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Abstract. We elaborate upon incremental modeling techniques for ASP Plan-
ning, a term coined by Vladimir Lifschitz at the end of the nineties. Taking up
this line of research, we argue that ASP needs both a dedicated modeling method-
ology and sophisticated solving technology in view of the high practical relevance
of dynamic systems in real-world applications.

1 Introduction

The stable models semantics was born more than two decades ago, fathered by Michael
Gelfond and Vladimir Lifschitz in [1]. Since then, it has seen a pretty rough childhood.
Initially facing the greatly dominating elder brother Prolog, it made its way despite
many fights with first and second grade cousins in the area of Logic Programming and
Nonmonotonic Reasoning. Being now in its early adulthood, under the pseudonym of
Answer Set Programming (ASP; [2]), it entertains a competitive yet extremely fruitful
relationship with Satisfiability Testing (SAT; [3]), an offspring of a house with a certain
veil of antique nobility, viz. classical logic.

However, the rivalry between ASP and SAT has turned out to be extremely pro-
ductive for ASP. And in fact ASP often followed in the footsteps of SAT. This is
particularly true as regards computational issues, where the Davis-Putman-Logemann-
Loveland procedure [4, 5] led the way for the first effective implementation of ASP,
namely the smodels system [6]. Similarly, current ASP solvers like clasp [7] largely
benefit from the technology of advanced Boolean constraint solving boosted to great
success in the area of SAT (cf. [3]).

Looking at the success stories of SAT, among which the most shiny ones are ar-
guably Automated Planning [8] and Model Checking [9], we notice that both deal with
dynamic applications, whose complexity seems to be a priori out of reach of SAT. In
both cases the key idea was to reduce the complexity from PSPACE to NP by treating
these problems in a bounded way and to consider in turn one problem instance after
another by gradually increasing the bound on the solution size. This idea can be seen
as the major driving force behind the extension of SAT solvers with incremental in-
terfaces (cf. [10, 11]) which constitute nowadays a key technology in many SAT-based
real-world applications.

Similarly, there were early attempts to apply ASP to Automated Planning in [12,
13] based upon which Vladimir Lifschitz put forward ASP Planning in [14, 2] as a
knowledge-intense alternative to SAT Planning. In fact, ASP’s rich modeling language
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offers an attractive alternative to the encoding of planning problems via imperative pro-
gramming languages, which is common and actually unavoidable in SAT. So far, how-
ever, ASP Planning is no real match for SAT Planning. For one thing, ASP modeling
techniques for dynamic domains focus on knowledge representation issues but neglect
the development of design patterns aiming at search space reductions, as found in the
SAT Planning literature [15] (eg. forward expansion, mutex analysis, or operator split-
ting). A first yet incomplete attempt to address this problem was done in [16], where a
selection of such SAT Planning techniques was modeled and studied in the context of
ASP. This approach is summarized in Section 6.

Another and more general reason why ASP is lagging behind SAT in terms of dy-
namic applications is that incremental grounding and solving techniques have not yet
found the same proliferation as in SAT. On the one hand, SAT has its focus on solving,
while ASP is additionally concerned with grounding in view of its modeling language.
Hence, it is a more complex endeavor to come up with an ASP system addressing both
incremental grounding and solving. On the other hand, now that a first incremental
ASP system, viz. iclingo [17], is available since a couple of years, we find it important
to elaborate upon the differences in modeling and employment with respect to a static
setting in order to foster its usage and thus to open up dynamic applications to ASP.

This is also our essay’s topic. After laying some formal foundations in Section 2,
we start from a blocks world planning example stemming from Vladimir Lifschitz’
work on ASP Planning and transfer it into an incremental setting in Section 3 and 4.
For a complement, we address in Section 5 the “Towers of Hanoi” problem in order
to deepen the introduction to modeling in incremental ASP. Finally, we return to the
initial motivation of Vladimir Lifschitz’ work and sketch a first prototype for PDDL-
based ASP Planning.

