
Challenges in Answer Set Solving

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub?

Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam

Abstract. Michael Gelfond’s application of Answer Set Programming (ASP) in
the context of NASA’s space shuttle has opened the door of the ivory tower. His
project has not only given our community self-confidence and served us as a ref-
erence for grant agencies and neighboring fields, but ultimately it helped freeing
the penguins making them exclaim “Yes, we can [fly] !”. The community has
taken up this wonderful assist to establish ASP as a prime tool for declarative
problem solving in the area of Knowledge Representation and Reasoning. De-
spite this success, however, ASP has not yet attracted broad attention outside this
area. This paper aims at identifying some current challenges that our field has
to overcome in the mid-run to ultimately become a full-fledged technology in
Informatics.

1 Introduction

A central goal of the field of Knowledge Representation and Reasoning is to furnish
methods for automated yet declarative problem solving. Unlike programming, where
the idea is to use programs to specify how a problem is to be solved, the idea is to
view a program as a formal representation of the problem as such. Accordingly, the
mere execution of a traditional program is replaced by an automated search through the
solution space spanned by the problem’s representation. Looking at chess, this amounts
to specifying the rules of chess and searching in the resulting state space rather than
writing a chess program. In the latter case, the intelligence lies with the programmer,
while in the former it is the system that cares about finding a solution in a smart way.
Also, the procedural approach is bound to playing chess, while the problem-solving
oriented approach is free to play any other game that can be specified in the realm of
the input language, as witnessed in the area of General Game Playing [1].

Answer Set Programming (ASP; [2]) is nowadays one of the most popular ap-
proaches to declarative problem solving. This is due to its appealing combination of
a rich yet simple modeling language with high-performance solving capacities. ASP
has its roots in Knowledge Representation and (Nonmonotonic) Reasoning, Logic Pro-
gramming (with negation), Databases, and Boolean Constraint Solving. ASP allows for
solving all search problems in NP (and NPNP ) in a uniform way, offering more succinct
problem representations than propositional logic [3]. Meanwhile, ASP has been used in
many application areas, among them, product configuration [4], decision support for
NASA shuttle controllers [5], composition of Renaissance music [6], synthesis of mul-
tiprocessor systems [7], reasoning tools in systems biology [8, 9], team-building [10],
? Affiliated with the School of Computing Science at Simon Fraser University, Canada, and the

Institute for Integrated and Intelligent Systems at Griffith University, Australia.



and many more.1 The success story of ASP has its roots in the early availability of
ASP solvers, beginning with the smodels system [11], followed by dlv [12], SAT-based
ASP solvers, like assat [13] and cmodels [14], and the conflict-driven ASP solver clasp,
demonstrating the performance and versatility of ASP solvers by winning first places at
international competitions like ASP’09, PB’09, and SAT’09.

Despite this success, ASP has not yet become an out-of-the-box technology like,
for instance Prolog, or even a natural subject of undergraduate teaching, like relational
databases or functional programming. A major prerequisite for this ambitious goal is
to enable the scalability of ASP, even when used by non-expert users. However, ASP’s
declarative methodology for problem posing and solving does not scale for free. Actu-
ally, the decent performance of ASP systems often conceals a lack of scalability and has
so far impeded the community’s awareness of this limitation. In what follows, we aim
at sharpening the community’s awareness of the challenges ahead of us and to motivate
a joined effort in addressing them. Enjoy!

2 ASP Solving

As with traditional computer programming, the ASP solving process amounts to a
closed loop. Its steps can be roughly classified into

1. Modeling,
2. Grounding,
3. Solving,
4. Visualizing, and
5. Software Engineering.

We have illustrated this process in Figure 1 by giving the associated components. It all

Program Grounder Solver Output- - -

6

Fig. 1. ASP Solving Process

starts with a modeling phase, which results in a first throw at a representation of the
given problem in terms of logic programming rules. The resulting program2 is usually

1 See http://www.cs.uni-potsdam.de/∼torsten/asp for an extended listing of
ASP applications.

2 This is of course a misnomer but historically too well established to be dropped.



formulated by means of first-order variables, which are systematically replaced by el-
ements of the Herbrand universe in a subsequent grounding phase. This yields a finite
propositional program that is then fed into the actual ASP solver. The output of the
solver varies depending on the respective reasoning mode. Often, it consists of a textual
representation of a sequence of answer sets. Depending on the quality of the resulting
answer, one then either refines the last version of the problem representation or not.

As pointed out in the introductory section, the strongholds of ASP are usually re-
garded to be its rich modeling language as well as its high-performance solving capac-
ities. We revisit both topics, Modeling and Solving, in the following sections and close
by commenting briefly on the remaining issues.

Grounding, or more generally propositionalization, is common to all approaches
exploiting the computational advantages of propositional representations; besides ASP
this includes, for instance, Satisfiability Checking (SAT;[15]) and Planning [16]. Unlike
the latter, however, ASP is the only area having widely used, highly optimized ground-
ing systems. Even so, some problems are as a matter of fact prone to a combinatorial
blow-up in space and thus beyond the realm of any efficient grounding procedure. Given
that such problems usually comprise large but flat domains, there is definitely a need to
further investigate database techniques for grounding or finite-domain constraint pro-
cessing techniques for hybrid solving, as done in [17–19].

