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Abstract. Logical modeling has been widely used to understand and
expand the knowledge about protein interactions among different path-
ways. Realizing this, the caspo-ts system has been proposed recently to
learn logical models from time series data. It uses Answer Set Program-
ming to enumerate Boolean Networks (BNs) given prior knowledge net-
works and phosphoproteomic time series data. In the resulting sequence
of solutions, similar BNs are typically clustered together. This can be
problematic for large scale problems where we cannot explore the whole
solution space in reasonable time. Our approach extends the caspo-ts
system to cope with the important use case of finding diverse solutions
of a problem with a large number of solutions. We first present the algo-
rithm for finding diverse solutions and then we demonstrate the results
of the proposed approach on two different benchmark scenarios in sys-
tems biology: (1) an artificial dataset to model TCR signaling and (2)
the HPN-DREAM challenge dataset to model breast cancer cell lines.

Keywords: Diverse solution enumeration · Answer set programming
Boolean Networks · Model checking · Time series data

1 Introduction

Network analysis methods have been widely used for studying phosphoproteomic
data, yielding important insights into protein interactions, functions, and evo-
lution. Several formalisms including differential equations, Boolean logic and
fuzzy logic exist for modeling signaling networks [4,26,28]. Models elucidated
using differential equations require explicit specifications of kinetic parameters
of the system and work well for smaller systems. Despite being highly predictive,
mathematical modeling becomes computationally intensive as networks become
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larger. Stochastic modeling is suitable for problems of random nature but also
fails to scale well with large scale systems of proteins [16,28].

On the other hand, Boolean network (BN) modeling [14] has demonstrated
to be a powerful framework for studying signaling networks [1] and for predicting
novel behavior under perturbations. Phosphoproteomic data shows alteration in
protein levels under different perturbation. Several methods have been proposed
for learning BNs from such data. Most of the methods restrict their focus on one
time point only [9,17,23,27], which prevents them from capturing interesting
dynamic characteristics such as loops [16]. Realizing this, methods have been
proposed to model time series data [5,20,24]. Given noisy experimental data,
most existing methods based on integer linear programming [17] and answer set
programming (ASP) [19,27] infer a family of BNs, which equally well represent
the underlying signaling behavior in different pathways.

In this study, we focus on the ASP-based caspo-ts system which learns a
family of BNs from time series data and a prior knowledge network (PKN).
caspo-ts uses an over-approximation to learn candidate BNs, which leads to
some false positive (FP) BNs. These BNs are not guaranteed to reproduce all
traces of the time series data. To resolve this issue, it uses exact model checking
to filter out FP BNs. The caspo-ts method uses the clingo ASP solver [7], which
is able to exhaustively enumerate all solutions. The clingo solver by default uses
an enumeration scheme, in which, once a solution is found, it backtracks to the
first point from where the next solution can be found. This typically leads to
the situation where successive solutions only change in a small part. As a result,
caspo-ts may enter a solution space where FP BNs are clustered together. Given
the size of the PKN and the small number of perturbations in the experimental
data, the solution space of the caspo-ts can be very large containing billions of
BNs making it difficult to enumerate true positive (TP) BNs in reasonable time
if it gets stuck in a cluster of FP BNs.

To overcome this, we extend caspo-ts with a new enumeration scheme for
breaking up clusters of similar solutions. In [6], various methods were presented
for computing diverse solutions in ASP. However, these methods are not applica-
ble to caspo-ts, since this system enumerates optimal (subset minimal) solutions,
in order to produce simpler and more relevant solutions. Instead, we extend the
approach of [21] for computing optimal diverse solutions1 in ASP. The novelty
of this extension is that we use heuristics for both the computation of optimal
(subset minimal) solutions, and the diversification. By sampling the large solu-
tion space of BNs, we can retrieve a more complete set of mechanisms explaining
the experimental data and better approximate biological reality.