In what follows, we presuppose some familiarity with the syntax and semantics of
logic programs in the framework of ASP. A general introduction to ASP can be found
in [18]; one focusing on the theme of this essay is given in [17].

2 Incremental logic programs

For capturing dynamic systems, we take advantage of incremental logic programs [17],
consisting of triples (B,P,Q) of logic programs, among which P and Q contain a
(single) parameter t ranging over the natural numbers. In view of this, we sometimes
denote P and Q by P [t] and Q[t]. The base program B is meant to describe static knowl-
edge, independent of parameter t. The role of P is to capture knowledge accumulating
with increasing t, whereas Q is specific for each value of t. Provided all programs are
“modularly composable” (cf. [17]), we are interested in finding an answer set of the
program

B ∪
(⋃

1≤j≤iP [k/j]
)
∪Q[k/i] (1)

for some (minimum) natural number i ≥ 1.
Such an answer is traditionally found by appeal to iterative deepening search. That

is, one first checks whether B ∪ P [1] ∪Q[1] has an answer set, if not, the same is done
for B ∪ P [1] ∪ P [2] ∪ Q[2] and so on. For a given i, this approach re-processes B



for i times and (i−j+1) times each P [j], where 1 ≤ j ≤ i, while each Q[j] is dealt
with only once. Unlike this, incremental ASP solving computes these answers sets in an
incremental fashion, starting from B but then gradually dealing only with the program
slices P [i] and Q[i] rather than the entire program in (1). However, B and the previously
processed slices P [j] and Q[j], 1 ≤ j < i, must be taken into account when dealing
with P [i] and Q[i]: while the rules in P [j] are accumulated, the ones in Q[j] must be
discarded. For accomplishing this, an ASP system has to operate in a “stateful way.”
That is, it has to maintain its previous state for processing the current program slices.
In this way, all components, B, P [j], and Q[i], of (1) are dealt with only once, and
duplicated work is avoided when increasing i.

However, it is important to note that an incremental proceeding leads to a slightly
different semantics than obtained in a static setting. Foremost, we must realize that
we deal with an infinite set of terms containing all natural numbers. Unlike this, an
incremental proceeding aims at providing a finite grounding at each step. On the one
hand, we may thus never obtain a complete finite representation of the overall program.
And on the other hand, each incremental step can only produce a grounding relative
to the (finite) set of terms that were up to that point encountered by the grounder. The
stable models semantics must thus falsify all atoms that have so far not been derived,
although they might become true at future steps. We refer the interested reader to [17]
for a formal elaboration of this phenomenon along with its formal semantics.

However, given that an ASP system is composed of a grounder and a solver, an
incremental ASP solver gains on both ends. As regards grounding, it reduces efforts by
avoiding reproducing previous ground rules. Regarding solving, it reduces redundancy,
in particular, if a learning ASP solver is used, given that previously gathered information
on heuristics, conflicts, or loops (cf. [7]), respectively, remains available and can thus
be continuously exploited.

For illustration, consider the following example enumerating even and odd natural
numbers.

B ={ even(0) }

P [k] =

odd(k)← even(k − 1)
even(k)← odd(k − 1)
opooo(k)← odd(k), k = M ∗N ∗O, odd(M), odd(N), odd(O)


Q[k] ={ ← { opooo(K) | K = 1..k } ≤ 2 }

The goal of this program is to find the first triple opooo number, that is, the smallest
number k such that there are 3 odd numbers k′ ≤ k that equal the product of 3 odd
numbers.

This program is represented in the language of the incremental ASP system iclingo
in Listing 1. The partition of rules into B, P [k], and Q[k] is done by appeal to the di-
rectives #base, #cumulative, and #volatile (all of which may appear multiple
times in a program), respectively.

Passing the program in Listing 1 to iclingo yields an answer set at Step 27:

nix> iclingo opooo.lp
Answer: 1
even(0) odd(1) even(2) odd(3) even(4) odd(5) even(6) odd(7) even(8) \



Listing 1. An incremental program computing the triple opooo number (opooo.lp)
1 #base.

3 even(0).

