Ricochet Robots Reloaded
A Case-study in Multi-shot ASP Solving

Martin Gebser! 2, Roland Kaminski', Philipp Obermeier!, and Torsten Schaub®3*

1 Aalto University, Finland
2 University of Potsdam, Germany
3 Tnria Rennes, France

Abstract. Nonmonotonic reasoning is about drawing conclusions in the absence
of (complete) information. Hence, whenever new information arrives, one may
have to withdraw previously drawn conclusions. In fact, Answer Set Program-
ming is nowadays regarded as the computational embodiment of nonmonotonic
reasoning. However, traditional answer set solvers do not account for changing in-
formation. Rather they are designed as one-shot solvers that take a logic program
and compute its stable models, basta! When new information arrives the program
is extended and the solving process is started from scratch once more. Hence the
dynamics giving rise to nonmonotonicity is not reflected by such solvers and left
to the user. This shortcoming is addressed by multi-shot solvers that embrace the
dynamicity of nonmonotonic reasoning by allowing a reactive procedure to loop
on solving while acquiring changes in the problem specification.

In this paper, we provide a hands-on introduction to multi-shot solving with
clingo 4 by modeling the popular board game of Ricochet Robots. Our particular
focus lies on capturing the underlying turn based playing through the procedural-
declarative interplay offered by the Python-ASP integration of clingo 4. From
a technical perspective, we provide semantic underpinnings for multi-shot solv-
ing with clingo 4 by means of a simple stateful semantics along with operations
reflecting clingo 4 functionalities.

1 Introduction

Nonmonotonic reasoning [1,2] is about drawing conclusions in the absence of (com-
plete) information. Hence, whenever new information arrives, one may have to with-
draw previously drawn conclusions. In fact, Answer Set Programming (ASP; [3,4])
can nowadays be regarded as the computational embodiment of nonmonotonic reason-
ing. However, traditional ASP solvers do not account for changing information. Rather
they are designed as one-shot solvers that take a logic program and compute its stable
models, basta! When new information arrives the program is extended and the solving
process is re-started from scratch again. Hence, the dynamics giving rise to nonmono-
tonicity is not reflected by such solvers and left to the user. Turning towards the future,
ASP is and will be an under-the-hood technology. Hence, in practice, ASP solvers are

* Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and the Institute for Integrated and Intelligent Systems at Griffith University, Brisbane, Aus-
tralia.

embedded in encompassing software environments and thus have to interact with them
in an easy way. Again, such interactions are not accounted for by traditional ASP solvers
and once more left to the user.

This shortcoming is addressed by multi-shot solvers like clingo 4 that embrace the
dynamicity of nonmonotonic reasoning by allowing a reactive procedure to loop on
solving while acquiring changes in the problem specification. Given that this is accom-
plished by complementing the declarative approach of ASP with procedural means, like
Python or Lua, one also gets a handle on communication with an environment. In what
follows, we want to illustrate these aspects by providing a hands-on introduction to
multi-shot solving with clingo 4 through modeling the popular board game of Ricochet
Robots. Our particular focus lies on capturing the underlying round playing through the
procedural-declarative interplay offered by the Python-ASP integration of clingo 4.

Ricochet Robots is a board game for multiple players designed by Alex Randolph.*
A board consists of 16x 16 fields arranged in a grid structure having barriers between
various neighboring fields (see Figure 1 and 2). Four differently colored robots roam
across the board along either horizontally or vertically accessible fields, respectively.
In principle, each robot can thus move in four directions. A robot cannot stop its move
until it either hits a barrier or another robot. The goal is to place a designated robot on
a target location with a shortest sequence of moves. Often this involves moving several
robots to establish temporary barriers. In fact, the game is played in rounds. At each
round, a chip with a colored symbol indicating the target location is drawn. Then, the
specific goal is to move the robot with the same color on this location. The player who
reaches the goal with the fewest number of robot moves wins the chip. The next round
is then played from the end configuration of the previous round. At the end, the player
with most chips wins the game.

Ricochet Robots has been studied from the viewpoint of human problem solving [5]
and analyzed from a theoretical perspective [6—8]. Moreover, it has a large community
providing various resources on the web. Among them, there is a collection of fifty-six
extensions of the game.’ We also studied alternative ASP encodings of the game in [9],
and used them to compare various ASP solving techniques. More disparate encodings
resulted from the ASP competition in 2013, where Ricochet Robots was included in the
modeling track. ASP encodings and instances of Ricochet Robots are available at [10].

2 Multi-shot solving with clingo 4

clingo 4 offers high-level constructs for realizing complex reasoning processes that tol-
erate evolving problem specifications, either because data or constraints are added,
deleted, or replaced. This is achieved within a single integrated ASP grounding and
solving process in order to avoid redundancies in relaunching grounder and solver pro-
grams and to benefit from the learning capacities of modern ASP solvers. As detailed
in [11], clingo 4 complements ASP’s declarative input language by control capacities
expressed via the (embedded) scripting languages Lua and Python. On the declarative

“http://en.wikipedia.org/wiki/Ricochet_Robot
>http://www.boardgamegeek.com/boardgame/51/ricochet—robots

side, clingo 4 offers a new directive #program that allows for structuring logic pro-
grams into named and parametrizable subprograms. The grounding and integration of
these subprograms into the solving process is completely modular and fully controllable
from the procedural side, viz. the scripting languages embedded via the #script direc-
tive. For exercising control, the latter benefit from a dedicated clingo library that does
not only furnish grounding and solving instructions but moreover allows for continu-
ously assembling the solver’s program in combination with the directive #external.