Visualization becomes indispensable when problems and their resulting answer sets
involve a high number of entities and relations among them. Although the relational
nature of ASP suggests tables as an obvious means of visualization, at the end of the
day, tables are just another domain-independent way of characterizing the actual objects
of interest. But despite this application-specific nature of visualization, it remains a
great challenge whether a highly declarative, general-purpose paradigm such as ASP
can be lifted from a purely textual level towards a more appealing graphical stage. A
first approach in this direction is described in [20].

Software-engineering becomes more and more important to ASP in view of its in-
creasing range of applications. Among others, this involves effective development tools,
including editors and debuggers, as well as the dissemination of (open-source) tools and
libraries connecting ASP to other computing paradigms. For instance, classical debug-
ging techniques do often not apply to ASP because of its high degree of declarativity,
or in other words, its lack of a procedural semantics that could be subject to debugging
and tracing. This “curse of declarativity” is well recognized withing the ASP commu-
nity and addressed within a dedicated workshop series [21, 22]; first approaches can be
found in [23–26].

3 Modeling

ASP Modeling is an art; it requires craft, experience, and knowledge. Although the re-
sulting problem specifications are usually quite succinct and easy to understand, craft-
ing such beautiful specification that also shows its best performance is not as obvious
as it might seem. To illustrate this, we conduct a little case study in the next section.

All experiments were conducted with gringo (3.0.03) and clasp (1.3.4).
3 The release candidate was referred to as bingo.



3.1 A case-study

Let us consider the well-known n-Queens problem that consists of placing n queens on
an n× n-square board such that no queen may attacks another one.

Following the common generate-and-test methodology of ASP, this problem can be
specified in four rules, the first providing a generator positioning n queens on the n×n
board, and the three remaining ones excluding two queens on the same row, column,
and diagonal, respectively. The first throw at a formalization of these constraints in ASP
is given in Table 1.

% place n queens on the chess board
n { q(1..n,1..n) } n.

% at most one queen per row/column
:- q(X,Y1), q(X,Y2), Y1 != Y2.
:- q(X1,Y), q(X2,Y), X1 != X2.

% at most one queen per diagonal
:- q(X1,Y1), q(X2,Y2), X1 != X2, #abs(X1-X2) == #abs(Y1-Y2).

Table 1. n-Queens problem, first throw.

A first improvement is to eliminate symmetric ground rules, expressing the same
constraint. For example, rule :- q(X,Y1), q(X,Y2), Y1 != Y2. gives rise
to ground instances :- q(3,1), q(3,2). and :- q(3,2), q(3,1). both
of which prohibit the same placements of queens. This redundancy can be removed
by some simple symmetry breaking. In our example, it suffices to replace inequality
Y1 != Y2 by Y1 < Y2. Globally applying this simple way of symmetry breaking to
the encoding in Table 1 yields the one in Table 2. The latter encoding strictly halves
the number of ground instances obtained from the three integrity constraints. For in-
stance, on the 10-Queens problem, the number of ground rules drops from 2941 to
1471. Despite this reduction, the improved encoding still scales poorly, as witnessed by
the 1646701 rules obtained after 28.26s on the 100-Queens problem (cf. Table 5 at the
end of this section).

Analyzing the encoding in Table 2 a bit further reveals that all three integrity con-
straints give rise to a cubic number of ground instances, that is, on the n-Queens prob-
lem they produce O(n3) ground rules. This can be drastically reduced by replacing the
rule restricting placements in rows, viz. :- q(X,Y1), q(X,Y2), Y1 < Y2.,
by4

:- X = 1..n, not 1 { q(X,Y) } 1.

4 The construct X = 1..n can be read as X ∈ {1, . . . , n}.



% place n queens on the chess board
n { q(1..n,1..n) } n.

% at most one queen per row/column
:- q(X,Y1), q(X,Y2), Y1 < Y2.
:- q(X1,Y), q(X2,Y), X1 < X2.

% at most one queen per diagonal
:- q(X1,Y1), q(X2,Y2), X1 < X2, #abs(X1-X2) == #abs(Y1-Y2).

Table 2. n-Queens problem, second throw.

asserting that there is exactly one queen in a row. One rule per row, results in O(n)
rules (each of sizeO(n)) rather thanO(n3) as before. Clearly, the same can be done for
columns, yielding :- Y = 1..n, not 1 { q(X,Y) } 1. Note that the new
rules imply that there is exactly one queen per row and column, respectively. Hence, we
may replace the cardinality constraint n { q(1..n,1..n) } n. by the uncon-
strained choice { q(1..n,1..n) }. This is advantageous because it constitutes
practically no constraint for clasp. Finally, what can we do about the integrity con-
straint controlling diagonal placements? It fact, the same aggregation can be done for
the diagonals, once we have an enumeration scheme. The idea is to enumerate diago-
nals in two ways, once from the upper left corner to the lower right corner, and similarly
from the upper right corner to the lower left corner. Let us illustrate this for n = 4:

1 2 3 4
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
4 4 5 6 7

1 2 3 4
1 4 3 2 1
2 5 4 3 2
3 6 5 4 3
4 7 6 5 4

These two enumeration schemes can be captured by the equations D = X +Y − 1 and
D = X − Y + n, respectively. For instance, the first equation tells us that diagonal 6
consists of positions (4, 3) and (3, 4). Given both equations, we may replace the rule
restricting placements in diagonals by the two following rules:

:- D = 1..n*2-1, not { q(X,Y) : D==X-Y+n } 1.
:- D = 1..n*2-1, not { q(X,Y) : D==X+Y-1 } 1.