5 #cumulative k.

7 odd(k) :- even(k-1).
8 even(k) :- odd(k-1).

10 opooo(k) :- odd(k), k==M*N*O, odd(M), odd(N), odd(O), M<N, N<O.

12 #volatile k.

14 :- { opooo(K) : K=1..k } 2.

odd(9) even(10) odd(11) even(12) odd(13) even(14) odd(15) opooo(15) \
even(16) odd(17) even(18) odd(19) even(20) odd(21) opooo(21) even(22) \
odd(23) even(24) odd(25) even(26) odd(27) opooo(27)
SATISFIABLE

Models : 1
Total Steps : 27
Time : 0.000
Prepare : 0.000
Prepro. : 0.000
Solving : 0.000

Observe that iclingo launched 26 solving processes before the above answer set was
found in the 27th step. We get three opooo numbers, viz. 15, 21, and 27. Rather than
re-grounding and re-solving each time from scratch, iclingo only grounded each time
the necessary program slice. For instance, at Step 25 only 2 rules are sent to the solver:

odd(25).
:-.

The first rule is the instantiation of Line 7 in Listing 1 in view of the fact that
even(24) was obtained at Step 24. And the second rule is the instantiation of the
volatile integrity constraint in Line 14 in Listing 1. This is because the cardinality con-
straint is instantiated as ‘{opooo(15),opooo(21)} 2’ and then evaluated to true
and thus removed from the body of the integrity constraint.

3 Blocks world planning

Let us begin with addressing the problem of blocks world planning following the ap-
proach taken by Vladimir Lifschitz in [14, 2].

A planning problem consists of three parts. An initial situation, a set of actions,
and a goal situation (or formula characterizing goal situations). Given such a problem
description, a solution is given by a sequence of actions leading from the initial situation
to a goal situation.

The initial and desired final situation of a simple blocks world problem is given
in Figure 1. In each situation, we consider six blocks on a table, yet in different
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Fig. 1. The initial and goal situation for blocks world planning

Listing 2. Initial and goal situation (blocks.lp)

3 on(1,2,0).
4 on(2,table,0).
5 on(3,4,0).
6 on(4,table,0).
7 on(5,6,0).
8 on(6,table,0).

12 :- not on(3,2,lasttime).
13 :- not on(2,1,lasttime).
14 :- not on(1,table,lasttime).
15 :- not on(6,5,lasttime).
16 :- not on(5,4,lasttime).
17 :- not on(4,table,lasttime).

arrangements. Listing 2 gives the representation provided in [14, 2]. An atom like
on(2,table,0) expresses that Block 2 is on the table at timepoint 0. Note that
the initial and goal situation are represented differently. While the initial situation is
given and thus represented as facts, the goal situation is represented as conditions on
the final state (at lasttime) that must be generated by a successful plan. In this sim-
ple example, we consider a single action, move, that allows us to move a block on a
location at a certain timepoint. A location can be a block or the table.

Listing 3 gives the encoding of blocks world planning given by Vladimir Lifschitz
in [14, 2], yet adapted to the current language of the ASP grounder gringo. For this
purpose, we eliminated (nowadays) obsolete domain predicates, added the symbol # in
front of directives, and finally provide a simpler display expression in terms of #hide
and #show directives. (The formatting of Listing 2 and 3 is done in accord with the
incremental ones in Listing 4 and 5, respectively.)



Listing 3. Blocks world planning: Vladimir Lifschitz’ encoding (planning.lp)
1 #const lasttime=3.
2 #const grippers=2.

5 time(0..lasttime).
6 block(1..6).

8 location(B) :- block(B).
9 location(table).

13 { move(B,L,T) : block(B) : location(L) } grippers :- time(T), T<lasttime.

15 on(B,L,T+1) :- move(B,L,T), T<lasttime.
16 on(B,L,T+1) :- on(B,L,T), not onp(B,L,T+1), T<lasttime.

18 onp(B,L1,T) :- on(B,L,T), L!=L1, location(L1).

