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Abstract
We develop a principled approach to configuration that targets Answer Set Programming by integrating established concepts
in a uniform setting. We begin by defining an abstract specification of configuration problems, drawing on concepts from
the literature. We define both, user requirements and configuration solutions, as (partial) instantiations of a configuration
model, and require the latter to be an extension of the former. The core of our configuration models comprise a partonomic
structure which is adorned with constraints over atomic and aggregated attributes. Driven by this principled approach, we
then develop a domain-independent ASP encoding for configuration.
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1. Introduction
Configuration has been a central topic in AI since several
decades [1, 2, 3]. Early on already, non-monotonic for-
malisms emerged as a promising alternative for modeling
configuration problems [4]. Nowadays, this role is filled
by Answer Set Programming (ASP) [5], a non-monotonic
problem solving paradigm, combining an easy, rule-based
modeling language with high performance solving ca-
pacities [6, 7]. Over the years, this has led to several
applications of ASP to configuration problems, among
them [8, 9, 10] and notably the ASP-based configuration
systems WeCoTin [11] and VariSales [12].

Our objective is to develop a principled ASP-oriented
approach to configuration, which integrates established
concepts from configuration in a uniform setting. How-
ever, while ASP usually strives for generality, aiming at
problem encodings covering the greatest possible class of
problems, many approaches to configuration appear to
be more down-to-earth, targeting more specific classes
of configuration problems. Hence, as an intermediate
step, we begin by defining an abstract specification of
configuration problems, drawing on concepts borrowed
from [13, 2, 14]. More precisely, we describe configura-
tion problems in terms of a configuration model, user
requirements and resulting configuration solutions [15].
Both user requirements and solutions are defined as (par-
tial) instantiations of the configuration model [13], where
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the latter is required to be an extension of the former. The
core of our configuration models comprise a partonomic
structure which is adorned with constraints over atomic
and aggregated attributes.

Driven by this principled approach, we then develop a
domain-independent ASP encoding for configuration.

The paper is structured as follows. In section 2 we
formally define a configuration problem and its solutions.
Section 3 discusses how constraints and aggregation of
values are handled. In section 4 we present the ASP fact
format and encoding and show how to solve configura-
tion problems using the ASP solver clingo. Section 5 gives
an overview of related work and section 6 concludes the
paper.

2. Configuration problem and
solutions

We represent configuration problems as (configuration)
models along with one of their (partial) instantiations.
Formally, both are expressed in terms of (directed) multi-
graphs;1 the model’s graph delineates the ones capturing
partial instantiations. User requirements and solutions
are both represented by instantiations.

A configuration problem is a pair (𝑀, 𝐼). A simple
example is given in Figure 1. The (configuration) model
𝑀 is a tuple (𝑇, 𝑃, 𝑠𝑝, 𝑡𝑝, 𝐷, 𝑉,𝐸,𝐶, de, at , co), where

1. (𝑇, 𝑃, 𝑠𝑝, 𝑡𝑝) is a multigraph, where
a) 𝑇 is a set of types,
b) 𝑃 = 𝑃𝑃 ∪𝑃𝐶 is a partition of ports, where

i. 𝑃𝑃 is a set of partonomic ports,
ii. 𝑃𝐶 is a set of connection ports,

1A multigraph is a graph admitting more than one arc between two
vertices; for this, we use edges with own identity.
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Figure 1: Example of a simple configuration problem.

c) 𝑠𝑝 : 𝑃 → 𝑇 assigns a port its source type,
d) 𝑡𝑝 : 𝑃 → 𝑇 assigns a port its target type,

and
e) (𝑇, 𝑃𝑃 , 𝑠𝑝, 𝑡𝑝) is a rooted acyclic graph,

2. 𝐷 = 𝐷𝑃 ∪𝐷𝐴 is a partition of descriptors, where
a) 𝐷𝑃 is a set of port descriptors,
b) 𝐷𝐴 is a set of attribute descriptors,

3. 𝑉 is a set of values,
4. 𝐸 is a set of evaluators,
5. 𝐶 is a set of table constraints,
6. 𝑑𝑒 : 𝑃 → 𝐷𝑃 assigns a port its port descriptor,

such that
if 𝑠𝑝(𝑝) = 𝑠𝑝(𝑝

′) and 𝑑𝑒(𝑝) = 𝑑𝑒(𝑝′)
then 𝑝 = 𝑝′ for all 𝑝, 𝑝′ ∈ 𝑃 ,

7. 𝑎𝑡 : 𝑇 → 2𝐷𝐴×𝐸 assigns a type its set of at-
tribute descriptors and evaluators, such that

for any type 𝑡 ∈ 𝑇 , if (𝑑, 𝑒), (𝑑, 𝑒′) ∈ 𝑎𝑡(𝑡)
then 𝑒 = 𝑒′, and

8. 𝑐𝑜 : 𝑇 → 2𝐶 assigns a type its set of constraints.

We often refer to (𝑇, 𝑃, 𝑠𝑝, 𝑡𝑝) as the model graph, and
to (𝑇, 𝑃𝑃 , 𝑠𝑝, 𝑡𝑝) as the partonomy (graph); its root rep-
resents the configured object.