As above, we thus obtain one rule per diagonal, inducing O(n) ground rules (each of
size O(n)). The resulting encoding is given in Table 3.

For 10 and 100 queens, the encoding of Table 3 yields 55 and 595 ground rules,
respectively, in contrast to the 1471 and 1646701 rules obtained with the encoding in
Table 2. Despite the much smaller grounding size, however, the grounding time does
not scale as expected. To see this, note that grounding the encoding in Table 3 for 100



% place n queens on the chess board
{ q(1..n,1..n) }.

% exactly one queen per row/column
:- X = 1..n, not 1 { q(X,Y) } 1.
:- Y = 1..n, not 1 { q(X,Y) } 1.

% at most one queen per diagonal
:- D = 1..n*2-1, not { q(X,Y) : D==X-Y+n } 1.
:- D = 1..n*2-1, not { q(X,Y) : D==X+Y-1 } 1.

Table 3. n-Queens problem, third throw.

queens takes less than second, while 500 queens require more than 100 seconds of
grounding time (although only 2995 ground rules are produced).

Further investigations5 reveal that the last two rules in Table 3 are the source
of the problem. In fact, it turns out that during grounding the tests D==X-Y+n and
D==X-Y-1 are repeated over and over. This can be avoided by pre-calculating both
conditions. To this end, we add the rules

d1(X,Y,X-Y+n) :- X = 1..n, Y = 1..n.
d2(X,Y,X+Y-1) :- X = 1..n, Y = 1..n.

and replace the two conditions D==X-Y+n and D==X-Y-1 by d1(X,Y,D) and
d2(X,Y,D), respectively. The resulting encoding is given in Table 4. Although this
encoding adds a quadratic number of facts, their computation is linear and exploits in-
dexing techniques known from database systems.

3.2 Some Hints on (Manual) Modeling

Finally, let us give some hints on modeling based upon our experience.

1. Keep the grounding compact
– If possible, use aggregates
– Try to avoid combinatorial blow-up
– Project out unused variables
– But don’t remove too many inferences!

2. Add additional constraints to prune the search space
– Consider special cases
– Break symmetries
– . . .
– Test whether the additional constraints really help

3. Try different approaches to model the problem

5 This can be done with gringo’s debug option --verbose.



% place n queens on the chess board
{ q(1..n,1..n) }.

% exactly one queen per row/column
:- X = 1..n, not 1 { q(X,Y) } 1.
:- Y = 1..n, not 1 { q(X,Y) } 1.

% pre-calculate the diagonals
d1(X,Y,X-Y+n) :- X = 1..n, Y = 1..n.
d2(X,Y,X+Y-1) :- X = 1..n, Y = 1..n.

% at most one queen per diagonal
:- D = 1..n*2-1, not { q(X,Y) : d1(X,Y,D) } 1.
:- D = 1..n*2-1, not { q(X,Y) : d2(X,Y,D) } 1.

Table 4. n-Queens problem, fourth throw.

n Encoding 1 Encoding 2 Encoding 3 Encoding 4
50 2.95 42.10 1.95 41.16 0.12 0.04 0.05 0.05

100 41.50 — 28.26 — 0.81 0.16 0.13 0.18
500 — — — — 96.91 16.34 3.60 16.84

1000 — — — — 767.70 166.80 20.98 168.75
Table 5. Experiments contrasting different encodings of the n-Queens problem. All runs con-
ducted with clasp --heuristic=vsids --quiet .

– Problems involving time steps might be parallelized
4. It (still) helps to know the systems

– gringo offers options to trace the grounding process
– clasp offers many options to configure the search6

3.3 Non-ground pre-processing

We have conducted a preliminary case-study illustrating the potential of non-ground
pre-processing techniques. To this end, we explored two simple techniques.7

Concretion The idea of concretion is to replace overly general rules by their effectively
used partial instantiations. In other words, concretion eliminates redundant rule
instances from the program whenever their contribution is re-constructable from an
answer set and not needed otherwise. Consider the following simple program.

q(X,Y) :- p(X), p(Y).
r(X) :- q(X,X).

6 clasp was run with --heuristic=vsids to solve the large n-Queens problem.
7 We are grateful to Michael Grosshans and Arne König for accomplishing this case-study!



Given that the binary predicate q is only used with identical arguments, concretion
replaces the first rule by

q(X,X) :- p(X).

Similarly, concretion replaces the first rule in

q(X,X) :- p(X).
r(X) :- q(X,2).

by

q(2,2) :- p(2).

Note that concretion does not preserve answer sets. However, the original answer
sets can be reconstructed from the resulting ones by means of the original program.

Projection aims at reducing the number of variables in a rule in order to scale down the
number of its ground instances. To this end, one eliminates variables with singleton
(or say “isolated”) occurrences and replaces the encompassing literal(s) with a new
literal only containing the remaining variables.
For illustration, consider the rule

q(X) :- z(X,W), v(X,Y,Z,0), u(Z,W).