While [11] details the partition and composition of logic programs as well as the use
of Python as an embedded scripting language, we focus here on the usage of externally
defined atoms along with the clingo 4 Python library. Hence, we refer the interested
reader to [11] for more details on #program and #script directives; the semantical
underpinnings of program composition in terms of module theory are given in [12].
Here, it is just important to note that base is a dedicated subprogram that gathers all
rules not preceded by a #program directive. Since we do not use any #program direc-
tives, all rules belong to the base program.

As detailed in the following, the #external directive of clingo 4 allows for a flexi-
ble handling of yet undefined atoms. Moreover, the (external) manipulation of their truth
values provides an easy mechanism to activate or deactivate ground rules on demand.
This allows for continuously assembling ground rules evolving at different stages of a
reasoning process. To be more precise, #external directives declare atoms that may
still be defined by rules added later on. As detailed in [11], in terms of modules, such
atoms correspond to inputs, which must not be simplified by fixing their truth value to
false. In order to facilitate the declaration of input atoms, clingo 4 supports schematic
#external directives that are instantiated along with the rules of their respective sub-
programs. To this end, a directive like ‘#external p(X,Y) : q(X,2), r(z,Y).’
is treated similar to arule ‘p (X, Y) :- gq(X,Z), r(Z,Y). during grounding. How-
ever, the head atoms of the resulting ground instances are merely collected as inputs,
whereas the ground rules as such are discarded.

We define a (non-ground) logic program P’ as extensible, if it contains some (non-
ground) external declaration of the form

#texternal a: B (D)

where a is an atom and B a rule body. For grounding an external declaration as in (1),
it is treated as a rule a <— B, where ¢ is a distinguished ground atom marking rules
from #external declarations. Formally, given an extensible programs P’, we define
the collection D of rules corresponding to #external declarations as follows.

D ={a <« B,e| (#externala: B) € P'}

With it, the ground instantiation of the extensible logic program P’ is defined as the
ground logic program P associated with the set £ of ground atoms, where®

P={regrd(P'U(DU{{e} 1)\ {{e} <} e ¢ B(r)} 2
E={h(r)|regrd(PPU(DU{{e} +})),e € B(r)} 3)

® We use h(r) and B(r) to denote the head and body of a rule 7, respectively, and grd(P) to
denote the set of all ground instances of rules in P.

AW =

AW N =

For simplicity, we refer to P and F as a logic program with externals, and drop the
reference to P’ whenever clear from the context. Note that {¢} <« is added above to
cope with grd (P’ U (D U {{e} <})), understood as the outcome of grounding (with
simplifications).

As an example, consider the following extensible program, R':

#external e(X) : f£(X), X < 2.

£f(1..2).
a(X)y :— e(X), £X).
b(X) := not e(X), f£(X).

Grounding R’ yields the below program R with externals F' = {e (1)}.

£(1). £(2).

a(l) := e(1).
b(l) :— not e(l).
b(2).

Note how externals influence the result of grounding. While e (1) remains untouched,
the atom e (2) is set to false, followed by cascading simplifications.

For capturing the stable models of such logic programs with externals, we need
the following definitions. A (partial) assignment ¢ over a set A C A of atoms is a
function: ¢ : A — {t, f,u}, where A is the set of given atoms. With this, we define
At ={ac Ali(a)=1t}, A ={a € A|i(a) = f},and A* = {a € A |i(a) = u}.
In what follows, we represent partial assignments either by (A*, A7) or (A!, A") by
leaving the respective default value implicit.

Given a program P with externals E, we define the set [= E \ H(P) as input
atoms of P.7 That is, input atoms are externals that are not overridden by rules in P.
Given a partial assignment (I*, ") over I, we define Pjye juy = PU ({a < | a €
I'Y U {{a} « | a € I'}) to capture the extension of P with respect to an (external)
truth assignment to the input /. In addition, clingo considers another partial assignment
(At AT) over A C A for filtering stable models, and refers to them as assumptions.®
Then, X is a stable model of a program P with externals E filtered by (A?, A7), if X
is a stable model of Pz« uy such that A* C X and A N X = (). This amounts to a
semantical characterization of one-shot solving of programs with externals in clingo 4.

Note the difference among input atoms and (filtering) assumptions. While a true
input atom amounts to a fact, a true assumption acts as an integrity constraint. Also, un-
defined input atoms are regarded as false, while undefined assumptions remain neutral.
Finally, at the solver level, input atoms are a transient part of the representation, while
assumptions only affect the assignment of a single search process.