An example of a model graph is given on the
left in Figure 1. It consists of four types, 𝑇 =
{Bike,Frame,Wheel ,Bag}, linked by five partonomic
ports, viz. 𝑃𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5} with source
𝑠𝑝(𝑝1) = 𝑠𝑝(𝑝2) = 𝑠𝑝(𝑝3) = Bike , 𝑠𝑝(𝑝4) = Frame ,
𝑠𝑝(𝑝5) = Wheel and target 𝑡𝑝(𝑝1) = Frame , 𝑡𝑝(𝑝2) =
𝑡𝑝(𝑝3) = Wheel and 𝑡𝑝(𝑝4) = 𝑡𝑝(𝑝5) = Bag . The cor-
responding descriptors are 𝑑𝑒(𝑝1) = frame , 𝑑𝑒(𝑝2) =
frontWheel , 𝑑𝑒(𝑝3) = rearWheel and 𝑑𝑒(𝑝4) =
𝑑𝑒(𝑝5) = bag . Note that two ports can have the same
descriptor as long as their source type is different. In
usual graph terminology, this amounts to two edges
(Bike,Wheel) labeled with frontWheel and rearWheel ,

respectively. A third edge (Bike,Frame) labeled with
frame and a fourth and fifth edge (Frame,Bag), resp.
(Wheel ,Bag), both labeled with bag . The other compo-
nents of a configuration model are detailed in Section 3.

An instantiation 𝐼 of 𝑀 is a tuple
(𝑂,𝐴, 𝑠𝑎, 𝑡𝑎,𝑚𝑂,𝑚𝐴, 𝑋, 𝑣), where

1. (𝑂,𝐴, 𝑠𝑎, 𝑡𝑎) is a multigraph, where
a) 𝑂 is a set of objects,
b) 𝐴 is a set of associations,
c) 𝑠𝑎 : 𝐴 → 𝑂 assigns an association its

source object,
d) 𝑡𝑎 : 𝐴 → 𝑂 assigns an association its

target object,
2. 𝑚𝑂 : 𝑂 → 𝑇 maps objects to types,

𝑚𝐴 : 𝐴 → 𝑃 maps associations to ports, such
that for all 𝑎 ∈ 𝐴

a) 𝑚𝑂(𝑠𝑎(𝑎)) = 𝑠𝑝(𝑚𝐴(𝑎)), and
b) 𝑚𝑂(𝑡𝑎(𝑎)) = 𝑡𝑝(𝑚𝐴(𝑎)),

3. 𝑋 = {(𝑜, 𝑑) | 𝑜 ∈ 𝑂, (𝑑, 𝑒) ∈
𝑎𝑡(𝑚𝑂(𝑜)) for some 𝑒 ∈ 𝐸} is a set of attribute
variables, and

4. 𝑣 : 𝑋 → 𝑉 maps attribute variables to values.

For simplicity, we sometimes drop the subscripts of 𝑚𝑂

and 𝑚𝐴 and simply write 𝑚, when clear from the type
of argument.

An example instantiation of the configuration model
in Figure 1 is given on its right. It includes ob-
jects 𝑂 = {bike,wheel1 ,wheel2 , bag1 , bag2} whose
relationships are fixed via the associations 𝐴 =
{𝑎1, 𝑎2, 𝑎3, 𝑎4} with source 𝑠𝑎(𝑎1) = 𝑠𝑎(𝑎2) =
bike and 𝑠𝑎(𝑎3) = 𝑠𝑎(𝑎4) = wheel1 , and target
𝑡𝑎(𝑎1) = wheel1 , 𝑡𝑎(𝑎2) = wheel2 , 𝑡𝑎(𝑎3) =
bag1 , and 𝑡𝑎(𝑎4) = bag2 . The actual instanti-
ation of the configuration model is warranted by
functions 𝑚𝑂 and 𝑚𝐴. The object mappings are



𝑚𝑂(bike) = Bike , 𝑚𝑂(wheel1 ) = 𝑚𝑂(wheel2 ) =
Wheel , and 𝑚𝑂(bag1 ) = 𝑚𝑂(bag2 ) = Bag . The asso-
ciation mappings are 𝑚𝐴(𝑎1) = 𝑝2 and 𝑚𝐴(𝑎2) = 𝑝3,
and 𝑚𝐴(𝑎3) = 𝑚𝐴(𝑎4) = 𝑝5. There are no corre-
sponding objects and associations for type Frame and
partonomic port frame , respectively. This shows that
partial instantiations are fully admissible.

The other components of instantiations are detailed in
Section 3.

Finally, a valid instantiation 𝐼 of 𝑀 satisfies the fol-
lowing conditions:

1. All constraints in co(𝑚(𝑜)) are satisfied for all
𝑜 ∈ 𝑂, and

2. the subgraph (𝑂,𝐴𝑃 , 𝑠𝑎, 𝑡𝑎), where 𝐴𝑃 = {𝑎 ∈
𝐴 | 𝑚𝐴(𝑎) ∈ 𝑃𝑃 } is the set of all parto-
nomic associations, is a tree with root 𝑟 ∈ 𝑂
such that 𝑚𝑂(𝑟) is the (partonomic) root of
(𝑇, 𝑃𝑃 , 𝑠𝑝, 𝑡𝑝).