In this rule, variable Y is irrelevant to the remainder of the rule and can thus be
eliminated by projection. As a result, projection replaces the above rule by the two
following ones.

q(X) :- z(X,W), v_new(X,Z), u(Z,W).
v_new(X,Z) :- v(X,Y,Z,0).

The predicate v new yields the value combinations necessary for deriving in-
stances of q. Note that this reduces the number of variables from four to three,
which may significantly reduce the number of ground instances depending on the
size of the respective domains.
Projection was first applied to ASP in [27], tracing back to well-known database
techniques [28, p. 176].

Similar and often much more refined techniques can be found in the literature, how-
ever, frequently in different research areas, like (deductive) databases, traditional logic
programming, automated planning, etc.

As a proof-of-concept, we have implemented both techniques in the prototypical
grounder pyngo8 [29] and conducted some preliminary experiments. First and foremost,
it is worth mentioning that both techniques are useless for common benchmarks because
most of them have been designed by experts in ASP. For instance, both techniques
cannot really improve the encodings furnished during the last modeling-oriented ASP
competition [30]. Hence, our experiment design rather aimed at use-cases covering non-
expert usage of ASP.

8 pyngo is a Python-based grounder, developed by Arne König for rapid prototyping of grounder
features.



The two use-cases envisaged for concretion are the usage of library programs in
more specific contexts. To this end, we took encodings necessitating complex sub-
problems. The first benchmark set computes for each element of the residue class ring
modulo n the multiplicative inverse, while the second one takes numbers n and a and
conducts the Solovay-Strassen primality test. Note that the benchmarks involve com-
puting the greatest common divisor, quadratic remainders, and potencies in the residue
class rings.

Table 5(a) summarizes the results obtained on both benchmarks. We measured the
run-time of clingo restricted to 120sec on a 3.6GHz PC running Linux. Comparing

(a) Multiplicative Inverse

n Original Transform
50 0.680 0.010

100 10.690 0.060
200 – 0.210
500 – 2.030

1000 – 15.490
1500 – 51.000
2000 – 114.240
2500 – –

(b) Solovay-Streets Test

n Original Transform
100 0.130 0.000
500 12.650 0.050

1000 97.880 0.120
2000 – 0.390
5000 – 2.410

10000 – 9.590
20000 – 37.370
50000 – –

Table 6. Experimental results applying concretion

the run-times on the original encoding with those obtained after applying concretion
(indicated as ‘Transform’ in Table 5(a)), we observe a clear improvement after pre-
processing. In this case, this betterment is due to the fact that all of the aforementioned
sub-problems were subject to concretion.

Our second experiment deals with single-player games from the area of General
Game Playing [1] and aims at illustrating the potential of projection. All benchmarks
were obtained through automatic transformations from original specifications in the
Game Description Language [31] into ASP. This provides us with a benchmark set
not at all designed for ASP and rather comparable to Prolog programs (over a finite
Herbrand base).

Table 7 summarizes our results. This time we distinguish between grounding and
solving time, and provide as well the size of the ground program. This is interesting
because the program modifications of projection are more substantial, and may thus
have different effects. As before, all benchmarks were run on a 3.6GHz PC under Linux
yet now with a timeout of 1200sec; the grounding size is given in MB. We observe in
22 out of 32 benchmarks an improvement that usually affected both grounding as well
as solving time. A remarkable decrease was observed on Sudoku, where grounding time
and size was reduced by two orders of magnitude and solving time dropped from over
20min, viz. the cut-off time, to a bit more than 4sec. But despite these ameliorations,
projection can also lead to a deterioration of performance, as drastically shown on God,
where projection increased the grounding by an order of magnitude and pushed solving
time beyond the cut-off.



Original Transform
Game Grounding Size Solving Grounding Size Solving
8puzzle 1.59 9.8 74.37 0.19 1.4 6.90
aipsrovers 0.23 1.9 1.16 0.20 1.9 1.08
asteroids 0.07 0.5 1.15 0.12 0.8 1.73
asteroidsparallel 0.17 1.2 53.38 0.21 1.6 39.02
asteroidsserial 0.40 2.8 14.62 0.49 4.0 4.81
blocksworldparallel 0.11 0.8 0.08 0.04 0.3 0.01
brainteaser 0.03 0.1 0.02 0.07 0.2 0.23
chinesecheckers 12.35 96.9 21.71 11.36 92.9 12.23
circlesolitaire 0.06 0.4 0.07 0.05 0.3 0.04
coins 0.04 0.2 0.02 0.03 0.2 0.03
firefighter 0.09 0.7 0.04 0.05 0.4 0.02
god 38.76 354.8 349.8 1151.91 426.5 –
hanoi6 1.29 9.6 - 1.36 11.0 –
hanoi7(1) 7.83 44.0 - 8.04 52.0 –
hanoi7(2) 7.84 44.0 4.83 8.14 52.0 7.42
hanoi 0.20 1.8 - 0.26 2.2 16.03
incredible 0.31 2.2 2.28 0.08 0.6 0.12
knightmove 0.24 1.7 - 0.25 1.8 1031.80
lightsout 0.04 0.1 2.16 0.02 0.2 15.73
maxknights 1.10 7.6 0.79 0.58 3.7 0.42
pancakes6 39.99 325.7 737.33 40.11 325.8 631.70
pancakes 43.72 325.7 556.22 39.28 325.8 465.92
peg(1) 64.42 509.2 - 3.43 30.7 –
peg(2) 66.68 509.2 - 3.24 30.7 –
queens 2.36 13.3 36.58 5.81 34.3 29.26
slidingpieces 3.93 24.6 2.79 3.53 32.5 4.66
snake2008 0.59 4.2 27.18 0.66 4.8 5.50
snake2009 0.94 6.5 542.57 0.85 6.3 –
sudoku 221.94 1643.8 - 3.64 34.1 4.30
tpeg 65.84 509.1 - 3.10 31.5 –
troublemaker 0.03 0.1 0.04 0.01 0.1 0.00
twistypassage 0.93 5.9 1.27 0.83 6.8 0.66

