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Abstract—In order to find good design points for embedded
systems, an efficient exploration of the design space is imperative.
The ever-increasing complexity of embedded systems, however,
results in a deterioration of the overall exploration performance.
The DSE essentially consists of two parts: (1) the search for
feasible solutions and (2) the evaluation of found feasible
solutions. While the search has been massively improved by
ASPmT-based strategies, the evaluation emerges as the main
bottleneck. Tragically, evaluating bad solutions takes as much
time as evaluating good ones. Hence, in this paper we study
the utilization of approximations in the evaluation process
integrated in an ASPmT-based DSE to identify bad solutions
more quickly while still retaining the exact Pareto-front.

Index Terms—Design Space Exploration, System-level Design,
Approximation

I. INTRODUCTION AND RELATED WORK

Exploring the design space of embedded systems involves a
number of steps that influence the overall performance and can
be conceptually seen as a filtering process (see [1]) as depicted
in Fig. 1. From the set of all possible solutions X , a feasibility
filter returns design points that comply with given feasibility
constraints, i.e., feasible binding, routing, etc., forming the
feasible set XF . Afterwards, the validity filter yields valid
design points XV based on quality constraints, e.g., latency
and power constraints. Finally, all dominated design points are
sorted out by the Pareto filter, resulting in XP . A solution x is
dominated by solution y if all objective functions fn evaluate
y to be at least equivalent good as x and at least one objective
evaluates y better than x. While the feasibility filter is usually
based on structural rules that can be efficiently solved by sym-
bolic techniques such as SAT and Answer Set Programming
(ASP), the validity and Pareto filters depend on the evaluation
of the design points w.r.t. constraint and objective functions
like latency, power, and area requirements. Especially, non-
linear objectives (e.g., latency) are hard to evaluate as often
costly simulations have to be executed. Moving these filters
into a background theory, resulting in an ASP modulo Theory
(ASPmT)-based design space exploration (DSE) [2], has been
shown to speed up the search. However, the evaluation of
feasible implementations remains a bottleneck.

In order to speed up this process, Piscitelli et al. [3]
propose to use a hybrid approach combining fast analytical
estimations with costly but accurate simulations. Here, the
application mapping is first encoded into a Kahn Process
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Fig. 1. Design Space Exploration as filtering process obtaining the Pareto
front XP from the design space X .

Network (KPN) and analyzed analytically. Whenever the
resulting KPN contains cycles, the estimation becomes
inaccurate and the costly simulation is executed to obtain the
real objective value. The authors, however, propose to relax
this requirement by only evaluating a specific percentage of
found solutions using simulations while using the estimation
for the rest. Hence, some non-dominated designs might be
excluded from the final solution set. More recently, Zhang
et al. [4] propose to approximate objective and constraint
functions using stochastic simulations. After an initial set of
design points, they determine the probability of feasibility
as well as the expected hypervolume improvement to select
the next regions to explore. Again, this approach only creates
an approximate Pareto front of the problem, i.e., some
Pareto-optimal design points might not be found.

In comparison, we present an approximation-based
methodology that is able to obtain the true Pareto front.
For this purpose, we to use approximations during objective
calculation in the background theory of the ASPmT-based
DSE with the goal to prune regions from the search space that
do not contain non-dominated solutions. Only in cases where
approximation does not permit an early decision, the more
time-consuming accurate objective calculation is invoked.

II. APPROXIMATIONS FOR DSE

Typically, during the exploration, one or more solutions
from the design space X are taken and evaluated for
feasibility, validity, and non-dominance regarding already
found solutions. In the beginning of the DSE, many of
the newly found (valid) design points are considered to be
non-dominated and the overall quality improves steadily. With
each improvement, however, the number of better solutions
is reduced resulting in stagnation after these initial improve-
ments. Still, in this phase, each novel solution from the design
space is evaluated with the same costly evaluation functions.