The satisfaction of constraints is detailed in Section 3.
The first condition ensures consistency of the instan-
tiation while the second guarantees that it is indeed a
configuration of the object in focus where every non-root
object is a part of exactly one other object.

For comparing instantiations in terms of partiality, we
view all components as sets (i.e., functions as relations)
and compare them with set inclusion. Accordingly, we
say that an instantiation 𝐼 ′ is an extension of another
𝐼 , written 𝐼 ≺ 𝐼 ′, if all components of 𝐼 are subsets of
the ones of 𝐼 ′. In this way, we may pose a configuration
problem (𝑀,𝑈) as a configuration model 𝑀 along with
user requirements 𝑈 expressed as a (partial) instantiation
of 𝑀 . We define the set of solutions to (𝑀,𝑈) as

𝑆(𝑀,𝑈) = {𝐼 |𝐼 is a valid instantiation of 𝑀

and 𝑈 ⪯ 𝐼} .

This assures the user requirements are included in any
solution; invalid user requirements or ones which cannot
be extended to a valid instantiation may lack solutions.

A minimal solution of some user requirements 𝑈 is
a valid extension 𝑈 ≺ 𝐼 such that there is no valid
instantiation 𝐼 ′ with 𝑈 ≺ 𝐼 ′ ≺ 𝐼 .

One might wonder why a rigourous specification of
configuration problems as shown above is necessary.
Such a specification allows us to show properties of our
formalism. For example, there is a simple proof that the
solution space behaves monotonically for a fixed model.

Proposition 1. Let 𝑀 be a fixed configuration model.
Then for any user requirements 𝑈 and 𝑈 ′ it holds that
𝑈 ≺ 𝑈 ′ implies 𝑆(𝑀,𝑈 ′) ⊆ 𝑆(𝑀,𝑈).

Proof. Take any 𝐼 ∈ 𝑆(𝑀,𝑈 ′). Per definition 𝐼 is valid
and 𝑈 ′ ≺ 𝐼 , that is, all components of 𝑈 ′ are subsets of 𝐼 .
We also have 𝑈 ≺ 𝑈 ′ so all components of 𝑈 are subsets

of 𝑈 ′. That means all components of 𝑈 are also subsets
of 𝐼 and thus 𝑈 ≺ 𝐼 . It follows that 𝐼 ∈ 𝑆(𝑀,𝑈).

Note that in general this does not hold for minimal
solutions.

3. Constraint handling and
aggregation

The objects in a valid instantiation must satisfy all asso-
ciated constraints in the underlying configuration model.
Apart from the structural constraints imposed by the
model graph, additional constraints can be imposed on
objects (in the instantiation) via their types.

As an example, consider Figure 2 showing the model
graph from Figure 1 but with attributes and constraints.
The model is extended by a set of constraints 𝐶 =
{𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6}, assigned to their corresponding
types, viz. 𝑐𝑜(Bike) = {𝑐1, 𝑐2, 𝑐3}, 𝑐𝑜(Wheel) =
{𝑐4, 𝑐5}, and 𝑐𝑜(Bag) = {𝑐6}.

The attributes are assigned to their types as follows

𝑎𝑡(Bike) = {(maxWeight ,⊤), (minStowage,⊤),

(totalWeight , 𝑒1), (stowage, 𝑒2)},
𝑎𝑡(Wheel) = {(size,⊤), (weight ,⊤)}, and

𝑎𝑡(Bag) = {(volume,⊤), (weight ,⊤)}.
Here ⊤, 𝑒1, 𝑒2 ∈ 𝐸 are evaluators whose function is
explained later in this section. While constraint 𝑐1 guar-
antees that the front and rear wheel of a bicycle have
the same size, constraints 𝑐2 and 𝑐3 assure that the val-
ues of the total weight and stowage of the bike lie within
some (possibly user-requested) range. Constraints 𝑐4 and
𝑐5 specify possible combinations of the attributes of the
wheels and bags. Lastly, constraint 𝑐6 expresses that only
small bags can be attached to a wheel.

We represent constraints in their canonical form as
tables. For illustration of how table constraints work,
consider the instantiation in Figure 3 and constraint
𝑐1 ∈ 𝑐𝑜(𝑚(bike)) from Figure 2. This constraint is ex-
pressed as an equality but can easily be rewritten as a
table containing all combinations which satisfy the given
relation. The constraint describes compatible values of
the attribute size of Wheel at paths frontWheel and rear-
Wheel of Bike.

To make this relation precise, we rely on path expres-
sions leading from the type at hand to the attributes in
focus. In our example, they are given in the header of
the table constraint. Notably, given that this structure is
mirrored in corresponding instantiations, the path expres-
sions also allow us to access the values of these attributes
from each object of the type at hand.

More precisely, a path expression is a finite sequence
of descriptors. We distinguish path expressions only in-
cluding port descriptors in 𝐷𝑃 , and the ones consisting
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of a sequence of port descriptors followed by a single at-
tribute descriptor from 𝐷𝐴. We refer to them as port and
attribute path expressions, respectively. Attribute path
expressions are used as attributes in table constraints, as
with (frontWheel , size) or (weight) in Figure 2.