20 :- on(B,L,T), onp(B,L,T).
21 :- 2 { on(B1,B,T) : block(B1) }, block(B), time(T).
22 :- move(B,L ,T), on(B1,B,T), T<lasttime.
23 :- move(B,B1,T), move(B1,L,T), T<lasttime.

25 #hide.
26 #show move/3.

Vladimir Lifschitz’ encoding consists of five parts. Line 1 and 2 are directives fixing
default values for the last time step as well as the number of grippers. The very first part
of the actual program begins in Line 5 and ends in Line 9 and provides the basic data.
The second part is concentrated in Line 13 and deals with the generation of all possible
sequences of move actions. The third part furnishes the definition of the successor states
in terms of the fluents on and its negation onp.1 Line 15 specifies the effect of moving a
block. Line 16 is a frame axiom for fluent on. And Line 18 addresses the uniqueness of
locations, stating that once a block is on a location it cannot be on any other location.
The following integrity constraints provide a test series, eliminating invalid solution
candidates. Line 20 makes sure that fluent onp is the negation of on. Line 21 ensures
that two blocks cannot be on top of the same block. Line 22 makes sure that a block
cannot be moved unless it is clear. And finally Line 23 forbids that a block is moved
onto a block that is also being moved. Line 25 and 26 can be regarded as the display
part, directing the solver to project answer sets onto the instances of move/3.

Although there are no answer sets for lasttime=1,2, that is, no plans of length
one or two, we get a plan of length three as shown next.

nix> clingo -c lasttime=3 planning.lp blocks.lp
Answer: 1
move(6,5,2) move(3,2,2) move(5,4,1) \
move(2,1,1) move(3,table,0) move(1,table,0)
SATISFIABLE

Models : 1
Time : 0.000
Prepare : 0.000

1 onp stands for on′.



Listing 4. Initial and goal situation: Incremental encoding (blocksInc.lp)
1 #base.

3 on(1,2,0).
4 on(2,table,0).
5 on(3,4,0).
6 on(4,table,0).
7 on(5,6,0).
8 on(6,table,0).

10 #volatile lasttime.

12 :- not on(3,2,lasttime).
13 :- not on(2,1,lasttime).
14 :- not on(1,table,lasttime).
15 :- not on(6,5,lasttime).
16 :- not on(5,4,lasttime).
17 :- not on(4,table,lasttime).

Prepro. : 0.000
Solving : 0.000

Looking at the statistics we note that 2492 rules were grounded for lasttime=3.
Adding the 687 and 1577 ground rules obtained for the two unsatisfiable programs
obtained for lasttime=1,2, respectively, we needed to ground in total 4731 rules in
order to find the above plan. In addition, we had to re-launch clingo three times and no
(learned) information could be passed from one attempt to the next.

4 Incremental blocks world planning

Let us now turn to an incremental setting. To begin with, let us adapt the logic program
giving the initial and goal situation in Listing 2. The result is shown in Listing 4. We
note that the actual program is unaffected. The only change concerns the addition of
two directives. The first one, #base, declares the initial situation (in Line 3-8) as static
information that is grounded only once and stays within the solver. In contrast to this,
the statement #volatile directs the grounder to reground the integrity constraints (in
Line 12-17) expressing the goal situation at each step, while withdrawing the previous
instantiation of the constraints from the solver.

Listing 5 provides an incremental version of the encoding in Listing 3. The #base
part is almost identical to the one in Listing 3. In fact, Line 6, 8, and 9 are identical in
both listings. However, the unary time/1 predicate (along with the declaration of the
default value of the constant lasttime) in Line 5 (and 1) have vanished in Listing 3.
This actually applies to all occurrences of the predicate time/1 in Listing 3 because
the instantiation of time steps is now handled via the incremental parameters and the
corresponding directives.

The adaption of the remaining non-incremental encoding in Listing 3 is less
straightforward. In fact, looking at the idealized program in (1), we observe that the
unfolding of the cumulative program part starts with 1. The idea is that static knowl-
edge, often attached with time step 0, belongs to the static case (that is, the #base



Listing 5. Blocks world planning: Incremental encoding (planningInc.lp)

2 #const grippers=2.