Regarding model refinement of BNs dynamics using solvers, the works of
[2,22] propose ways to discover BNs or prune them according to experimental
data related to fix points or attractors; which represent key biological functions.
The objective is to find mechanisms explaining these biological functions. Their

1 In the following, a diverse optimal solution is a solution which is minimal w.r.t. an
objective function, there is no solution which is a subset of it, and it is different from
previously enumerated solutions.
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results are exhaustive, notably focusing on multiple mechanisms. Compared to
[2,22], we propose a method that handles large scale networks and time-series
phosphoproteomic data. The advantage of this is that such data is derived from
standard experimental protocols. Moreover, the networks we handle are inferred
from publicly available databases. Our method also allows us to provide optimal
data, with respect to noisy or incomplete datasets. In this sense our method
adapts more to current high-throughput experimental technologies as well as to
massive signaling knowledge sources.

In the following, we refer to the modified caspo-ts as caspo-tsD. We apply
both systems to two datasets: (1) an artificial dataset for network signaling
model, and (2) the HPN-DREAM challenge dataset. Our results show substan-
tial improvements of caspo-tsD in solution quality by discovering more signaling
behaviors than caspo-ts. Moreover, caspo-tsD is able to find solutions in cases
where caspo-ts is unable to find any. Our method is applicable to gene or protein
expression time series datasets measured upon different perturbations. Moreover,
the proposed method is not specific to our biological application. It computes
diverse subset minimal solutions in ASP, and therefore can be applied to any
problem modeled in ASP.

The remainder of the paper is structured as follows. In Sect. 2, we describe
the datasets and the algorithms. In Sect. 3, we study the performance of the
modified enumeration scheme on the artificial and real datasets. In Sect. 4, we
give concluding remarks and describe future work.

2 Materials and Methods

In this subsection, we describe the datasets, the caspo-ts system, and the new
algorithm to enumerate diverse BNs implemented in caspo-tsD.

2.1 Phosphoproteomic Time Series Dataset

Here, we give a brief description of the phosphoproteomic datasets used for
testing the performance of the extended caspo-tsD system. Phosphoproteomic
data show changes in protein levels under sets of perturbations. Here, proteins are
referred to by three names: (1) stimuli, (2) inhibitors, and (3) readouts. Stimuli
serve as interaction points for the experimentalist. Inhibitors are blocked over
all time points of the perturbation. Readout proteins are measured under sets of
perturbations at different time points. Perturbations are a combination of stimuli
and inhibitors. Fig. 1 depicts an example of phosphoproteomic time series data,
where the values between zero and one of three proteins are shown in different
colors. In this figure, we see the time series of one readout protein (blue) under
a perturbation of one stimulus (green) and one inhibitor (red). Stimuli have
value 1 and inhibitors have value 0 across all time points of an experimental
perturbation. Readouts take continuous values in [0;1] after normalization. In
some phosphoproteomic datasets an inhibitor can also act as a readout protein,
which means that there are perturbations where it will be measured.
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Fig. 1. Phosphoproteomic time series data. (Color figure online)

Artificial Dataset. The artificial dataset for TCR signaling was generated by
[19] by simulating the PKN using logic based ODEs. This dataset consists of
4 readouts, 3 stimuli and 2 inhibitors. The readout proteins were measured at
16 time points under 10 perturbations. The PKN was derived from the TCR
signaling model of [15] and consists of 16 nodes and 25 edges.

HPN-DREAM Dataset. The HPN-DREAM dataset consists of phosphopro-
teomic data of four breast cancer cell lines (BT20, UACC812, MCF7, BT549).
This dataset was downloaded from the web portal of the HPN-DREAM chal-
lenge [11,12]. It includes temporal changes in phosphorylated proteins at seven
different time points (t1 = 0 min, t2 = 5 min, t3 = 15 min, t4 = 30 min,
t5 = 60 min, t6 = 120 min, and t7 = 240 min) under sets of perturbations. Max-
imum value based normalization was applied to the data to bring values into
the range [0; 1] and noisy and incomplete time series data was removed. After
this, we have approximately 23 phosphorylated readout proteins per cell line.
The number of perturbations varies from one cell line to another. The main goal
of the HPN-DREAM challenge is to learn context specific signaling networks
efficiently and effectively to predict dynamics in breast cancer.