With this, a table constraint is a pair ((𝑑1⃗, . . . , 𝑑�⃗�), 𝑅)

where each 𝑑�⃗� is an attribute path expression for
1 ≤ 𝑖 ≤ 𝑛 and 𝑅 ⊆ 𝑉 𝑛 is an 𝑛-ary relation over 𝑉 .
We use path expressions to select objects as well as at-
tribute variables. For an object 𝑜 ∈ 𝑂 and 𝑛 ≥ 0, we
define

sel𝑜(𝜖) = {𝑜} for the empty path sequence 𝜖. (1)

sel𝑜((𝑑1, . . . , 𝑑𝑛, 𝑑𝑛+1)) =

{𝑜′ ∈ 𝑂 | 𝑎 ∈ 𝐴, 𝑡𝑎(𝑎) = 𝑜′,

𝑠𝑎(𝑎) ∈ sel𝑜((𝑑1, . . . , 𝑑𝑛)), de(𝑚(𝑎)) = 𝑑𝑛+1}
if 𝑑𝑛+1 ∈ 𝐷𝑃 and 𝑑𝑖 ∈ 𝐷𝑃 for 1 ≤ 𝑖 ≤ 𝑛. (2)

sel𝑜((𝑑1, . . . , 𝑑𝑛, 𝑑𝑛+1)) =

{(𝑜′, 𝑑𝑛+1) ∈ 𝑋 | 𝑜′ ∈ sel𝑜((𝑑1, . . . , 𝑑𝑛))}
if 𝑑𝑛+1 ∈ 𝐷𝐴 and 𝑑𝑖 ∈ 𝐷𝑃 for 1 ≤ 𝑖 ≤ 𝑛. (3)

In our example, for constraint 𝑐1 ∈ 𝑐𝑜(𝑚(bike)) we
get

selbike((frontWheel)) = {wheel1} (4)

selbike((rearWheel)) = {wheel2} (5)

selbike((frontWheel , size)) = {(wheel1 , size)} (6)

selbike((rearWheel , size)) = {(wheel2 , size)} . (7)

While (6) and (7) give attribute path expressions, (4) and
(5) give port path expressions.

Given an object 𝑜 ∈ 𝑂 and a valuation 𝑣,
𝑜 satisfies a table constraint ((𝑑1⃗, . . . , 𝑑�⃗�), 𝑅) in
co(𝑚(𝑜)), if (𝑣(𝑥1), . . . , 𝑣(𝑥𝑛)) ∈ 𝑅 for every
(𝑥1, . . . , 𝑥𝑛) ∈ sel𝑜(𝑑1⃗)× · · · × sel𝑜(𝑑�⃗�).

For the type bike in our example in Figure 3, we con-
tinue the illustration of constraint 𝑐1 ∈ 𝑐𝑜(𝑚(bike))
given by

(((frontWheel , size), (rearWheel , size)),

{(22, 22), (24, 24), (27, 27), (29, 29)})

When using the two attribute path expressions to select
attribute variables, we look at the cross product of (6)
and (7):

{((wheel1 , size), (wheel2 , size))} (8)

Applying the valuation 𝑣 from Figure 3, namely,

𝑣 = {(wheel1 , size) ↦→ 27, (wheel2 , size) ↦→ 27, . . . }



to the cross product obtained in (8) yields tuple
(27 , 27 ) which belongs to the binary relation of
𝑐1 ∈ co(𝑚(bike)). In this way, we can check sat-
isfaction of all other constraints of the instantiation
in Figure 3 which are 𝑐𝑜(𝑚(bike)) = {𝑐1, 𝑐2, 𝑐3},
𝑐𝑜(𝑚(wheel1 )) = 𝑐𝑜(𝑚(wheel2 )) = {𝑐4, 𝑐5}, and
𝑐𝑜(𝑚(bag1 )) = 𝑐𝑜(𝑚(bag2 )) = {𝑐6}. Due to space
limitations we do not work this out in detail but by com-
paring Figures 2 and 3 it is easy to see that all objects in
our example instantiation satisfy the constraints imposed
by their underlying types. Together with the fact that
the instantiation in Figure 3 is a tree with root bike and
𝑚𝑂(bike) = Bike constitutes the partonomic root of
the model graph, we may conclude that our example is a
valid instantiation of our configuration model.

The constraint illustrated above imposed a relation on
attributes with atomic values. In addition, we want to
account for attributes taking aggregated values. For ex-
ample, the weight of a wheel is (usually) explicitly given,
while that of an entire bike must be calculated from the
weights of its components. Also, we can use calculated
attributes for enforcing port multiplicities, as we show
below. To this end, we allow for attributes whose value is
either assigned or calculated via aggregate functions, like
addition or maximum. We address this via the evaluators
in 𝐸 along with a refinement of the valuation function 𝑣.
As above, we rely on path expressions for selecting the
values subject to aggregation.