Table 7. Experimental results applying projection



All in all, our preliminary case-study demonstrates the great potential of automatic
non-ground pre-processing techniques for improving ASP code. Moreover, it revealed
significant research challenges in identifying not only more such pre-processing tech-
niques but furthermore in gearing them towards true improvements.

4 Solving

Advanced Boolean Constraint Solving is sensitive to parameter tuning. Clearly, this
carries over to modern ASP Solving. In fact, an ASP Solver like clasp offers an
arsenal of parameters for controlling the search for answer sets. Choosing the right
parameters often makes the difference between being able to solve a problem or not.

4.1 Another case-study

Let us analyze the performance of clasp in the context of the NP problems used
at the 2009 ASP Solver Competition [30]. To this end, we begin with contrast-
ing the default configuration of clasp with a slightly changed configuration de-
noted by clasp+. The latter invokes clasp with options --sat-prepro and
--trans-ext=dynamic. For comparison, we also give results for ASP solvers
cmodels [32] and smodels [11].9 All experiments were run on an Intel Quad-Core
Xeon E5520, possessing 2.27GHz processors, under Linux. Each benchmark instance
was run three times with every solver, each individual run restricted to 600 seconds
and 2GB RAM. Our experiments are summarized in Table 8, giving average runtimes
in seconds (and numbers of timed-out runs in parentheses) for every solver on each
benchmark class, with timeouts taken as 600 seconds. The table gives in the column
headed by # the number of instances per benchmark class. In addition, Table 8 provides
the respective partition into satisfiable and unsatisfiable instances in parentheses. The
rows marked with ∅(Σ) provide the average runtimes and number of timeouts wrt the
considered collection of benchmark classes.

We see that the performance of clasp’s default configuration is quite inferior to
that of clasp+ on this set of benchmarks. In fact, almost all benchmark classes contain
extended rules. However, not all of them are substantial enough to warrant a dedicated
treatment. This situation is accounted for by the configuration of clasp+, using a
hybrid treatment of extended rules. The option --trans-ext=dynamic excludes
“small” extended rules from an intrinsic treatment (cf. [33]) and rather transforms them
into normal ones. This results in a higher number of Boolean constraints, which is
counterbalanced by invoking option --sat-prepro that enables Resolution-based
pre-processing [34]. This greatly reduces the number of timeouts, namely, from 144
benchmarks unsolved by the default configuration to 105 unsolved ones by clasp+.

Let us get a closer look at three classes that were difficult for clasp. To this end,
it is important to get a good idea about the features of the considered benchmark class.
This involves static properties of the benchmark as such as well as dynamic features
reflecting its solving process.