For capturing multi-shot solving, we must account for sequences of system states,
involving information about the programs kept within the grounder and the solver. To
this end, we define a simple operational semantics based on system states and appropri-
ate operations. A clingo state as a triple (Q, P, I) where

- @ is a (non-ground) logic program,

" We use H(P) = {h(r) | r € P} to denote all head atoms in P.
8 1In clingo, or more precisely in clasp, such assumptions are the principal parameter to the
underlying solve function (see below). The term assumption traces back to [13, 14].

P is a ground logic program,
I is a set of input atoms along with an implicit partial assignment (I*, I'*) over I.

Such states can be modified by the following operations.

create() : — (0,0,0)
add(R) : (Q, P,I) — (Q U R, P, I) where R is a (non-ground) logic program

ground : (Q, Py, 1) — (0, Py, I) where’
* (P,E) =grdp, 1,(Q)
L4 Pg = Pl UP~P
(] IQ = (IluE)\H(PQ)
oIl ={a€el|(a)=t}
o I;:{CLEIQ|11(CL):U}
assignExternal(a,t) : (Q, P, I1) — (Q, P, Is) where
[] IQ = Il
o It = It U{a}ifa € I, and I} = I} otherwise
o It = I\ {a}
assignExternal(a,u) : {(Q, P, I1) — (Q, P, Is) where
[] IQ = Il
o It =11 \ {a}
o I¥ =IU{a}ifa € Iy, and I3 = I} otherwise
assignExternal(a, f) : (Q, P, I1) — (Q, P, I5) where
[] IQ = Il
o It =11\ {a}
o It = I\ {a}
releaseExternal(a) : (Q, Py, I1) — (Q, Pa, I) where
e P, =P U{a<+ a,~a}ifa € I, and P, = P; otherwise
[] IQ = Il \ {CL}
o It =1t \ {a}
o It = I\ {a}

solve((At, AT)) 1 (Q, P, I) ~ (Q, P, I) outputs the set Xp ; defined as

{X | X is a stable model of P+ juy such that At C Xand ATNX = 0y @®

For simplicity, we dropped the condition ‘I = I\ (I} U I%)’ from all transitions of I;
to I5 because undefined input atoms are regarded to be false. Note also that the above
semantic account abstracts from the partition and composition of logic programs, dealt
with in [12, 11]. Rather it relies on a single (base) program whose addition complies
with modularity (in terms of [15]).

° We use grd p.1(Q) to denote the (ground) logic program with externals obtained by instantiat-

ing the extensible program @) as defined in (2) and (3), respectively. We add the subscript P, [
to indicate the context of the instantiation.

A central role is played by the ground function. First, programs like @) are always
grounded in the context of P; and I; since they delineate the Herbrand base and uni-
verse. Second, one may also add new externals via F, provided they are not yet defined.
The function assignExternal allows us to manipulate the truth values of input atoms.
While their default value is false, making them undefined results in a choice. If an atom
is not external, then assignExternal has no effect. On the contrary, releaseExternal re-
moves the external status from an atom and sets it permanently to false, otherwise this
function has no effect. Finally, solve leaves the clingo state intact and outputs the fil-
tered set X'p of stable models of the logic program with externals comprised in the
current state. This set is general enough to define all basic reasoning modes of clingo.
On a technical note, the addition of a < a, ~a does not offer any derivation for a but
adds a to the head atoms, H(P), so that it can neither be re-added as an external nor
via a rule (since the latter would violate modularity [12]).

For illustration, reconsider the above extensible program R’. Adding and ground-
ing R in an initial state results in the clingo state'® ground(add(R')(create())) =
(0, R, Ff) where R and F are as given above. Applying solve() to (), R, F'7) leaves
the state unaffected and results in a single stable model containing b (1) . Unlike this,
the state assignExternal(c,u)((0, R, F¥)) induces two models, one with a (1) and
another with b (1), while assignExternal(c,t)({, R, F/)) yields only the one with
a(l).

From the viewpoint of operational semantics, the multi-shot solving process of a
clingo object can be associated with the sequence of executed clingo-specific operations
(ok)ker Which in turn induce a sequence (Qy, Pk, I;) ke k of clingo states such that

1. o9 = create() and oy, # create() for k > 0
2. (Qo, Po, In) = create()
3. (Qk, Pr, 1) = 0k ({Qr—1, Px—1, Ix—1)) for k >0

For capturing the result of the multi-shot solving process in terms of stable models,
we consider the sequence of sets of stable models obtained at each solving step. More
precisely, given a sequence of clingo operations and states as above, the multi-shot
solving process can be associated with the sequence (Xp, ;) of
sets of stable models defined in (4).

All of the above state operations have almost literal counterparts in clingo’s Python
(and Lua) module, namely __init__ of clingo’s Control class, add, ground,
assign_external, release_external, and solve.!! However, as mentioned, the
above semantic account abstracts from the partition and composition of logic programs.
In fact, add as well as ground associate rules with subprograms. Moreover, subpro-
grams are usually parametrized and thus grounded several times with different instan-
tiations of the parameters. This is not reflected by ground (where () is emptied). Also,
our account disregards module composition, which is enforced by clingo (cf. [12]).!?

jEK,c@-:solve((A?,Af})

10'We use the informal notation ' to indicate that the members of F are false.