Accordingly, an evaluator 𝑒 ∈ 𝐸 is either ⊤, in-
dicating that an atomic value is assigned, or a pair
((𝑑1⃗, . . . , 𝑑�⃗�), 𝑓) where each 𝑑�⃗� is a path expression for
1 ≤ 𝑖 ≤ 𝑚 and 𝑓 is an aggregate function. Aggre-
gate functions are defined on sets and yield an element
from 𝑉 . When the input is the empty set, this is their
neutral element, e.g., 0 for the function sum.

Given 𝑜 ∈ 𝑂, we define for (𝑑, 𝑒) ∈ at(𝑚𝑂(𝑜))

𝑣((𝑜, 𝑑)) =

{︃
𝑣 ∈ 𝑉 if 𝑒 = ⊤
𝑓
(︁⋃︀𝑛

𝑖=1 sel𝑜(𝑑�⃗�)
)︁

if 𝑒 = ((𝑑�⃗�)
𝑛
𝑖=1, 𝑓)

This function combines the assignment of attributes to
atomic and calculated values.

For simplicity, we often write 𝑑 = 𝑓(𝑑1⃗, . . . , 𝑑�⃗�)

whenever (𝑑, ((𝑑1⃗, . . . , 𝑑�⃗�), 𝑓)) ∈ at(𝑡) for some type
𝑡 ∈ 𝑇 . For example, in Figure 2 consider the at-
tribute calculating the total weight of a bike indicated by
totalWeight = sum((*,weight)). In the above notation, this
corresponds to attribute (totalWeight , 𝑒1) ∈ 𝑎𝑡(Bike),
with evaluator 𝑒1 = ((*,weight), sum). The expression
(*,weight) is syntactic sugar for all attribute path expres-
sions pointing to an attribute weight, here expanding to
the sequence

((frontWheel ,weight), (rearWheel ,weight),
(frontWheel , bag ,weight), (rearWheel , bag ,weight),
(frame, bag ,weight)) .

Accordingly, the value of the calculated attribute total-
Weight of object bike is 4550, the sum of two individual
wheel weights 2100 and individual bag weights of 250
and 100, as shown in the instantiation in Figure 3.

The above concepts also allow us to account for port
multiplicities. This can be done by using a calculated
attribute constrained by all legitimate multiplicities. As
an example, consider the model in Figure 2 but with
the type Wheel extended by an attribute #bags along
with the evaluator (((𝑏𝑎𝑔)), count) and the table con-
straint ((#𝑏𝑎𝑔𝑠), ((0), (2))) ; it expresses that a wheel
must have exactly 0 or 2 bags. Instead of writing out the
constraint and auxiliary attribute, we often denote this
by just adding “{0, 2}” to the correponding arrow. Note
that unlike above, the aggregator relies on a port path
expression, yielding the bags bag1, bag2 for wheel1 and
no objects for wheel2. Accordingly, the value of attribute
#bags of wheel1 (resp. wheel2) is 2 (resp. 0). This is among
the admissible values of the constraint imposed by Wheel.

4. An ASP-based solution to
configuration problems

For brevity, we refrain from giving an introduction to
ASP. Full details on the input language of clingo along
with various examples can be found in the Potassco User
Guide [16].

4.1. Configuration model fact format

1 type((bike;wheel;frame;bag)).

3 part(bike,wheel,frontWheel).
4 multiplicity(bike,wheel,frontWheel,1).
5 part(wheel,bag,bag).
6 multiplicity(wheel,bag,bag,(0;2)).

Listing 1: Facts representing parts of the model graph of
the bike example from Figure 2

Listings 1-4 display a snippet of the encoding repre-
senting the bike example from Figure 2. A part of the
model graph is encoded in Listing 1. Types are de-
clared via a type/1 atom where the argument is the
name of the type. Parts are declared via a part/3 atom
with source and target type and port descriptor as ar-
guments. The corresponding multiplicites are encoded
via a multiplicity/4 atom with the same structure as
the part/3 atom plus all possible multiplicities as fourth
argument.



1 attr(wheel,size).
2 dom(wheel,size,(22;24;27;29)).
3 attr(wheel,weight).
4 dom(wheel,weight,(1800;1900;2100;2200)).

Listing 2: Facts representing the Wheel attributes of the
bike example from Figure 2

Listing 2 contains the encoding of attributes size and
weight of type Wheel. Atomic attributes are declared
via an attr/2 atom with type and attribute descriptor
as arguments together with domain dom/3 atoms. As
before, the domain atoms have the same structure as
attr/2 atoms plus the possible values as third argument.

1 attr(bike,totalWeight,"sum").
2 path(bike,totalWeight,
3 ((weight,(frontWheel,()));
4 (weight,(rearWheel,())));
5 (weight,(bag,(frontWheel,())));
6 (weight,(bag,(rearWheel,())));
7 (weight,(bag,(frame,())))).