4 #base.

6 block(1..6).

8 location(B) :- block(B).
9 location(table).

11 #cumulative t.

13 { move(B,L,t-1) : block(B) : location(L) } grippers.

15 on(B,L,t) :- move(B,L,t-1).
16 on(B,L,t) :- on(B,L,t-1), not onp(B,L,t).

18 onp(B,L1,t) :- on(B,L,t), L!=L1, location(L1).

20 :- on(B,L,t), onp(B,L,t).
21 :- 2 { on(B1,B,t) : block(B1) }, block(B).
22 :- move(B,L ,t-1), on(B1,B,t-1).
23 :- move(B,B1,t-1), move(B1,L,t-1).

25 #hide.
26 #show move/3.

part). This semantics is also accounted for in the incremental solver iclingo, where the
parameters like t declared by ‘#cumulative t.’ or ‘#volatile t.’ are instan-
tiated beginning with 1. Unlike this, the time steps in the original encoding — bound
by time(T) — range from 0 to lasttime (yet often limited to T<lasttime) in
Listing 3. This difference has major consequences. First of all, the facts of the initial
situation are implicitly verified by the constraints in Listing 3, while this is not the case
in Listing 5. To do so, the corresponding constraints had to be replicated with time
stamp 0. Moreover, the respective time stamps have to be adapted to the shift by one.
This can be accomplished as follows. For each rule in Listing 3 having body literal
‘T<lasttime’, decrement the terms including T by one and substitute T by t. Oth-
erwise, simply replace T by t. As a consequence, the application of move/3 actions is
aligned in both encodings, although the generation in Line 13 refers to different relative
time steps, viz T and t-1.

As a side-effect, our proceeding has also resolved a major problem that had been
obtained by a straightforward replacement of T by t in Listing 3. Recall that an in-
cremental solver unfolds the cumulative part stepwisely. Now inspecting Rule 16 in
Listing 3, we observe that the literal onp(B,L,T+1) refers to time stamp T+1. The
only rule deriving instances of onp/3 is given in Line 18 of Listing 3. However, this
rule’s head atom onp(B,L1,T) refers to time stamp T. Hence, when the nth program
slice is grounded, the overall program may only contain instances of onp(B,L1,T)
for T = 1..n and none for T = n + 1. As a consequence, all instances of the body
literal onp(B,L,T+1) would be false when producing the nth program slice, simply
because they refer to the yet unavailable future. Such phenomena cannot arise in a non-
incremental setting given that all program slices are grounded at once. See [17] for a



formal elaboration of this and a module based account of incremental grounding and
solving.

Finally, launching iclingo on the incremental programs in Listing 4 and 5, yields the
following result. Note that we take advantage of iclingo’s option --istats in order to get
some insight into the intermediate steps as well.

nix> iclingo planningInc.lp blocksInc.lp --istats
=============== step 1 ===============

Models : 0
Time : 0.000 (g: 0.000, p: 0.000, s: 0.000)
Rules : 656
Choices : 0
Conflicts: 0
=============== step 2 ===============

Models : 0
Time : 0.000 (g: 0.000, p: 0.000, s: 0.000)
Rules : 904
Choices : 0
Conflicts: 0
=============== step 3 ===============
Answer: 1
move(3,table,0) move(1,table,0) move(5,4,1) \
move(2,1,1) move(6,5,2) move(3,2,2)

Models : 1
Time : 0.000 (g: 0.000, p: 0.000, s: 0.000)
Rules : 904
Choices : 7
Conflicts: 5
=============== Summary ===============
SATISFIABLE

Models : 1+
Total Steps : 3
Time : 0.000
Prepare : 0.000
Prepro. : 0.000
Solving : 0.000

In total, iclingo grounds 2464 rules, 656 in the first step and 904 in the second and
third step. Also, the solver is initiated only once and updated twice with new infor-
mation. Whenever a solving process is engaged it thus benefits from the information
gathered during the previous solving attempt.