' For a complete listing of functions and classes available in the gringo module,
see http://potassco.sourceforge.net/gringo.html

12 Among others, this prevents redefining ground atoms.

(o) WV, IEF OS]

Finally, it is worth mentioning that several clingo objects can be created and run in a
multi-threaded yet independent fashion.

3 Encoding Ricochet Robots

The following encoding and fact formats follow the ones given in [9],'3 except that
we use below the input language of clingo 4 that includes the ASP language standard
ASP-Core-2 [18].

An authentic board configuration of Ricochet Robots is shown in Figure 1 and repre-
sented as facts in Listing 1.1. The dimension of the board is fixed to 16 in Line 1. As put

X© o X ®
® \\jo NIAINIA NI \\Df/ N 28| a3l 8 Nz sl 7] (8] 2] 8] 2] sl7Z] [s] 2] |s] 2] &

- E e
NI2NAa NIga2SRAaNaNZA2RNA N7 NS NA2NR2IN2NIE2 NI S

= L
AN 2INRA2INAIRAaINGA NaNRIS 7 Sz AINAIN ARG NB& 2
o aw 0 B
NN ANEAN AN AaNRA2ANAaRNI?7 NS NN 28IAaNQT0N N
- =

AN RN 2AZAINAINQAN AN B NRIN AN B2 AN AN AN Q;a N & 2

W et 5

ANRAINRAINAAINRANAS AN AINIAaN AN AaNZANAIN G

NIAINIANIA SN 2N 22N AN NI2INA7NG7a NaNR;aNB7aNaRN
& L=

A/NZA SRAIINAIRNAN BN 28RS AN NN aN'a'N 2NN AN

& 7 o[o AN AN A oj\\ Al NS f/j\\ ANRAIN AN //Do AN &2

toi= e

Fig. 1. Visualization of solving goal (13) from initially cornered robots

forward in [9], barriers are indicated by atoms with predicate barrier/4. The first two
arguments give the field position and the last two the orientation of the barrier, which is
mostly east (1,0) or south (0,1)." For instance, the atom barrier (2,1, 1, 0) in Line 3
represents the vertical wall between the fields (2,1) and (3,1), and barrier (5,1,0,1)
stands for the horizontal wall separating (5,1) from (5,2).

Listing 1.1. The Board (board. 1p)

dim(1l..16).

barrier(2, 1, 1,0). Dbarrier(13,11, 1,0) barrier(9, 7,0, 1)
barrier (10, 1, 1,0). Dbarrier(11,12, 1,0) barrier (11, 7,0, 1)
barrier(4, 2, 1,0). barrier (14,13, 1,0). Dbarrier (14, 7,0, 1)
barrier (14, 2, 1,0). Dbarrier(6,14, 1,0) barrier (16, 9,0, 1)

13 The encodings in [9] rely on the input language of clingo 3 [16, 17].
!4 Symmetric barriers are handled by predicate st op/4 in Line 4 and 5 of Listing 1.3.

s

barrier(2, 3, 1,0). Dbarrier(3,15, 1,0). Dbarrier(2,10,0, 1).
barrier (11, 3, 1,0). barrier (10, 1,0). barrier(5,10,0, 1).
barrier(7, 4, 1,0). Dbarrier(4,16, 1,0). Dbarrier(8,10,0,-1).
barrier(3, 7, 1,0). Dbarrier(12,16, 1,0). Dbarrier(9,10,0,-1).
barrier (14, 7, 1,0). barrier(5, 1,0, 1). barrier(9,10,0, 1).
barrier(7, 8, 1,0). Dbarrier(15, 1,0, 1). Dbarrier(14,10,0, 1).
barrier (10, 8,-1,0). Dbarrier(2, 2,0, 1). Dbarrier(1,12,0, 1).
barrier (11, 8, 1,0). barrier(12, 3,0, 1). barrier(11,12,0, 1).
barrier(7, 9, 1,0). Dbarrier(7, 4,0, 1). Dbarrier(7,13,0, 1).
barrier (10, 9,-1,0). Dbarrier(le6, 4,0, 1). Dbarrier(15,13,0, 1).
barrier(4,10, 1,0). barrier(1, 6,0, 1). barrier(10,14,0, 1).
barrier(2,11, 1,0). Dbarrier(4, 7,0, 1). Dbarrier(3,15,0, 1).
barrier(8,11, 1,0). Dbarrier(8, 7,0, 1).

Listing 1.2 gives the sixteen possible target locations printed on the game’s carton
board (cf. Line 3 to 18). Each robot has four possible target locations, expressed by the
ternary predicate target. Such a target is put in place via the unary predicate goal
that associates a number with each location. The external declaration in Line 1 paves
the way for fixing the target location from outside the solving process. For instance,
setting goal (13) to true makes position (15,13) a target location for the yellow
robot.