Listing 3: Facts representing a calculated attribute of the
bike example from Figure 2

Listing 3 contains the encoding of the calculated at-
tribute totalWeight from type Bike. Calculated attributes
are declared via an attr/3 atom. The structure is the
same as attr/2 atoms plus the aggregate function as
third argument (currently sum, count, min and max are
supported). The corresponding path expressions which
are used to gather all values are declared via path/3
atoms. The first two arguments have to be the same
as the attr/3 atoms and the third argument is a path
expression. Path expressions follow a nested tuple struc-
ture in ASP with the first element of the sequence being
the innermost. Consider for example the path expres-
sion (𝑑1, 𝑑2, 𝑑3) in the formalism. We express this in
ASP as (d3,(d2,(d1,()))). While this is not easily
readable for humans, it enables one to work dynamically
with tuples of any size in ASP. In the future, we plan
to implement an input and output language which is
human-readable and leave the nested tuple structure for
internal representation.

Constraints are declared via a constraint/1 atom
where the argument is a constraint identifier. In Listing 4
an example of a table constraint is shown. The identifier
is a tuple consisting of the type the constraint is attached
to and an index. The columns of the table are declared via
column/3 atoms containing the constraint identifier, the
index of the column and the path expression. The actual
entries are declared via entry/3 atoms containing the
constraint identifier, a tuple with the index of the column
and row, and the value of the entry.

1 constraint((wheel,0)).
2 column((wheel,0),0,(size,())).
3 column((wheel,0),1,(weight,())).
4 entry((wheel,0),(0,0),22).
5 entry((wheel,0),(1,0),1800).
6 entry((wheel,0),(0,1),24).
7 entry((wheel,0),(1,1),1900).
8 entry((wheel,0),(0,2),27).
9 entry((wheel,0),(1,2),2100).

10 entry((wheel,0),(0,3),29).
11 entry((wheel,0),(1,3),2200).

Listing 4: Facts representing a table constraint of the bike
example from Figure 2

4.2. General problem encoding
The ASP encoding of our formalization can be found in
Listing 5. In Lines 1-6 it is checked that the configuration
model graph is indeed acyclic and rooted. Further, the
type of the root object is determined which is created
in Line 8 (with the correct type as second argument). In
Lines 10-12 objects for each part relation are generated
while making sure that the indices of the objects are as-
signed incrementally. Satisfaction of the multiplicites of
those part relations are assured in Lines 14-15. In Lines 17-
19 values are assigned to attribute values according to
their domain making sure that each object has exactly one
value assigned for all its attributes. All possible port and
attribute selectors are created in Lines 22-24. Using se-
lectors, the correct values for aggregates are determined
and assigned. In Lines 26-27, we show the encoding for
one such aggregate function sum. Our full implementa-
tion which can be found under https://github.com/
potassco/configuration-encoding also contains
the aggregate functions count, min and max. Lastly, in
Lines 29-42 table constraint satisfaction is checked for
each object. First, all possible tuples of the cross product
are created (encoded again as nested tuples). Then the
tuples are unpacked step-by-step while traversing the
columns of the constraint. Only if all tuples satisfy at
least one complete row, the constraint is satisfied.

Due to space limitations, we are not showing the full
implementation of our formalization. As mentioned
above, we are only showing the aggregate function sum.
Additionally, we left out connection ports and compari-
son constraints (e.g., ==, ≤, etc.) in Listing 5. In our full
encoding we also distinguish between mandatory objects
(encoded by normal rules) and optional objects encoded
by choice rules by which we hope to achieve a better
performance. In addition to that, several examples and
files to visualize configuration models and instantiations
using clingraph [17] can be found in the repository linked
earlier.

https://github.com/potassco/configuration-encoding
https://github.com/potassco/configuration-encoding


1 partonomic_path(X,Y) :- part(X,Y,_).
2 partonomic_path(X,Z) :- partonomic_path(X,Y), partonomic_path(Y,Z).
3 :- partonomic_path(X,X).

5 root(T) :- type(T), not partonomic_path(_,T).
6 :- {root(T)} > 1.

8 object((),T) :- root(T).

10 { object((D,(O,I)),T) : I = 0..Max-1 } :-
11 object(O,S), part(S,T,D), Max = #max { N : multiplicity(S,T,D,N)}.
12 :- object((D,(O,I)),_), not object((D,(O,I-1)),_), I > 0.

14 :- part(S,T,D), object(O,S), not multiplicity(S,T,D,X),
15 X = #count { I : object((D,(O,I)),T) }.

17 { val((O,D),V) : dom(T,D,V) } :- object(O,T), attr(T,D).
18 :- attr(T,D), object(O,T), not val((O,D),_).
19 :- val(X,V1), val(X,V2), V1 < V2.

21 attr(T,D,"atomic") :- attr(T,D).
22 selector(O,(),O) :- object(O,_).
23 selector(O,(D,P),(D,(O’,I))):- selector(O,P,O’), object((D,(O’,I)),_).
24 selector(O,(D,P),(O’,D)) :- selector(O,P,O’), object(O’,T), attr(T,D,_).

26 val((O,D),V) :- object(O,T), attr(T,D,"sum"),
27 V = #sum { V’,X,P : path(T,D,P), val(X,V’), selector(O,P,X) }.

29 max_col_idx(C,N) :- constraint(C), N = #max{ Col : column(C,Col,_)}.
30 tuple((O,C),N,((),X)) :- object(O,T), max_col_idx((T,C),N),
31 selector(O,P,X), column((T,C),N,P).
32 tuple((O,C),N,(VT,X)) :- object(O,T), tuple((O,C),N+1,VT),
33 selector(O,P,X), column((T,C),N,P), N>=0.