5 Towers of Hanoi

For further illustration, we now discuss a rather compact encoding of a related planning
problem that was trimmed to produce a linear number of ground rules (during the 2011
ASP competition).

The towers of Hanoi problem is a simple puzzle game very similar to the blocks
world planning problem presented above. The differences are that instead of a table
there are pegs on which discs are put rather than blocks. In addition, discs are of dif-
ferent sizes and can only be put on either a peg or a disk of larger size. Given an initial
placement of discs on pegs, the goal is to find a plan that establishes another such place-
ment.



Listing 6. Towers of Hanoi instance
1 peg(a;b;c).

3 disk(1..6).

5 on(1,a,0).
6 on(2,b,0).
7 on(3..6,c,0).

9 goal_on(3;4,a).
10 goal_on(6,b).
11 goal_on(1;2;5,c).

A towers of Hanoi instance consists of a set of pegs given by predicate peg/1, a
set of discs given by predicate disk/1, the initial situation specifying which disk is
on which peg at time step zero via predicate on/3, and finally the predicate goal/2
specifying which disk has to be on which peg in the goal situation. Note that in contrast
to the description of blocks world instances, we are just specifying on which peg a
disk is because the ordering of discs on a peg is implicitly given by the discs’ sizes.
Given that there are typically only three pegs and a much larger number of discs, this
allows for representing a state with a linear number of fluents instead of the quadratic
representation chosen in the blocks world setting. Listing 6 gives an instance with six
discs and three pegs, which is depicted in Figure 2.

a b c a b c
1 2 3

4

5

6

3

4

6 1

2

5

Initial Situation Goal Situation

Fig. 2. The initial and goal situation for the towers of Hanoi problem

Listing 7 shows the towers of Hanoi encoding. It incorporates the same ideas as the
encoding used in the last ASP competition. Hence, it is optimized for use with ASP
solvers. The rule in Line 3 of the cumulative part of the encoding guesses a move.
As in the instance, we just select the target peg. This way we reduce the number of
atoms used to represent moves and keep the branching factor low. Note that we do not
allow for parallel moves here. In principal this would easily be possible but we just
have instances with three pegs. Hence, parallel moves are impossible anyway. In the
consecutive line, the target is projected out to just capture which disc has been moved.
The idea here is to avoid a general frame axiom as in the blocks world encoding and
rather to use the moves directly to specify the state transition in lines 6 and 7. This way
the grounding is kept more compact because we do not write rules involving the cross-



Listing 7. Towers of Hanoi encoding
1 #cumulative t.

3 1 { move(D,P,t) : disk(D) : peg(P) } 1.
4 move(D,t) :- move(D,_,t).

6 on(D,P,t) :- on(D,P,t-1), not move(D,t).
7 on(D,P,t) :- move(D,P,t).

9 blocked(D-1,P,t) :- on(D,P,t-1), D > 0.
10 blocked(D-1,P,t) :- blocked(D,P,t), D > 0.

12 :- move(D,t), on(D,P,t-1), blocked(D,P,t).
13 :- move(D,P,t), blocked(D-1,P,t).
14 :- not 1 { on(D,P,t) : peg(P) } 1, disk(D).

16 #volatile t.
17 :- goal_on(D,P), not on(D,P,t).

19 #hide.
20 #show move/3.

product of all discs. The number of ground rules per step here are directly proportional
to number of discs (assuming a constant number of pegs). The rules in lines 9 and 10
specify which positions on a peg are blocked. Again the number of ground rules is
directly proportional to the number of discs. The last block of rules in the cumulative
part eliminates incorrect moves and adds some domain knowledge in Line 14 to speed
up solving. The number of resulting ground rules is again proportional to the number
of discs. Finally, the goal situation is checked in the volatile block in Line 17 and the
answer set is projected onto the moves in lines 19 and 20.

All in all, the number of rules per time step is directly proportional to the number of
discs. Thus we get a very compact encoding that can be used to solve instances requiring
large plan lengths. For example a plan for the instance given in Figure 2, which requires
34 moves, can be found in less than a second with iclingo.