Listing 1.2. Robots and targets (targets. 1p)

#external goal(l..16).

target (red, 5, 2) - goal(l). % red moon
target (red, 15, 2) :- goal(2). % red triangle
target (green, 2, 3) :- goal(3). % green triangle
target (blue, 12, 3) - goal (4). % blue star
target (yellow, 7, 4) - goal (5). % yellow star
target (blue, 4, 7) - goal (6). % blue saturn
target (green, 14, 7) :— goal(7). % green moon
target (yellow, 11 8) :— goal(8). % yellow saturn
target (yellow, 10) :— goal(9). % yellow moon
target (green, 2 11) - goal (10). % green star
target (red, 14,11) - goal(ll). % red star
target (green, 11,12) - goal(l2). % green saturn
target (yellow, 15,13) - goal(1l3). % yellow star
target (blue, 7,14) - goal(l4). % blue star
target (red, 3,15) - goal(1l5). % red saturn
target (blue, 10,15) - goal(l6). % blue moon

robot (red;green;blue;yellow) .
#external pos((red;green;blue;yellow),1..16,1..16).

Similarly, the initial robot positions can be set externally, as declared in Line 21.
That is, each robot can be put at 256 different locations. On the left hand side
of Figure 1, we cornered all robots by setting pos (red, 1, 1), pos (blue,1,16),
pos (green,16,1), and pos (yellow,16,16) to true.

12
13

15
16
17
19
20
21
23

25

Finally, the encoding in Listing 1.3 follows the plain encoding of ricocheting robots
given in [9, Listing 2], yet upgraded to the input language of clingo 4.

Listing 1.3. Simple encoding for Ricochet Robots (ricochet . 1p)

time (1. .horizon).
dir(-1,0;1,0;0,-1;0,1).

stop (DX, DY,X, Y) :— barrier(X,Y,DX,DY).

stop (-DX, -DY, X+DX, Y+DY) :- stop (DX,DY,X,Y).

pos (R,X,Y,0) :- pos(R,X,Y).

1 { move(R,DX,DY,T) : robot(R), dir(DX,DY) } 1 :— time(T).

move (R, T) :- move(R,_,_,T).

halt (DX,DY, X-DX,Y-DY,T) :- pos(_,X,Y,T), dir(DX,DY), dim(X-DX;Y-DY),

not stop(-DX,-DY,X,Y), T < horizon.

goto (R,DX,DY,X,Y,T) :- pos(R,X,Y,T), dir(DX,DY), T < horizon.
goto (R, DX, DY, X+DX,Y+DY,T) :- goto(R,DX,DY,X,Y,T), dim(X+DX;Y+DY),
not stop(DX,DY,X,Y), not halt (DX,DY,X,Y,T).

pos(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),
not goto (R,DX,DY,X+DX,Y+DY,T-1) .
pos(R,X,Y,T) :- pos(R,X,Y,T-1), time(T), not move(R,T).

:— target (R,X,Y), not pos(R,X,Y,horizon).

#show move/4.

Following the description in [9], the first lines in Listing 1.3 furnish domain definitions,
fixing the sequence of time steps (t ime/1)!> and two-dimensional representations of the
four possible directions (dir/2). The constant horizon is expected to be provided via
clingo option —c (eg. ‘~c horizon=20"). Predicate stop/4 is the symmetric version
of barrier/4 from above and identifies all blocked field transitions. The initial robot
positions are fixed in Line 7 (in view of external input).

At each time step, some robot is moved in a direction (cf. Line 9). Such a move can
be regarded as the composition of successive field transitions, captured by predicate
goto/6 (in Line 15-17). To this end, predicate halt/5 provides temporary barriers due
to robots’ positions before the move. To be more precise, a robot moving in direction
(DX, DY) must halt at field (x-Dx, Y-DY) when some (other) robot is located at (X, Y),
and an instance of halt (DX, DY, X-DX, Y-DY, T) may provide information relevant to
the move at step T+1 if there is no barrier between (X-DX, Y-DY) and (X, Y). Given
this, the definition of goto/6 starts at a robot’s position (in Line 15) and continues
in direction (DX,DY) (in Line 16-17) unless a barrier, a robot, or the board’s border
is encountered. As this definition tolerates board traversals of length zero, goto/6 is
guaranteed to yield a successor position for any move of a robot R in direction (DX, DY),
so that the rule in Line 19-20 captures the effect of move (R, DX, DY, T). Moreover,

15 The initial time point 0 is handled explicitly.

27

29

31

(O N N R S

LW =

the frame axiom in Line 21 preserves the positions of unmoved robots, relying on the
projection move/2 (cf. Line 10).

Finally, we stipulate in Line 23 that a robot R must be at its target position (X, Y)
at the last time point horizon. Adding directive ‘“#show move/4.’ further allows for
projecting stable models onto the extension of the move/4 predicate.

The encoding in Listing 1.3 allows us to decide whether a plan of length horizon
exists. For computing a shortest plan, we may augment our decision encoding with an
optimization directive. This can be accomplished by adding the part in Listing 1.4.

Listing 1.4. Encoding part for optimization (optimization.1lp)

goon (T) :- target(R,X,Y), T = 0..horizon, not pos(R,X,Y,T).
:— move (R,DX,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

#minimize{ 1,T : goon(T) }.