Instead, we propose to utilize fast estimation functions that
accelerate deciding whether a design point is dominated by
already found solution or not. The idea is that the estimated
quality vectors are compared against the already found
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Fig. 2. Under-approximations in minimization problems. The shaded red and
green regions are possible locations of the exact values A and B, respectively.

solutions and only if the results indicate a promising quality,
the costly exact evaluation is performed. Nevertheless, this
technique is only possible if the accuracy of the estimation
is bounded. A precise restriction of the estimation to specific
error bounds, as required in the work of Abraham et al. [1],
is typically not viable for real-world objectives like latency.
Thus, we relax the restriction of specific error bounds towards
estimation consistency, called over- and under-approximations
in the following. Given an exact objective function f(X), an
estimation is called over-approximation f↑(X) if the estimated
value is always larger than (or equal to) the exact value.
Analogously, an estimation is called under-approximation
f↓(X) if the estimated value is always smaller than (or equal
to) the exact value. Formally: f↓(X) ≤ f(X) ≤ f↑(X). For
example, in the area of embedded system-level design, a safe
under-approximation for the latency evaluation is finding a
schedule without considering communication delays and link
congestion. This way, the number of variables and, thus, the
evaluation time can be reduced.

The reasonable utilization of under- and over-approximation
is mutually exclusive. While minimization problems mainly
profit from under-approximation, over-approximations can
be leveraged by maximization problems. Without loss of
generality, the technique is depicted in Fig. 2 for the objective
functions f1 and f2 that are to be minimized. In the first step,
both design points A and B are estimated through f↓1 and f↓2 .
As can be seen, the under-approximated quality vector of A
is already dominated by the previously found solutions in the
non-dominated front. In combination with the fact that the
exact value is always larger than the approximation, A can
be discarded directly. On the other hand, the estimation of B
dominates the current front and might be an Pareto-optimal
design point. Hence, the value of B has to be determined
through the exact objective functions. Afterwards, the
dominance check can be performed for the exact value of B.

III. ACCURACY VS. APPROXIMATION TIME

As can be seen in the example above, the advantage of our
approach helps to diminish the evaluation time whenever the
estimated quality vector is already dominated by previously
found deign points. On the other hand, two calculations are
necessary (i.e., the estimated and exact) if the new design
point is still non-dominated after approximation. One of the
most important factors influencing the number of double
calculation is the accuracy of the estimation itself. That is,
if the estimation is very inaccurate w.r.t. the exact value,
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Fig. 3. Dependency of the accuracy and calculation time of the estimation
function on the total execution time.

most of the evaluations have to be executed twice introducing
an additional solving overhead compared to the original
methodology without using function approximations.

In order to visualize this problem, we conducted a set of
Pareto-filtering simulations with convex and concave Pareto
sets. We generated a set XV of 10,000 valid design points and
filtered out the non-dominated set XP . For this illustration,
the accuracy1 α ∈ {0.05, ... , 1.0} and approximation time
τ ∈{0.05,...,1.0} were given as fractions of the corresponding
exact calculations. For example, if the exact evaluation takes
T time units and produces the quality vector (v1, v2), the
estimation takes τ ·T time units and yields (α·v1,α·v2). The
characteristics of the results are similar for each investigated
Pareto set and only differ in specific values. As depicted in
Fig. 3, both the accuracy and the required approximation time
are important for an overall improvement of the total execution
time (i.e., the complete Pareto-filtering process). While the
blue regions indicate an improvement, red regions indicate a
deterioration compared to using exact evaluations only.

IV. DISCUSSION

We presented a methodology on how to utilize constraint
and objective function approximation in order to fasten exact
design space exploration. The visualization presented in the
previous section shows the most important requirements of the
approach: in order to improve the overall filtering performance,
the estimation functions have to be selected carefully to assure
a certain accuracy. However, real DSE may perform differently
as the parameters α and τ might not be statically determinable.
In principle, the methodology presented here is independent
of the utilized DSE technique. Yet, detailed implications for
specific search strategies (e.g., population-based strategies)
are not negligible and have to be studied further.

REFERENCES

[1] S. G. Abraham et al., “Fast design space exploration through validity
and quality filtering of subsystem designs,” HP Laboratories Technical
Report, vol. 98, 2000.

[2] K. Neubauer et al., “Exact multi-objective design space exploration
using aspmt,” in Proceedings of DATE, March 2018, pp. 257–260.

[3] R. Piscitelli and A. D. Pimentel, “Design space pruning through hybrid
analysis in system-level design space exploration,” in Proc. of DATE,
2012, pp. 781–786.

[4] J. Zhang et al., “Estimation of the pareto front in stochastic simulation
through stochastic kriging,” Simulation Modelling Practice and Theory,
vol. 79, pp. 69 – 86, 2017.

1For sake of brevity, we use an accuracy model that scales all objectives
simultaneously.