The PKN was generated by mapping the experimentally measured phospho-
rylated proteins (HPN-DREAM dataset) to their equivalents from literature-
curated databases and connecting them together within one network. The PKN
was built using the ReactomeFIViz (Cytoscape app), which accesses the inter-
actions existing in the Reactome and other databases [29]. The PKN consists of
64 nodes (7 stimuli, 3 inhibitors, and 23 readouts) and 178 edges.

2.2 Caspo-ts

The caspo-ts system is based on a combination of ASP and model checking. The
ASP part of the caspo-ts system is used to solve the combinatorial optimization
problem of finding BNs compatible with a PKN and time series data. All learned
BNs are optimized using an objective function, minimizing the distance between
the original and the time series data determined by the BN learned with caspo-
ts. The ASP solver guarantees finding all optimal solutions w.r.t. an objective
function. The model checking part of the system detects TP BNs by checking
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the reachability of time series traces given compatible BNs generated by the
ASP part of the system. TP BNs are guaranteed to reproduce all the (binarized)
traces under all perturbations by verifying reachability in the BN state graph.
Since checking this reachability is a PSPACE-hard problem, the second step
can be very time consuming for large BNs. To resolve this issue, the ASP part
over-approximates solutions [19]. This over-approximation removes a large set
of BNs that have no reachable traces, reducing the number of calls to the model
checker.

The BNs learned by caspo-ts are represented by Boolean formulas in Disjunc-
tive Normal From (DNF), i.e., as a disjunction of conjunctive clauses 2. The BNs
inferred by caspo-ts use the smallest DNF formulas possible, in the sense that no
conjunctive clause can be removed from a DNF formula without changing the
Boolean function it represents. We refer to these BNs as subset minimal BNs.

In the following, we give a brief description of ASP and the solving algorithms
used by caspo-ts. But first let us have a look at an example Boolean formula.

Example 1. To use Boolean formulas we discretize the phosphoproteomic data:
values greater or equal to .5 are set to 1, and to 0 otherwise. Let protein A have
the Boolean formula (B) ∨ (¬B ∧C) containing the two conjunctive clauses (B)
and (¬B ∧ C), where B and C represent proteins. This formula can be used to
update the value of protein A. If the update is applied, A is set to 1 if either the
value of B is 1, or the value of B is 0 and the value of C is 1. Otherwise, the
value of A is set to 0.

Answer Set Programming. A logic program consists of rules of the from

h ← b1 ∧ · · · ∧ bm ∧ ¬bm+1 ∧ · · · ∧ ¬bn
where h is an atom, 0 ≤ m ≤ n, and each bi is an atom. Such a logic program
induces a set of stable models determined by the stable model semantics; see [8]
for details. Each stable model is a subset of the atoms occurring in the logic
program. Atoms appearing in this set are said to be true, and false otherwise.
A rule is satisfied if its body (the part after the ←) is not satisfied, or its head
atom h is true. A rule body is satisfied if all the atoms b1 to bm are true and all
the atoms bm+1 to bn are false. A stable model satisfies all rules of a logic program
and also satisfies a minimality criterion. We do not go into the full details here,
but this criterion requires that each atom in a stable model is proved by some
rule. For this, a true atom has to appear in at least one rule head with a satisfied
body. In the following, we simply refer to the stable models of a logic program
as its solutions.

We use two extensions [25] to logic programs, which are frequently used in
practice and ease modeling problems with ASP. A choice rule has form

{h1, . . . , ho} ← b1 ∧ · · · ∧ bm ∧ ¬bm+1 ∧ · · · ∧ ¬bn
2 A clause can be seen as a reaction, where the proteins represented positively are

available, and the proteins represented negatively are absent. A Boolean formula in
DNF encompasses all possible reactions to update the value of a protein.
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where 1 ≤ o and each hi is an atom. Unlike with the normal rule above, a choice
rule can be used to prove any subset of the atoms h1 to ho whenever its body is
satisfied. A constraint has form

← b1 ∧ · · · ∧ bm ∧ ¬bm+1 ∧ · · · ∧ ¬bn
and it removes all solution candidates that satisfy its body, without proving any
atoms.