The rule in Line 27 indicates whether some goal condition is (not) established at a time
point. Once the goal is established, the additional integrity constraint in Line 29 ensures
that it remains satisfied by enforcing that the goal-achieving move is repeated at later
steps (without altering robots’ positions). Note that the #minimize directive in Line 31
aims at few instances of goon/1, corresponding to an early establishment of the goal,
while further repetitions of the goal-achieving move are ignored. Our extended encod-
ing allows for computing a shortest plan of length bounded by horizon. If there is no
such plan, the problem can be posed again with an enlarged horizon. For computing
a shortest plan in an unbounded fashion, we can take advantage of incremental ASP
solving, as detailed in [9].'

Apart from the two external directives that allow us to vary initial robot and target
positions, the four programs constitute an ordinary ASP formalization of a Ricochet
Robots instance. To illustrate this, let us override the external directives by adding facts
accounting for the robot and target positions on the left hand side of Figure 1. The
corresponding call of clingo 4 is shown in Listing 1.5.17

Listing 1.5. One-shot solving with clingo 4

$ clingo-4 board.lp targets.lp ricochet.lp optimization.lp \

-c¢ horizon=10 \
<(echo "pos(red,1,1). pos (green,16,1) . \

pos (blue,1,16). pos(yellow,16,16). \

goal (13).")

Listing 1.6. Stable model projected onto the extension of the move/4 predicate

move (blue,0,-1,1) move (blue, 1,0,2) move (blue, 0,1, 3) \

move (blue,1,0,4) move (yellow,0,-1,5) move(blue,0,-1,6) \

move (blue,1,0,7) move (yellow, 0,1, 8) move (yellow,-1,0,9) \
(

move (yellow,-1,0,10)

' Note that [9] uses iclingo [14] for incremental solving. This functionality is now part of
clingo 4 and makes iclingo obsolete. See [11] for details.
17 Note that rather than using input redirection, we also could have passed the five facts via a file.

~

The resulting one-shot solving process yields a(n optimal) stable model containing the
extension of the move/4 predicate given in Listing 1.6. The move atoms in Line 1-4
of Listing 1.6 correspond to the plan indicated by the colored arrows at the bottom of
the left hand side of Figure 1. That is, the blue robot starts by going north, east, south,
and east, then the yellow one goes north, the blue one resumes and goes north and east,
before finally the yellow robot goes south (bouncing off the blue one) and lands on
the target by going west. This leads to the situation depicted on the right hand side of
Figure 1. Note that the tenth move (in Line 4) is redundant since it merely replicates the
previous one because the goal was already reached after nine steps.

4 Playing in rounds

Ricochet Robots is played in rounds. Hence, the next goal must be reached with robots
placed at the positions resulting from the previous round. For example, when pursuing
goal (4) in the next round, the robots must start from the end positions given on the
right hand side of Figure 1. The resulting configuration is shown on the left hand side
of Figure 2. For one-shot solving, we would re-launch clingo 4 from scratch as shown

N
2

S
(o]
7 &
7
—
N

P

N

2

=

2

N

P
"
o]
N

7

N

2

P
N
7
N
AN A N2
N 7z
AlS
Ce—r]
NI
//\\l
S
7
N
4
N
7
N
4
N
7
N
@® - 7z
N
4
N

7
N
2
N

ﬂ\\ NI NIEANIIEA BEAINEZ \\o\\oj\\o\\o\\o\\o[\\o\\o

lactal

N

Fig. 2. Visualization of solving goal (4) from robot positions after having solved goal (13)

in Listing 1.5, yet by accounting for the new target and robot positions by replacing
Line 3-5 of Listing 1.5 by the following ones.

<(echo "pos(red,1,1). pos (green, 16,1) . \
pos (blue,16,10). pos(yellow,15,13). \
goal (4).")

Unlike this, our multi-shot approach to playing in rounds relies upon a single'®
operational clingo control object that we use in a simple loop:

18 In general, multiple such control objects can be created and made to interact via Python.

—_

Create an operational control object (containing a grounder and a solver object)

2. Load and ground the programs in Listing 1.1, 1.2, 1.3, and optionally 1.4
(relative to some fixed horizon) within the control object

3. While there is a goal, do the following

(a) Enforce the initial robot positions

(b) Enforce the current goal

(c) Solve the logic program contained in the control object

The control loop is implemented in Python and relies on clingo’s Python module ac-
companying clingo 4.4. This module provides grounding and solving functionalities.
An analogous module is available for Lua. As mentioned in Section 2, both modules
support (almost) literal counterparts to ‘Create’, ‘Load’, ‘Ground’, and ‘Solve’. The
“enforcement” of robot and target positions is more complex, as it involves changing
the truth values of externally controlled atoms (mimicking the insertion and deletion of
atoms, respectively).

The resulting Python program is given in Listing 1.7. This program as well as its Lua
counterpart are available at [10]. Line 1 shows how to import the gringo module.'® We
are only using three classes from the module,>® which we directly pull into the global
namespace to avoid qualification with “gringo.” and so to keep the code compact.