9 Version information is given below Table 8.



Benchmark # clasp clasp+ cmodels[m] smodels

15Puzzle 16 (16/0) 33.01 (0) 20.18 (0) 31.36 (0) 600.00 (48)
BlockedNQueens 29 (15/14) 5.09 (0) 4.91 (0) 9.04 (0) 29.37 (0)
ChannelRouting 10 (6/4) 120.13 (6) 120.14 (6) 120.58 (6) 120.90 (6)
EdgeMatching 29 (29/0) 0.23 (0) 0.41 (0) 59.32 (0) 60.32 (0)
Fastfood 29 (10/19) 1.17 (0) 0.90 (0) 29.22 (0) 83.93 (3)
GraphColouring 29 (9/20) 421.55 (60) 357.88 (39) 422.66 (57) 453.77 (63)
Hanoi 15 (15/0) 11.76 (0) 3.97 (0) 2.92 (0) 523.77 (39)
HierarchicalClustering 12 (8/4) 0.16 (0) 0.17 (0) 0.76 (0) 1.56 (0)
SchurNumbers 29 (13/16) 17.44 (0) 49.60 (0) 75.70 (0) 504.17 (72)
Solitaire 27 (22/5) 204.78 (27) 162.82 (21) 175.69 (21) 316.96 (36)
Sudoku 10 (10/0) 0.15 (0) 0.16 (0) 2.55 (0) 0.25 (0)
WeightBoundedDomSet 29 (29/0) 123.13 (15) 102.18 (12) 300.26 (36) 400.84 (51)
∅(Σ) (tight) 264 (182/82) 78.22(108) 68.61 (78) 102.50 (120) 257.99(318)
ConnectedDomSet 21 (10/11) 40.42 (3) 36.11 (3) 7.46 (0) 183.76 (15)
GeneralizedSlitherlink 29 (29/0) 0.10 (0) 0.22 (0) 1.92 (0) 0.16 (0)
GraphPartitioning 13 (6/7) 9.27 (0) 7.98 (0) 20.19 (0) 92.10 (3)
HamiltonianPath 29 (29/0) 0.07 (0) 0.06 (0) 0.21 (0) 2.22 (0)
KnightTour 10 (10/0) 124.29 (6) 91.80 (3) 242.48 (12) 150.55 (3)
Labyrinth 29 (29/0) 123.82 (12) 82.92 (6) 142.24 (6) 594.10 (81)
MazeGeneration 29 (10/19) 91.17 (12) 89.89 (12) 90.41 (12) 293.62 (42)
Sokoban 29 (9/20) 0.73 (0) 0.80 (0) 3.39 (0) 176.01 (15)
TravellingSalesperson 29 (29/0) 0.05 (0) 0.06 (0) 317.82 (7) 0.22 (0)
WireRouting 23 (12/11) 42.81 (3) 36.36 (3) 175.73 (12) 448.32 (45)
∅(Σ) (nontight) 241 (173/68) 43.27 (36) 34.62 (27) 100.19 (49) 194.11(204)
∅(Σ) 505 (355/150) 62.33(144) 53.16(105) 101.45 (169) 228.95(522)

clasp (1.3.1)
clasp+ = clasp --sat-prepro --trans-ext=dynamic
cmodels[m] (3.79 with minisat 2.0)
smodels (2.34 with option -restart)

Table 8. Solving the 2009 ASP Competition (NP problems)

The WeightBoundedDomSet benchmark class consists of tight, rather small, un-
structured logic programs having many solutions. The two latter features often suggest a
more aggressive restart strategy, making the solver explore an increased number of dif-
ferent locations in the search space rather than performing fewer yet more exhaustive
explorations.

Indeed, invoking clasp (1.3.1) with --restarts=256, indicated by clasp?

below, yields an average Time of 4.64s (versus 123.13s) and makes the number of time-
outs drop from 15 to zero.

Benchmark # clasp clasp+ clasp? cmodels[m] smodels

WBDS 29 (29/0) 123.13(15) 102.18(12) 4.64 (0) 300.26 (36) 400.84(51)

The ConnectedDomSet benchmark class consists of non-tight, rather small logic
programs containing a single large integrity cardinality constraint. The difficulty in



solving this class lies in the latter integrity constraint. In fact, the default configura-
tion of clasp treats extended rules as special Boolean constraints rather then initially
compiling them into normal rules. However, on this benchmark the conflict learning
scheme of clasp spends a lot of time extracting all implicit conflicts comprised in this
constraint. Unlike clasp (and smodels), cmodels unwraps these conflicts when
compiling them into normal rules, so that its solving process needs not spend any time
in recovering them.

This behavior is nicely reflected by invoking clasp (1.3.1) with Option
--trans-ext=weight10, indicated by clasp? below, yielding an average time
of 4.19s (versus 40.42s) and no timeouts (versus 3).

Benchmark # clasp clasp+ clasp? cmodels[m] smodels

ConnectedDomSet 21 (10/11) 40.42(3) 36.11 (3) 4.19 (0) 7.46 (0) 183.76(15)

The KnightTour benchmark class consists of non-tight logic programs containing
many large cardinality constraints and exhibiting many large back-jumps during solv-
ing. The latter runtime feature normally calls for progress saving [35] enforcing the
same truth assignment to atoms chosen on subsequent descents into the search space.
Also, it is known from the SAT literature that this works best in combination with an
aggressive restart strategy.

In fact, invoking clasp (1.3.1) with --restarts=256 and
--save-progress, indicated by clasp? below, reduces the average time to
1.47s (versus 124.29s) and leaves us with no timeouts (versus 6).

Benchmark # clasp clasp+ clasp? cmodels[m] smodels

KnightTour 10 (10/0) 124.29(6) 91.80 (3) 1.47 (0) 242.48 (12) 150.55 (3)

4.2 Some Hints on (Manual) Solving

The question then arises how to deal with this vast “configuration space” and how to
conciliate it with the idea of declarative problem solving. Currently, there seems to be
no true alternative to manual fine-tuning when addressing highly demanding application
problems.

As rules of thumb, we usually start by investigating the following options:

--heuristic: Try vsids instead of clasp’s default berkmin-style heuristic.
--trans-ext: Applicable if a program contains extended rules, that is, rules in-

cluding cardinality and weight constraints. Try at least the dynamic transformation.
--sat-prepro: Resolution-based preprocessing works best on tight programs with

few cardinality and weight constraints. It should (almost) always be used if ex-
tended rules are transformed into normal ones (via --trans-ext).

--restarts: Try aggressive restart policies, like Luby-256 or the nested policy, or
try disabling restarts whenever a problem is deemed to be unsatisfiable.

--save-progress: Progress saving typically works nicely if the average back-
jump length (or the #choices/#conflicts ratio) is high (≥10). It usually performs
best if combined with aggressive restarts.