Example 2. Using a single choice rule, the solutions of the program

{a, b, c} ← (1)

are all the subsets of the set {a, b, c}. To build up our running example, we
further add the following constraints:

← b ∧ ¬a ∧ ¬c (2)
← ¬b ∧ c (3)
← ¬b ∧ ¬c (4)

The first constraint discards all solutions where b is true, a is false, and c is false.
The second those where b is false and c is true, and the third those where both
b and c are false. Hence, for the above program, we obtain the solutions {a, b},
{b, c}, and {a, b, c}.

ASP Solving. Next, we describe how the ASP solver clingo used by caspo-ts
discovers solutions (BNs) using the conflict driven clause learning algorithm [7],
shown in Algorithm1.

Input: program P
1 Initialize assignment;
2 while assignment is partial do
3 Decide;
4 Propagate;
5 if propagation let to a conflict then
6 Analyze;
7 if conflict can be resolved then
8 Backjump;
9 else

10 return unsatisfiable;

11 return solution given by assignment;
Algorithm 1: Conflict-driven clause learning.

The algorithm works by extending a Boolean assignment over the atoms
occurring in the given logic program P until a solution is found. The assign-
ment is initialized in line 1. Then it is extended by the decision heuristic and
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propagation in the loop in lines 2–10. The call to Decide() in line 3 at the
beginning of the loop uses a heuristic to select an atom, makes it either true or
false, and adds it to the assignment. The consequences of this decision are then
propagated in the following line extending the assignment accordingly. Then it
is checked if propagation leads to a conflict. If this is the case, then the conflict
is analyzed in line 6 and the assignment adjusted in line 8 accordingly. Note
that a call to Backjump() takes back one or more decisions together with their
consequences, and then adds an additional consequence to the assignment. This
property ensures that the algorithm always terminates. It can also happen that
a conflict cannot be recovered from. In this case, the problem is found unsatisfi-
able and the algorithm returns in line 10. Once the assignment is complete, the
corresponding solution (set of true atoms) is returned in line 11.

Example 3. We can now apply this algorithm to our running example (c.f. Exam-
ple 2). Starting with an empty assignment, we set a to false as the first decision.
There are no immediate consequences and, hence, no conflict can arise. Then we
decide to make b false. The consequences of this decision are that c is false via
rule (3), and c is true via rule (4). Hence, we get a conflict, which is resolved
and followed by a backjump. Since the conflict was caused by deciding a truth
value for b, but is independent of the decision for a, the algorithm takes back
all decisions and adds b as a consequence (we now know it must be true in all
solutions). We can then decide to make a false again, which sets c to true via
rule (2). This decision does not cause a conflict and the assignment is no longer
partial. Hence, the algorithm terminates with solution {b, c}.

2.3 Caspo-tsD

Here, we describe the algorithm used for enumerating diverse subset minimal
solutions. In caspo-ts, the algorithm is implemented in the Python program-
ming language using clingo’s multi-shot solving API [13]. The API allows us to
customize the solving process, in particular, it allows us to customize the decision
heuristic of the solving component, which is the key feature to find subset min-
imal answer sets. Note that we implemented the algorithm using the multi-shot
solving API of clingo version 5. For that, we have upgraded the solver clingo of
caspo-ts from 4.5.4 to 5.

Algorithm 2 is used to enumerate subset minimal answer sets. The idea is
to configure the decision heuristic in lines 8 and 10 (see function Decide() in
Algorithm 1 line 3) so that it first makes all atoms subject to subset minimization
false before deciding truth values for other atoms. This modification ensures that
the solution obtained from Algorithm1 by calling Solve() is a subset minimal
solution (see [3] for more details). Such a solution is output in line 12 of the
algorithm. Furthermore, the algorithm calls Solve() in line 5 multiple times to
find all subset minimal solutions. To not enumerate solutions twice, a constraint
preventing to find the same solution again is added to the logic program P in
the following line. This constraint is violated whenever a superset of the atoms
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Input: program P and atoms T to subset minimize
1 Prepare(P);
2 foreach x ∈ T do
3 SetSign(x, false, 1)

4 while satisfiable do
5 S ← Solve();
6 AddConstraint(← a0, . . . , an for {a0, . . . , an} = T ∩ S);
7 foreach x ∈ T ∩ S do
8 SetSign(x, false, 2);

9 foreach x ∈ T \ S do
10 SetSign(x, false, 1);

11 if S is a true positive then
12 Output(S);

Algorithm 2: Diverse subset minimal solution enumeration.

in the previously found solution is true. This process is repeated in the loop in
lines 4–12 until the program is no longer satisfiable and, hence, all solutions have
been enumerated.