35 sat_row((O,C),VT,(0,Row),VT’) :-
36 object(O,T), tuple((O,C),0,VT), VT = (VT’,X),
37 val(X,V), entry((T,C),(0,Row),V).
38 sat_row((O,C),VT,(Col,Row),VT’’) :-
39 object(O,T), sat_row((O,C),VT,(Col-1,Row),VT’),
40 VT’ = (VT’’,X), val(X,V), entry((T,C),(Col,Row),V).

42 :- tuple(C,0,VT), not sat_row(C,VT,_,()).

Listing 5: ASP encoding for solving configuration problems.

4.3. Instantiation fact format and
obtaining solutions

On the instantiation level, there are two important
atoms object/2 and val/2. They represent objects
and the valuations of attribute variables, respec-
tively. The object/2 atom takes as arguments the
name of the object encoded as a nested tuple and
its type. The nested tuple structure is similar as
for path expressions above (see Section 4.1). The
names are constructed from the partonomic port
descriptors and indices. Take for example the atom

object((bag,((frontWheel,((),0)),1)),bag).
This correponds to the second bag of the first (and only)
wheel with descriptor frontWheel of the root object
(which has type Bike). The root is always encoded as an
empty tuple (). Note that this way of encoding objects
directly assures that the set of partonomic associations
is a tree as required for valid instantiations.

The val/2 atom takes as first argument an attribute
variable encoded as a tuple. The tuple contains the object
name and the attribute descriptor. The second argument
of the atom is the actual value of the variable. For ex-
ample, we have the atom val(((),minStowage),30)



which expresses that attribute minStowage of the root
object bike has value 30.

We can run the encoding together with the file of a
model𝑀 to obtain one or multiple stable models. The sta-
ble models correspond to valid instantiations as defined
in Section 2. This is easy to verify, as (table) constraints
are encoded as integrity constraints in ASP, thus have
to be satisfied in every stable model. Further, as men-
tioned above our object structure directly assures that
the set of partonomic associations is a tree and that the
root object has the type of the partonomic root of the
model graph. We can also specify user requirements 𝑈 by
providing, e.g. another input file instantiation.lp.
Every instantiation obtained in form of a stable model
then extends the user requirements and is therefore a
solution to (𝑀,𝑈).

In Listing 6 we run our full encoding with the model
from Figure 2. The user requirements are empty, i.e.,
omitted, and the solution we obtain corresponds to the
one from Figure 3.

$ clingo encoding.lp examples/bike/model.lp
clingo version 5.6.2
Reading from encoding.lp ...
Solving...
Answer: 1
object((),bike)
object((frontWheel,((),0)),wheel)
object((rearWheel,((),0)),wheel)
object((frame,((),0)),frame)
object((bag,((frontWheel,((),0)),0)),bag)
object((bag,((frontWheel,((),0)),1)),bag)
val(((),maxWeight),5000)
val(((),minStowage),30)
val(((frontWheel,((),0)),size),27)
val(((rearWheel,((),0)),size),27)
val(((frontWheel,((),0)),weight),2100)
val(((rearWheel,((),0)),weight),2100)
val(((bag,((frontWheel,((),0)),0)),volume)

,20)
val(((bag,((frontWheel,((),0)),0)),weight)

,250)
val(((bag,((frontWheel,((),0)),1)),volume)

,10)
val(((bag,((frontWheel,((),0)),1)),weight)

,100)
val(((),stowage),30)
val(((),totalWeight),4550)
SATISFIABLE

Listing 6: Running the bike example from Figure 2 in
clingo

5. Related work
Our formalism borrows concepts from various other ap-
proaches in the literature. A general ontology of configu-
ration has been introduced in [13]. Here, a configuration
problem is divided into configuration model knowledge,

configuration solution knowledge and requirements knowl-
edge. However, the paper argues that the latter can be
expressed in terms of the other two. In the model knowl-
edge there are product specific classes called types and a
configuration of a product w.r.t. to a configuration model
is defined as a set of instances of the types occurring in
the model. These instances are called individuals. Con-
straints are specified inside the model and a correct con-
figuration must satisfy these. However, the definition of
constraints is left to an unspecified constraint language.
A configuration also contains configuration specific rela-
tions called properties. Unlike our approach, [13] includes
the concepts of taxonomy and inheritance.

Another formal approach to configuration in the con-
text of constraint programming has been given by [2].
Here, a structural configuration model lays out the possi-
ble variations of the entity to be configured. This model
contains types and attributes, as well as partonomic and
connection ports. Types can be functional or technical
and this restricts the possible kinds of (taxonomic) sub-
types they are allowed to have. Technical types can only
have concrete types as subtypes which can be seen as
"complete" parts ready to be ordered from a catalog. A
configuration can be obtained from a structural model by
instantiating types. Instances inherit the attributes and
ports from their type and all its supertypes. As to what re-
gards constraints, three kinds are defined: compatibility,
requirement and resource constraints.