Line 3-34 show the Player class. This class encapsulates all state information in-
cluding clingo’s Control object that in turn holds the state of the underlying grounder
and solver. Inthe Player’s__init__ function (similar to a constructor in other object-
oriented languages) the following member variables are initialized:

last positions This variable is initialized upon construction with the starting po-
sitions of the robots. During the progression of the game, this variable holds the
initial starting positions of the robots for each turn.

last_solution This variable holds the last solution of a search call.

undo_external We want to successively solve a sequence of goals. In each step, a
goal has to be reached from different starting positions. This variable holds a list
containing the current goal and starting positions that have to be cleared upon the
next step.

horizon We are using a bounded encoding. This (Python) variable holds the maxi-
mum number of moves to find a solution for a given step.

ctl This variable holds the actual object providing an interface to the grounder and
solver. It holds all state information necessary for multi-shot solving along with
heuristic information gathered during solving.

As shown in Line 4-13, the constructor takes the horizon, initial robot positions,
and the files containing the various logic programs. clingo’s Control object is cre-
ated in Line 9-10 by passing the option —c to replace the logic program constant
horizon by the value of the Python variable horizon during grounding. Finally, the

19 For historical reasons, it is called gringo in clingo 4.4 but it will be renamed to clingo
with the next release.
20 For a complete listing of functions and classes available in the gringo module,
see http://potassco.sourceforge.net/gringo.html

1

15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44

46
47
48

Listing 1.7. The Ricochet Robot Player (ricochet .py)

from gringo import Control, Model, Fun

class Player:

def _ _init_ (self, horizon,

positions,

self.last_positions = positions
self.last_solution = None

self.undo_external

[1

self.horizon = horizon
self.ctl = Control(
["=c’, "horizon={0}’.format (self.horizon)])

for x in files:

self.ctl.load(x)
self.ctl.ground ([("base", []

def solve(self, goal):

for x in self.undo_external:
self.ctl.assign_external (x, False)

self.undo_external = []

for x in self.last_positions + [goall]:
self.ctl.assign_external (x, True)
self.undo_external.append (x)

self.last_solution = None

self.ctl.solve (on_model=self.on_model)

return self.last_solution

def on_model (self, model) :
self.last_solution = model.atoms ()
self.last_positions = []
for atom in model.atoms (Model.ATOMS) :

if (atom.name () == "pos"

len (atom.args())

atom.args () [3]

)1

and
== 4 and

self.last_positions.append(

Fun ("pos™",

horizon = 15

encodings = ["board.lp",

positions = [Fun("pos",
Fun ("pos",
Fun ("pos",
Fun ("pos",

sequence = [Fun("goal",
Fun ("goal",
Fun("goal",

player = Player (horizon,

for goal in sequence:

"targets.lp",

Fun ("red"),
Fun ("blue")

Fun
[131),
[41),
[71)1]

positions,

print player.solve (goal)

files):

== self.horizon):

atom.args () [:—1]))

"ricochet.lp",

1, 11),

' 1, 1e6]

(
Fun ("green"), 16, 1]
("yellow"), 16, 16]

encodings)

)
)
)

’

]

"optimization.lp"]

AW =

constructor loads all £iles and grounds the entire logic program in Line 11-13. Re-
call from Section 2 that all rules outside the scope of #program directives belong to
the base program. Note also that this is the only time grounding happens because the
encoding is bounded. All following solving steps are configured exclusively via manip-
ulating external atoms.

The solve method in Line 15-24 starts with initializing the search for the solution
to the new goal. To this end, it first undos in Line 16—17 the previous goal and starting
positions stored in undo_external by assigning False to the respective atoms. In
the following lines 19 to 21, the next step is initialized by assigning True to the cur-
rent goal along with the last robot positions; these are also stored in undo_external
so that they can be taken back afterwards. Finally, the solve method calls clingo’s
ctl.solve to initiate the search. The result is captured in variable last_solution.
Note that the call to ct1.solve takes ctl.on_model as (keyword) argument, which
is called whenever a model is found. In other words, on_model acts as a callback for
intercepting models. Finally, variable 1ast_solution is returned at the end of the
method.

The last function of the Player class is the on_model callback. As mentioned,
it intercepts the (final) models computed by the solver, which can then be inspected
via the functions of the Model class. At first, it stores the shown atoms in variable
last_solution in Line 27.2! The remainder of the on_mode1 callback extracts the
final robot positions from the stable model. For that, it loops in Line 29-34 over the
full set of atoms in the model and checks whether their signatures match. That is, if
an atom is formed from predicate pos/4 and its fourth argument equals the horizon,
then it is appended to the list of last_positions after stripping its time step from its
arguments.

As an example, consider pos (yellow,15,13,20), say the final position of
the yellow robot on the right hand side of Figure 1 at an horizon of 20. This
leads to the addition of pos (yellow,15,13) to the last_positions. Note that
pos (yellow, 15, 13) is declared an external atom in Line 21 of Listing 1.2. For play-
ing the next round, we can thus make it True in Line 20 of Listing 1.7. And when
solving, the rule in Line 7 of Listing 1.3 allows us to derive pos (yellow,15,13,0)
and makes it the new starting position of the yellow robot, as shown on the left hand
side of Figure 2.

Line 36-44 show the code for configuring the player. They set the search horizon,
the encodings to solve with, and the initial positions in form of gringo terms. Fur-
thermore, we fix a sequence of goals in Line 42—44. In a more realistic setting, either
some user interaction or a random sequence might be generated to emulate arbitrary
draws.