So far we only discussed how to enumerate subset minimal solutions. Now
we explain how to extend the method in order to compute diverse solutions.
The key idea to make the next solution different from the previous one is to
assign atoms appearing in the last solution to false before assigning any other
atoms. To modify the heuristic, we use function SetSign(a, t, l), which instructs
the decision heuristic to assign atom a to truth value t on level l. The decision
heuristic assigns free atoms with the highest level to the designated truth values
before assigning atoms on lower levels. By default all atoms have level 0 and the
decision heuristic is free to make them either true or false. The loop in lines 7–8
instructs the decision heuristic to assign atoms that appeared in the last solution
to false on level 2. Any other atoms subject to subset minimization are assigned
to false on level 1 in lines 9–10. And since all other atoms by default have level 0,
they are assigned last. We see in the experiments in the next section that this
strategy breaks up clusters of similar solutions in the solution sequence.

Example 4. We continue with Example 2. Let us assume that a, b, and c are
the atoms subject to subset minimization. Note that in Example 3 all decisions
assigned atoms to false, so the first solution {b, c} obtained is in fact a subset
minimal solution. Let us further assume that Algorithm2 produced this solution
in the first iteration (line 5). First, the constraint ← b∧c preventing any superset
of {b, c} as solution is added in line 6. Then, the decision heuristic is configured
to set atoms b and c to false on level 2 (line 8) and atom a to false on level
1 (line 10). In the next iteration, the only possible decision is to set c to false
because b is already irrevocably assigned. The consequence of this decision is to
set a to true via rule (2). Hence, we obtain solution {a, b}, which is a subset
minimal solution. This is followed by adding the constraint ← a ∧ b in line 6,
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which in turn makes the program unsatisfiable and causes the loop in lines 4–12
to terminate. We correctly obtain the subset minimal solutions {b, c} and {a, b}.
Solution {a, b, c} is not subset minimal and not enumerated.

3 Results

In this section, we discuss the results of applying Algorithm2 on two different
datasets. We start with the artificial benchmark, where the solution space is small
enough to compute all solutions. This allows us to study this benchmark in more
detail. We can analyze how well a limited number of solutions enumerated with
caspo-ts and caspo-tsD represents the solution space. Then we move to the real
dataset, where we cannot enumerate all solutions and can only consider a limited
number of solutions because the solution space is too large. Nevertheless, we can
show improved results with caspo-tsD over caspo-ts by being able to enumerate
more TP BNs and also more diverse BNs.

3.1 Artificial Dataset

Here, we use the TCR signaling dataset [15] to demonstrate the working of
Algorithm 2 by describing two factors: (1) frequency of the clauses, and (2) true
positive rate of BNs. The purpose of studying the first factor is to observe how
many clauses we discover while learning a limited number of BNs. In this case, we
expect to discover more clauses with caspo-tsD than with caspo-ts. The second
factor (the true positive rate) is used to study how TP solutions are distributed
in the solution space. With caspo-tsD, we expect TP solutions to be distributed
much more evenly.

Figure 2 depicts the frequency of clauses in the solutions of the artificial
benchmark. Clauses that occurred in at least one solution are depicted on the x
axis. Each tick stands for one clause and the label has format n ← c where c is
a clause and n is a node name. Furthermore, clauses associated with the same
node are grouped together by shading the background alternatingly in light gray
and white. The frequencies of the clauses are depicted on the y axis. The red
line depicts the frequency considering all 68338 solutions, while the green and
blue lines depict the frequencies of the first 100 solutions computed by caspo-ts
and caspo-tsD, respectively. In total, there are 49 clauses appearing in the family
of BNs. While caspo-tsD (blue line) discovered 48 clauses, caspo-ts (green line)
learned only 29 clauses by enumerating the same number of BNs (100). We also
observe that the blue line is often much closer to the red line (with an average
distance of 0.06) than the green line is (with an average distance of 0.20). This
shows that the diverse enumeration scheme is able to produce solutions that are
less similar to each other and better represent the solution space. The underlying
ASP solver of caspo-ts by default uses an enumeration scheme that backtracks to
the first point from which the next solution can be found. This approach typically
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leads to the situation where successively enumerated solutions only change in
a small part. We can observe this behavior in Fig. 2, where some clauses are
overrepresented.