6 Towards PDDL-based ASP planning

Finally, let us sketch how incremental solving can be used for PDDL-based ASP
planning. The prototypical system, plasp, follows the approach of SATPlan [8, 19]
in translating a planning problem from the Planning Domain Definition Language
(PDDL; [20]) into Boolean constraints. Unlike SATPlan, however, plasp aims at keep-
ing the actual compilation simple in favor of modeling planning techniques by meta-
programming in ASP. Although the compilations and meta-programs made available by
plasp do not (yet) match the sophisticated approaches of dedicated planning systems,
they allow for applying ASP systems to available planning problems. In analogy to the
previous sections, plasp also makes use of the incremental ASP system iclingo [17],
supporting the step-wise unrolling of problem horizons.

As illustrated in Figure 3, plasp translates a PDDL problem instance to ASP and
runs it through a solver producing answer sets. The latter represent solutions to the ini-
tial planning problem. To this end, a plan is extracted from an answer set and output
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Fig. 3. Architecture of the plasp system

in PDDL syntax. plasp thus consists of two modules, viz., the ASP and Solution com-
pilers. The ASP compiler is illustrated in Figure 4. First, a parser reads the PDDL de-

ASP compiler
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instance P
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AST

Analyzer

Preprocessor
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ASP

program

Fig. 4. Architecture of the ASP compiler.

scription as input and builds an internal representation, also known as Abstract Syntax
Tree (AST). Then, the Analyzer gathers information on the particular problem instance.
For example, it determines predicates representing fluents. Afterwards, the Preproces-
sor modifies the instance and enhances it for the translation process. Finally, the ASP
backend produces an ASP program using the data gathered before. The Solution com-
piler constructs a plan from an answer set output by the solver. This is usually just a
syntactic matter, but it becomes more involved in the case of parallel planning where
an order among the actions must be re-established. Afterwards, the plan is verified and
output in PDDL syntax.

In order to give an idea of the resulting ASP programs, let us sketch the most basic
planning encoding relying on meta-programming. To this end, a PDDL domain descrip-
tion is mapped onto a set of facts built from predicates init , goal , action , demands ,
adds , and deletes along with their obvious meanings. Such facts are then combined
with the meta-program in Figure 5. Note that this meta-program is treated incremen-
tally by the ASP system iclingo, as indicated in lines (1), (3), and (10). While the facts
resulting from the initial PDDL description along with the ground rules of (2) in Fig-
ure 5 are processed just once (and passed to the ASP solver), the rules in (4)–(9) are
successively grounded for increasing values of t and accumulated in iclingo’s solving
component. Finally, goal conditions are expressed by volatile rules, contributing ground
rules of (11) and (12) only for the current step t. From a representational perspective,
it is interesting to observe that ASP allows for omitting a frame axiom (like the one in
line (9)) for negative information, making use of the fact that instances of holds are



(1) #base.
(2) holds(F, 0) ← init(F ).

(3) #cumulative t.
(4) 1 {apply(A, t) : action(A)} 1.
(5) ← apply(A, t), demands(A,F, true),not holds(F, t−1).
(6) ← apply(A, t), demands(A,F, false), holds(F, t−1).
(7) holds(F, t) ← apply(A, t), adds(A,F ).
(8) del(F, t) ← apply(A, t), deletes(A,F ).
(9) holds(F, t) ← holds(F, t−1),not del(F, t).

(10) #volatile t.
(11) ← goal(F, true),not holds(F, t).
(12) ← goal(F, false), holds(F, t).

Fig. 5. Basic ASP encoding of STRIPS planning.

(4′) 1 {apply(A, t) : action(A)}.
(4′a) ← apply(A1, t), apply(A2, t), A1 6= A2, demands(A1, F, true), deletes(A2, F ).
(4′b) ← apply(A1, t), apply(A2, t), A1 6= A2, demands(A1, F, false), adds(A2, F ).
(4′c) ← apply(A1, t), apply(A2, t), A1 6= A2, adds(A1, F ), deletes(A2, F ).