10 --trans-ext=integrity, if using clasp 1.3.3 or later versions.



4.3 Portfolio-based solving

A first step to overcome the sensitivity of modern ASP solvers to parameter settings
and thus to regain a certain degree of declarativity in solving is to use a portfolio-
based approach to ASP solving. The general idea is to identify a set of different solving
approaches, either different systems, configurations, or both, and to harness existing
machine learning techniques to build a classifier, mapping benchmark instances to the
putatively best solver configurations. Such approaches have already shown their versa-
tility in neighboring areas such as Constraint and SAT solving [36, 37].

This idea resulted in the portfolio-based ASP-solver claspfolio [29], winning
the first place in the category “Single-System Teams” at the Second ASP competi-
tion [30].11 Unlike other heterogeneous approaches using distinct systems in their port-
folio, claspfolio takes advantage of clasp’s manifold search gearing options to
identify a portfolio of different configurations. This has originally resulted in 30 dif-
ferent clasp configurations that were run on an extensive set of benchmarks. These
results are then used to select a reduced portfolio of “interesting” settings by eliminat-
ing configurations whose exclusion does not significantly decrease the quality of the
overall selection. This resulted in 12 configurations on which a support-vector machine
is trained to predict the potentially fastest configuration for an arbitrary benchmark
instance. To this end, we extract from each training instance 140 static and dynamic
features by appeal to claspre. While the static features, like number of rule types
or tightness, are obtained while processing the input benchmark, the dynamic ones are
obtained through a limited run of clasp, observing features like number of learned
nogoods or average length of back-jumps. Once the support-vector machines are estab-
lished, a typical run of claspfolio starts by launching claspre for feature extrac-
tion upon which the support-vector machines select the most promising solver config-
uration to launch clasp. The option --mode=su also allows for a two-step classi-
fication by first predicting whether the instance is SAT, UNSAT, or unknown and then
selecting the best configuration among specific SAT-, UNSAT-, and remaining portfo-
lios, respectively.

The computational impact of this approach can be seen by contrasting the perfor-
mance of claspfolio (0.8) with that of clasp’s default (1.3.4), its best but fixed
configuration, a random selection among the portfolio, and the virtually best clasp
version obtained my taking for each benchmark the minimum run-time among all
solvers in the portfolio. Considering all systems on a set of 2771 benchmark instances
restricted to 1200s, we observed an average run-time of 87.95s for clasp’s default
configuration (and 127 timeouts); clasp’s best configuration took 70,42s (79 time-
outs), while the virtually best solver among all 30 configurations spent 20,46s and that
among the portfolio 24.61s on average (both trivially without timeouts).12 While a ran-
dom selection among the portfolio configurations run 97.89s on average (145 timeouts),
the trained approach of claspfolio used 38.85s of which it spent 37.38s on solving
only (with 22 timeouts). claspfolio has thus a clear edge over clasp’s best but
rigid configuration.

11 claspfolio was developed by Stefan Ziller.
12 Learning is restricted to benchmarks solvable by at least one configuration.



All in all, claspfolio takes some burden of parameter tuning away from us
and lets us concentrate more on problem posing. Nonetheless real applications still
need manual interference. In this respect, claspfolio can be used as a first guide
indicating which search parameters are most promising for attacking an application at
hand.13 The true research challenge however lies in getting a solid understanding in the
link between problem features and search parameters.

5 Conclusion

ASP has come a long way. Having its roots in Nonmonotonic Reasoning [38], we can
be proud of having taught Tweety how to fly. We have build impressive systems by
drawing on solid formal foundations. And although there is still a long way to go to
establish ASP among the standard technologies in Informatics, the future is bright and
conceals many interesting research challenges.

Thank you Michael (and Vladimir) for putting us on the right track!

Acknowledgments. This work was supported by the German Science Foundation (DFG)
under grants SCHA 550/8-1 and -2.

References

1. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competi-
tion. AI Magazine 26(2) (2005) 62–72

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

3. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic 7(2) (2006) 261–268

4. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product
configuration. In Gupta, G., ed.: Proceedings of the First International Workshop on Practical
Aspects of Declarative Languages (PADL’99). Volume 1551 of Lecture Notes in Computer
Science., Springer-Verlag (1999) 305–319

5. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog decision
support system for the space shuttle. In Ramakrishnan, I., ed.: Proceedings of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01). Volume
1990 of Lecture Notes in Computer Science., Springer-Verlag (2001) 169–183

6. Boenn, G., Brain, M., de Vos, M., Fitch, J.: Automatic composition of melodic and harmonic
music by answer set programming. [39] 160–174

7. Ishebabi, H., Mahr, P., Bobda, C., Gebser, M., Schaub, T.: Answer set vs integer linear
programming for automatic synthesis of multiprocessor systems from real-time parallel pro-
grams. Journal of Reconfigurable Computing (2009).

8. Erdem, E., Türe, F.: Efficient haplotype inference with answer set programming. [40] 436–
441

9. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological
networks with answer set programming. Theory and Practice of Logic Programming 11(2)
(2011) 1–38

13 For instance, claspfolio --dir=<dir> --skip-solving --fstats provides a
ranking of the best clasp configuration on the benchmark instances in directory <dir>.



10. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-based system for
team-building in the Gioia-Tauro seaport. In Carro, M., Peña, R., eds.: Proceedings of the
Twelfth International Symposium on Practical Aspects of Declarative Languages (PADL’10).
Volume 5937 of Lecture Notes in Computer Science., Springer-Verlag (2010) 40–42

11. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

13. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1-2) (2004) 115–137

14. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer sets solver enhanced to non-tight
programs. In Lifschitz, V., Niemelä, I., eds.: Proceedings of the Seventh International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’04). Volume 2923
of Lecture Notes in Artificial Intelligence., Springer-Verlag (2004) 346–350

15. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. Volume 185 of
Frontiers in Artificial Intelligence and Applications. IOS Press (2009)

16. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan
Kaufmann Publishers (2004)

17. Mellarkod, V., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint
logic programming. Annals of Mathematics and Artificial Intelligence 53(1-4) (2008) 251–
287

18. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. [41] 235–249
19. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. In:

Theory and Practice of Logic Programming. Twenty-sixth International Conference on Logic
Programming (ICLP’10) Special Issue. Volume 10(4-6)., Cambridge University Press (2010)
465–480

20. Cliffe, O., de Vos, M., Brain, M., Padget, J.: ASPVIZ: Declarative visualisation and anima-
tion using answer set programming. [39] 724–728

21. de Vos, M., Schaub, T., eds.: Proceedings of the Workshop on Software Engineering for
Answer Set Programming (SEA’07). Number CSBU-2007-05 in Department of Computer
Science, University of Bath, Technical Report Series (2007) ISSN 1740-9497.

22. de Vos, M., Schaub, T., eds.: Proceedings of the Second Workshop on Software Engineering
for Answer Set Programming (SEA’09). Department of Computer Science, University of
Bath, Technical Report Series (2009)

23. Brain, M., de Vos, M.: Debugging logic programs under the answer set semantics. In de
Vos, M., Provetti, A., eds.: Proceedings of the Third International Workshop on Answer
Set Programming (ASP’05). Volume 142., CEUR Workshop Proceedings (CEUR-WS.org)
(2005) 141–152

24. Pontelli, E., Son, T.: Justifications for logic programs under answer set semantics. In
Etalle, S., Truszczyński, M., eds.: Proceedings of the Twenty-second International Confer-
ence on Logic Programming (ICLP’06). Volume 4079 of Lecture Notes in Computer Sci-
ence., Springer-Verlag (2006)

25. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP
programs by means of ASP. In Baral, C., Brewka, G., Schlipf, J., eds.: Proceedings of the
Ninth International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’07). Volume 4483 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2007)
31–43

26. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debug-
ging answer-set programs. [40] 448–453



27. Faber, W., Leone, N., Mateis, C., , Pfeifer, G.: Using database optimization techniques
for nonmonotonic reasoning. In: Proceedings of the Seventh International Workshop on
Deductive Databases and Logic Programming (DDLP’99). (1999) 135–139

28. Ullman, J.: Principles of Database and Knowledge-Base Systems. Computer Science Press
(1988)

29. http://potassco.sourceforge.net/
30. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer

set programming competition. In Erdem, E., Lin, F., Schaub, T., eds.: Proceedings of the
Tenth International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’09). Volume 5753 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2009)
637–654

31. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game playing:
Game description language specification. Technical Report LG-2006-01, Stanford Univer-
sity (March 2008)

32. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4) (2006) 345–377

33. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the implementation of weight
constraint rules in conflict-driven ASP solvers. [41] 250–264

34. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In Bacchus, F., Walsh, T., eds.: Proceedings of the Eigth International Conference on The-
ory and Applications of Satisfiability Testing (SAT’05). Volume 3569 of Lecture Notes in
Computer Science., Springer-Verlag (2005) 61–75

35. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability
solvers. In Marques-Silva, J., Sakallah, K., eds.: Proceedings of the Tenth International
Conference on Theory and Applications of Satisfiability Testing (SAT’07). Volume 4501 of
Lecture Notes in Computer Science., Springer-Verlag (2007) 294–299

36. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based rea-
soning in an algorithm portfolio for constraint solving. In Bridge, D., Brown, K., O’Sullivan,
B., Sorensen, H., eds.: Proceedings of the Nineteenth Irish Conference on Artificial Intelli-
gence and Cognitive Science (AICS’08). (2008)

37. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selec-
tion for SAT. Journal of Artificial Intelligence Research 32 (2008) 565–606

38. Ginsberg, M., ed.: Readings in Nonmonotonic Reasoning. Morgan Kaufman, Los Altos
(1987)

39. Garcia de la Banda, M., Pontelli, E., eds.: Proceedings of the Twenty-fourth International
Conference on Logic Programming (ICLP’08). Volume 5366 of Lecture Notes in Computer
Science., Springer-Verlag (2008)

40. Fox, D., Gomes, C., eds.: Proceedings of the Twenty-third National Conference on Artificial
Intelligence (AAAI’08). AAAI Press (2008)

41. Hill, P., Warren, D., eds.: Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09). Volume 5649 of Lecture Notes in Computer Science., Springer-
Verlag (2009)