Fig. 2. Frequency of clauses per node in all 68338 BNs (red line), and in the first 100
BNs enumerated by caspo-ts (green line) and caspo-tsD (blue line). (Color figure online)

Figure 3 depicts the true positive rate of blocks of successive solutions. Each
tick on the x axis stands for a block of 1000 solutions. The y axis depicts the
percentage of true positives in a block of solutions. The red line depicts the
overall true positive rate (78%), while the green and blue lines depict the true
positive rates of caspo-ts and caspo-tsD, respectively.3 We observe that for the
caspo-ts system there are a lot of blocks with either a lot of true positives or very
few. This suggests that true positives are clustered in the sequence of enumerated
solutions. We observe that the diverse enumeration scheme does not show this
behavior. This is especially important for enumerating true positive solutions of
real world instances where only a limited number of solutions can be checked
because of time constraints. With the original caspo-ts system, it can happen that
the first cluster does not contain any true positives, making it impossible to find
any true positive solution within a given time budget. The graph also shows that
the diverse enumeration scheme does not sample over the full solution space. We
see that before around 23000 solutions, the true positive rate is below the ideal
78% and then jumps up afterward. Thus, we conjecture that our enumeration
scheme mainly breaks up local clusters of solutions with the artificial benchmark.
Still, it is able to discover almost all clauses compared to the whole solution set
(the frequency is 0 only once), while caspo-ts does not discover 20 clauses at all.

3 For example, when x has value 3000, the y value in blue gives the true positive rate
among the solutions 2001 to 3000 computed bycaspo-tsD.
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Fig. 3. True positive rate of BNs grouped in blocks of 1000 networks. (Color figure
online)

3.2 HPN-DREAM Challenge Dataset

Next, we show the results of applying diverse solution enumeration to the HPN-
DREAM challenge dataset [11]. We discuss the results according to three aspects:
(1) time to compute the first true positive BN, (2) similarity among the family of
solutions, and (3) Boolean functions computed by the original caspo-ts and the
extended caspo-tsD system. We start the analysis with four cell lines, and then
we provide a detailed analysis of the Boolean functions of one cell line discovered
by caspo-ts and caspo-tsD.

Given that model checking is a computationally hard problem, we stop an
experiment after a system verifies (using the model checker) 46 BNs per cell
line4. The model checking task was performed on a server with 1.5 Tb of RAM.
Table 1 shows the number of TP BNs obtained for each cell line. We see that
the number of TP BNs differs comparing caspo-ts and caspo-tsD. For MCF7 we
obtain 0 TP BNs with caspo-ts and 4 TP BNs with caspo-tsD, while for BT549
we obtain 2 and 14 TP BNs, respectively. For the other two cell lines BT20 and
UACC812, we obtain a comparable number of BNs. We observe that we can
get more TP solutions by checking the same number of BNs with caspo-tsD.
This is an important improvement given the fact that model checking the BNs
is a computationally hard problem. Next, we consider the time column showing
the time to compute the first TP BN for each cell line. We see that we are
unable to get TP BN with caspo-ts in case of the MCF7 cell line, which shows
that the caspo-ts system is stuck in a part of the search space where there are
only FPs. Otherwise, for the other cell lines the time to get the first TP BN
is comparable. We conclude that the difficulty to model check a BN depends
on the cell line and not on the order in which solutions are found. Finally, the
similarity column shows the similarity score among the set of TP BNs for each

4 Note that the model checker could only verify 32 out of 46 solutions within one
month for cell line BT20 in case of caspo-tsD. There may exist more TPs for this
cell line.
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cell line. This score is calculated by comparing the clauses of one cell line with
each other. We observe that the similarity among the solutions is much higher
for caspo-ts than for caspo-tsD. From this we conclude that, studying the same
number of networks, caspo-tsD can discover more clauses representing diverse
signaling behaviors.