Fig. 6. Adaptation of the basic ASP encoding to parallel STRIPS planning.

false by default, that is, unless they are explicitly derived to be true. Otherwise, the
specification follows closely the semantics of STRIPS [21].

Beyond the meta-program in Figure 5, plasp offers planning with concurrent ac-
tions. The corresponding modification of the rule in (4) is shown in Figure 6. While (4′)
drops the uniqueness condition on applied actions, the additional integrity constraints
stipulate that concurrent actions must not undo their preconditions, nor have conflict-
ing effects. The resulting meta-program complies with the ∀-step semantics in [22].
Furthermore, plasp offers operator splitting as well as forward expansion. The goal of
operator splitting [23] is to reduce the number of propositions in the representation of a
planning problem by decomposing action predicates. For instance, an action a(X,Y, Z)
can be represented in terms of a1(X), a2(Y ), a3(Z). Forward expansion (without mu-
tex analysis [24]) instantiates schematic actions by need, viz., if their preconditions
have been determined as feasible at a time step, instead of referring to statically given
instances of the action predicate. This can be useful if initially many instances of a
schematic action are inapplicable, yet it requires a domain-specific compilation; meta-
programming is difficult to apply because action instances are not represented as facts.
For further details on the compilation techniques supported by plasp, we refer the inter-
ested reader to [21, 25]. Finally, plasp supports combinations of forward expansion with
either concurrent actions or operator splitting. Regardless of whether forward expansion
is used, concurrent actions and operator splitting can currently not be combined; gener-
ally, both techniques are in opposition, although possible solutions have recently been
proposed [26].



7 Discussion

ASP Planning was put forward by Vladimir Lifschitz in [14, 2] as a knowledge-intense
alternative to SAT Planning. Although ASP’s modeling language offers an attractive al-
ternative to the encoding of planning problems via imperative programming languages
in SAT, so far, ASP Planning is no real match for SAT Planning in terms of performance.
On the one hand, ASP lacks modeling techniques aiming at search space reductions in
dynamic domains. First attempts to take advantage of incremental grounding and solv-
ing ASP techniques were conducted in the areas of Automated Planning [16], Action
Languages [27], Finite Model Generation [28], and Stream Reasoning [29, 30]. And on
the other hand, we take too little advantage of incremental ASP solving when address-
ing dynamic domains. We discussed these issues and sketched first attempts to rectify
this situation. However, dynamic systems are omnipresent in real-world applications.
Hence, it is important to equip ASP with an adequate methodology and technology for
addressing such highly demanding applications. This is not only important in offline
settings, like ASP Planning, but moreover in online settings in view of the emergence
of pervasive and ubiquitous computing. A first step in this direction is done in [29, 30].
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22. Rintanen, J., Heljanko, K., Niemelä, I.: Parallel encodings of classical planning as satisfia-
bility. In Alferes, J., Leite, J., eds.: Proceedings of the Ninth European Conference on Logics
in Artificial Intelligence (JELIA’04). Volume 3229 of Lecture Notes in Computer Science.,
Springer-Verlag (2004) 307–319

23. Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In Aiello, L.,
Doyle, J., Shapiro, S., eds.: Proceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning (KR’96), Morgan Kaufmann Publishers (1996)
374–384

24. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence
90(1-2) (1997) 279–298

25. Knecht, M.: Efficient domain-independent planning using declarative programming. M.Sc.
thesis, Institute for Informatics, University of Potsdam (2009)

26. Robinson, N., Gretton, C., Pham, D., Sattar, A.: SAT-based parallel planning using a split
representation of actions. In Gerevini, A., Howe, A., Cesta, A., Refanidis, I., eds.: Proceed-
ings of the Nineteenth International Conference on Automated Planning and Scheduling
(ICAPS’09), AAAI Press (2009) 281–288

27. Gebser, M., Grote, T., Schaub, T.: Coala: A compiler from action languages to ASP. In Jan-
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