Lastly, [14] follows a somewhat less formal, object-
oriented approach at modelling configuration problems
where concepts are directly defined in ASP. Again, there
is a distinction between a model and an instantiation.
The model contains a taxonomy of classes and a general
association relation (with no distinction between part and
connection relations). It is noteworthy, that associations
in general have multiplicities in both directions. Further,
attributes are limited to be over the domain of strings,
integers or booleans. In an instantiation of a model, each
object is defined through a global index. An "is-a" relation
ties it to a class. Two objects are connected through
an "associated" relation which has to correpond to an
association relation from the model. Attribute values
assign values to attributes of objects. Constraints are
not specified directly but left open to general integrity
constraints in ASP.

6. Discussion
We presented an approach to model and solve configu-
ration problems and a corresponding encoding for ASP.
A model and its instantiation are expressed through di-
rected multigraphs where the former specifies the pos-
sible graphs of the latter. Similar to [2], the partonomy
of the model graph has to be acyclic. We view this as



favorably for object generation.
Apart from the structural constraints imposed by the

model graph, each type in the model may impose con-
straints on itself and its parts. For this we use table
constraints as a canonical representation which spec-
ify possible combinations of attributes. In our view, table
constraints are the most general form of constraints and
other kinds can be expressed through them. Constraints
attached to a type are checked independently for each
object of that type. This guarantees that they are only
applied in the correct context.

Attributes can be atomic, i.e., a value needs to be as-
signed, or calculated. For the latter we make use of ag-
gregate functions. We also formalized the concepts of
path expressions and selectors. The former can be com-
posed of port or attribute descriptors and the latter return
sets of attribute variables or objects. While port multi-
plicites are unbounded in general, we can use aggregate
functions and port path expressions to restrict them.

In contrast to many other approaches, we cannot target
specific objects in the instantiation with our constraints.
For example, in Figure 3 it would not be possible to attach
a constraint to the type Wheel targeting only bag1. This is
because there is no selector starting at wheel1 containing
this bag only. Note that selwheel1 ((bag)) returns the set
{bag1 , bag2} with both bags. This was done on purpose
to evade symmetries. Our understanding is that if dis-
tinctions between objects are desirable, this information
should be included in the model, e.g., by having separate
ports as for the front and rear wheel.

In many scenarios it is desirable to configure multiple
instances of the same type simultaneously. Since we
require every configuration to be rooted, this might not
appear possible within our approach. However, one could
always add a new root type to the model, for example a
Fleet of bikes.

A shortcoming of our formalization is that we require
the attribute valuation function to be total, i.e., every
instantiated attribute variable needs to have a value as-
signed. In user requirements, though, it might be desir-
able to leave certain attributes undefined.

Further, there are user requirements which cannot be
expressed through an instantiation. For example, con-
sider Figure 2 and a user who wants all bags to be of a
certain color but does not care about the number of bags.
This would require adding a new constraint to the model.
Anyhow, we consider this to be more of a knowledge
engineering problem as any such option should only be
available if included in the model.

Compared to many other approaches that are tuned
for practical applications, our approach is more abstract.
This allows us to formally prove properties as we have
demonstrated with the monotonicity of the solution
space. Experience has shown that this is important when
working with ASP. In the future, we intend to investigate

what other properties our formalism possesses.
Partly due to this abstractness, we decided to start with

a simpler approach exluding a taxonomy and thus a form
of inheritance. However, we view both these concepts
as vital for efficiently modelling configuration problems
and we plan to extend our formalism to contain them.
This would probably require the following steps:

1. Introduce taxonomic ports representing a "super-
type" relation. Following [2], our acyclicity con-
dition would be extended to consider these ports
as well.

2. Adapt the definition of a valid instantiation. Now
the root object of the model graph does not nec-
essarily represent the object to be configured but
could be specialized to a subtype. There might not
even be a partonomic root anymore. In general,
it should be possible to start the configuration
at any node of the model graph which could be
expressed through user requirements and a dedi-
cated "root object" in the instantiation.

3. Types would inherit attributes and other types
of ports from their supertypes, i.e., constraint
satisfaction would have to be checked not only
for the type an object is mapped to but also for
all its supertypes.

4. A more difficult question is how to treat attributes
and (non-taxonomic) ports which appear more
than once for a set of supertypes or if this should
be prohibited.

Lastly, we note that in many examples a taxonomy only
appears in form of "specializations" (such as concrete
types and catalogs in [2]). This feature can be represented
in our formalism by adding table constraints (see for
example constraint 𝑐4 in Figure 2 describing the possible
wheels).

Further, we plan to further study connection ports by
working out examples. They are part of the literature [2]
and we view them as an important complement to parto-
nomic ports since they convey additional information
and allow to form cycles in the model graph. Consider
the configuration of a computer network. Here, a config-
uration might have identical parts like switches which
can be connected in numerous ways. We also intend to
investigate symmetry conditions for connection ports
which currently do not seem to be expressible within our
formalization of constraints.

On the implementation level, our full encoding cur-
rently supports table and comparison constraints. In the
literature other kinds such as requirement and incom-
patibility constraints often occur. We plan to study how
these can be represented in our formalism and to add
them to our implementation.
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