Table 1. Number of TP BNs out of 46 BNs, time to get the first TP solution, and
similarity among TP solutions per cell line.

caspo-ts caspo-tsD

Cell Line TPs Time Similarity TPs Time Similarity

MCF7 0 — — 4 6.7 h 0.51

BT549 2 8.4 min 0.92 14 7.9 min 0.44

UACC812 20 26 s 0.81 15 27 s 0.45

BT20 13 20 h 0.86 7+ 20 h 0.32

Now, we analyze in more detail the UACC812 cell line using caspo-ts. Fig. 4
shows the union of 10 TP BNs obtained by caspo-ts. There are four different
kinds of nodes in the graph: (1) stimuli shown in green, (2) inhibitors shown in
red, (3) readouts shown in blue, and (4) unobserved nodes shown in white. Note
that blue nodes with red borders are readouts, which are also inhibitors. There
are two different kinds of edges shown in red and green color. Green edges are
used to show a positive influence (←), and red edges are used to show a negative
influence (�). We have discovered 25 clauses with caspo-ts, and we observe that
the learned BNs only contain Boolean functions with clauses of size one. We
also notice that the learned BNs are very similar to each other, as we see in
Table 1 with the similarity score of 0.81. This relates to the fact that the ASP
solver used by caspo-ts uses a backtracking algorithm to enumerate solutions
and, hence, the solutions only change in small parts.

Next, we analyze the UACC812 cell line using caspo-tsD. Fig. 5 shows the
union of 10 TP BNs obtained by caspo-tsD. Nodes, edges and colors have the
same meaning as in Fig. 4. Unlike with caspo-ts, here we identified clauses with
more than one element. They are represented by black rectangles where the
nodes of incoming edges are their elements. Additionally, we use dashed edges
to represent clauses that were also discovered by caspo-ts. In total, caspo-tsD

discovered 66 clauses, 41 more than caspo-ts. It identified 23 out of the 25 clauses
discovered by the original system, and 43 additional clauses, studying the same
number of BNs. It is important to note that even though for the UACC812 cell
line caspo-tsD learned 5 TP BNs less than caspo-ts, the number of clauses learned
by caspo-tsD is 3 times higher. Since we find much more clauses with caspo-tsD,
we can get an impression of the whole solution space by just inspecting a limited
number of solutions. This analysis shows the efficacy of the extended caspo-tsD

system in a real case scenario, where it is difficult to study the complete solution
space because of time constraints.
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Fig. 4. caspo-ts: 10 optimal TPs BNs concatenated for cell line UACC812. All BNs are
identically optimal. (Color figure online)

Fig. 5. caspo-tsD: 10 optimal TP BNs concatenated for cell line UACC812. The dashed
edges are used to represent clauses that were also discovered by caspo-ts. AND gates
are represented by black boxes.
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4 Conclusion

We have presented an algorithm to enumerate diverse optimal solutions with the
caspo-ts system. The new algorithm extends the approach of [21] for computing
diverse optimal solutions. The novelty of this extension is that by modifying the
heuristic of the solver we manage to enumerate solutions that are both optimal
and diverse. There are other approaches for computing diverse solutions [6,10,18]
but they do not consider optimization problems. We applied caspo-tsD on an arti-
ficial dataset (TCR signaling) as well as a real case study (HPN-DREAM) to
learn diverse BNs. We compared the results with the caspo-ts system, showing a
substantial improvement in solution quality. For one, we discovered more signal-
ing behaviors (clauses) comparing solutions enumerated with both systems. For
another, we were able to find solutions for cell line MCF7, where caspo-ts could
not find solutions before. In the near future, we plan to extend the diversity
algorithm in two directions. First, we are planning to experiment with solver
parameters in order to introduce some randomness into the search. Second, we
intend to extend the algorithm to call the model-checker only on answer sets
which are diverse (according to some measure to be defined). This is possible
because the time to enumerate over-approximated solutions using the ASP solver
is much lower than the time needed to check solutions using the model-checker.
We expect both enhancements to further improve the diversity of the discovered
solutions.
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