Listing 1.8. Multi-shot solving with clingo 4’s Python module

$ python ricochet.py

[move (red,0,1,1), move(red,1,0,2), move(red,0,1,3), ...]

[move (blue,0,-1,1), move(blue,1,0,2), move(blue,0,1,3), ...]
[move (green,0,1,1), move(green,l1,0,2), move(green,1,0,3), ...]

2! In view of ‘#show move/4.’ in Listing 1.3, this only involves instances of move /4, while
all true atoms are included via the argument Mode 1 . ATOMS in Line 29.

Finally, Line 46—48 implement the search for sequences of moves that solve the config-
uration given above. For each goal in the sequence, a solution is plainly printed, as
engaged in Line 48. The three lists in Listing 1.8 represent solutions to the three goals in
Line 42-44. The clingo library does not foresee any output, which must thus be handled
by the scripting language. Note also that the first list represents an alternative solution
to the one given in Listing 1.6.

5 Discussion

Multi-shot ASP solving is about successive yet operational grounding and solving of
changing logic programs due to the addition, deletion, or replacement of facts or rules.
Special cases include incremental, reactive, and window-based solving. For addressing
such complex reasoning processes, clingo 4 complements ASP’s declarative input lan-
guage by control capacities expressed via the scripting languages Lua and Python. We
elaborated upon clingo’s high-level constructs supporting multi-shot solving in several
ways. First, we provided an operational semantics based on the concepts of clingo states
and associated operations. These operations reflect the major functionalities offered by
clingo’s Lua and Python library. A particular focus lay on the instantiation of extensible
non-ground programs leading to ground programs with externals. Such externals are the
primary means for changing problem specifications. Second, we provided a hands-on
introduction to multi-shot solving with clingo 4 by modeling the popular board game
of Ricochet Robots. In particular, we showed how clingo’s Python library allows for
modeling turn playing by manipulating externals. Finally, we hope that our ASP-based
implementation helps Gerd to win more often at Ricochet Robots.

Acknowledgments. This work was partially funded by German Science Foundation
(DFG) under grant SCHA 550/9-1.

References

1. Bobrow, D., ed.: Special issue on nonmonotonic logic. Volume 13. Artificial Intelligence
(1980)

2. Brewka, G.: Nonmonotonic Reasoning: From Theoretical Foundation to Efficient Compu-
tation. Dissertation, Universitdt Hamburg (1989) Revised Version appeared as: Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press (1990)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

4. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12) (2011) 92-103

5. Butko, N., Lehmann, K., Ramenzoni, V.: Ricochet Robots — a case study for human com-
plex problem solving. In: Proceedings of the Annual Santa Fe Institute Summer School on
Complex Systems (CSSS’05). (2005)

6. Engels, B., Kamphans, T.: On the complexity of Randolph’s robot game. Research Report
005, Institut fiir Informatik, Universitit Bonn (2005)

7. Engels, B., Kamphans, T.: Randolph’s robot game is NP-hard! Electronic Notes in Discrete
Mathematics 25 (2006) 49-53

10.
11.

12.

13.

14.

15.

16.

18.

. Engels, B., Kamphans, T.: Randolph’s robot game is NP-complete! In: Proceedings of the

Twenty-second European Workshop on Computational Geometry (EWCG’06). (2006) 157—
160

. Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T., Schneider, M.:

Ricochet robots: A transverse ASP benchmark. In Cabalar, P., Son, T., eds.: Proceedings
of the Twelfth International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’13). Volume 8148 of Lecture Notes in Artificial Intelligence. Springer-Verlag
(2013) 348-360

http://potassco.sourceforge.net/apps.html

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary
report. In Leuschel, M., Schrijvers, T., eds.: Technical Communications of the Thirtieth
International Conference on Logic Programming (ICLP’14). Theory and Practice of Logic
Programming, Online Supplement (2014) see also arXiv:1405.3694v1

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Extended report. (2014) http://www.cs.uni-potsdam.de/wv/pdfformat/
gekakascld4a.pdf

Eén, N., Sorensson, N.: Temporal induction by incremental SAT solving. Electronic Notes
in Theoretical Computer Science 89(4) (2003)

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In Garcia de la Banda, M., Pontelli, E., eds.: Proceedings of the
Twenty-fourth International Conference on Logic Programming (ICLP’08). Volume 5366 of
Lecture Notes in Computer Science. Springer-Verlag (2008) 190-205

Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In Brewka,
G., Coradeschi, S., Perini, A., Traverso, P., eds.: Proceedings of the Seventeenth European
Conference on Artificial Intelligence (ECAI’06). I0S Press (2006) 412-416

Gebser, M., Kaminski, R., Konig, A., Schaub, T.: Advances in gringo series 3. In Del-
grande, J., Faber, W., eds.: Proceedings of the Eleventh International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’11). Volume 6645 of Lecture Notes
in Artificial Intelligence. Springer-Verlag (2011) 345-351

. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele,

S.: A user’s guide to gringo, clasp, clingo, and iclingo. (2010)
http://sourceforge.net/projects/potassco/files/potassco_
guide/2010-10-04/guide.pdf

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP-Core-2: Input language format. (2012) https://www.mat.
unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf

