I .

⇐= Suppose a set of atoms X be a candidate stable model of (F,D,C, I) such

that 〈X,X〉 |= I . Then, X is the least fixpoint of T(F∪FC′∪D) for some C′ ⊆ C and

T(F∪FC′∪D)(X) ⊆ X . Any rule r ∈ (F ∪ FC′ ∪D) is of the form (17) and it follows

that a ∈ X if B ⊆ X . So 〈X,X〉 |= r and we get that 〈X,X〉 |= (F ∪ FC′ ∪D). For

a rule r ∈ C of form (16), a ∈ X or a 6∈ X . So 〈X,X〉 |= (a;¬a) and 〈X,X〉 |= r. It

follows that 〈X,X〉 |= (F ∪ C ∪D ∪ I).
Suppose some 〈X ′, X〉 |= (F ∪ C ∪ D ∪ I), where X ′ ⊂ X . Then for r ∈ (F ∪

FC′ ∪ D), a ∈ X ′ if 〈X ′, X〉 |= B if B ⊆ X ′. Hence T(F∪F
C′∪D)(X

′) ⊆ X ′. Since

X is the least pre-fixpoint of T(F∪FC′∪D), we arrive at a contradiction and so X is the

stable model of (F,D,C, I).
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