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Abstract. Many real-world problems require the enumeration of all solutions of
combinatorial search problems, even though this is often infeasible in practice.
However, not always all parts of a solution are needed. We are thus interested
in projecting solutions to a restricted vocabulary. Yet, the adaption of Boolean
constraint solving algorithms turns out to be non-obvious provided one wants a
repetition-free enumeration in polynomial space. We address this problem and
propose a new algorithm computing projective solutions. Although we have im-
plemented our approach in the context of Answer Set Programming, it is readily
applicable to any solver based on modern Boolean constraint technology.

1 Introduction

Modern Boolean constraint technology has led to a tremendous boost in solver perfor-
mance in various areas dealing with combinatorial search problems. Pioneered in the
area of Satisfiability checking (SAT; [1–3]) where it has demonstrated its maturity for
real-world applications, its usage is meanwhile also advancing in neighboring areas,
like Answer Set Programming (ASP; [4]) and even classical Constraint Processing. Al-
though traditionally problems are expressed in terms of satisfiability or unsatisfiability,
many real-world applications require surveying all solutions of a problem. For instance,
inference in Bayes Nets can be reduced to #SAT (cf. [5]) by counting the number of
models. However, the exhaustive enumeration of all solutions is often infeasible. Yet
not always all parts of a solution are needed. Restrictions may lead to a significant de-
crease of computational efforts; in particular, whenever the discarded variables have
their proper combinatorics and thus induce a multitude of redundant solutions.

We are thus interested in projecting solutions to a restricted vocabulary. However,
the adaption of Boolean constraint solving algorithms turns out to be non-obvious,
if one wants a repetition-free enumeration in polynomial space. We address this by
proposing a new algorithm for solution projection. Given a problem ∆ having solu-
tions S(∆) and a set P of variables to project on, we are interested in computing the
set {S ∩ P | S ∈ S(∆)}. We refer to its elements as the projective solutions for ∆
wrt P . To compute all such projections, we first provide a direct extension of a conflict-
driven learning algorithm by means of solution recording. Although this approach is
satisfactory when the number of projective solutions is limited, it does not scale since
it is exponential in space. After analyzing the particularities of the search problem, we
propose a new conflict-driven learning algorithm that uses an elaborated backtracking
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scheme and only a linear number of solution-excluding constraints. Although we have
implemented our approach in the context of ASP, it is readily applicable to any solv-
ing approach based on modern Boolean constraint technology. Lastly, we provide an
empirical analysis demonstrating the computational impact of our approach.

2 Background

The idea of ASP is to encode a problem as a logic program such that its answer sets
represent solutions to the original problem. More formally, a logic programΠ is a finite
set of rules of the form a← b1, . . . , bm,∼cm+1, . . . ,∼cn, where a, bi, cj are atoms for
0< i≤m,m<j≤n and ∼ is (default) negation. The answer sets of Π are particular
models of Π satisfying an additional stability criterion. For brevity, we refer the reader
to [6] for a formal introduction to ASP.

As a running example, consider the program composed of the following rules:

x← q, r (1)
x← ∼y,∼z (2)
p← x (3)
p← ∼x (4)

y ← x,∼q (5)
y ← ∼x,∼z (6)
q ← x (7)
q ← ∼r (8)

z ← x,∼r (9)
z ← ∼x,∼y (10)
r ← x (11)
r ← ∼q (12) ·

Among the ten (classical) models of this program, we find five answer sets: {p, q, y},
{p, q, z}, {p, q, r, x}, {p, r, y}, and {p, r, z}. Projecting them onto the atoms {p, q, r}
results in only three distinct solutions: {p, q}, {p, q, r}, and {p, r}.

An assignment A is a sequence (σ1, . . . , σn) of literals σi of the form Tvi or Fvi
where vi is a (Boolean) variable for 1 ≤ i ≤ n; Tvi expresses that vi is true and Fvi
that it is false. We denote the complement of a literal σ by σ, that is, Tv = Fv and
Fv = Tv. Also, we let var(Tv) = var(Fv) = v. We sometimes abuse notation and
identify an assignment with the set of its contained literals. Given this, we access the
true and false variables in A via AT = {v | Tv ∈ A} and AF = {v | Fv ∈ A}.
For a canonical representation of (Boolean) constraints, we make use of nogoods [7].
In our setting, a nogood is a finite set {σ1, . . . , σm} of literals, expressing a constraint
violated by any assignment A containing σ1, . . . , σm. For a set ∆ of nogoods, define
var(∆) =

⋃
δ∈∆{var(σ) | σ ∈ δ}. An assignment A such that AT ∩ AF = ∅ and

{δ ∈ ∆ | ∃σ ∈ δ : σ ∈ A} = ∆ is a solution for ∆. For a given set P of variables,
we call a set P of literals such that PT ∪PF = P a projective solution for ∆ wrt P , if
there is some solution A for ∆ such that P ⊆ A.

A translation of logic programs in ASP into nogoods is developed in [4]. For
brevity, we illustrate it by two examples. First, consider the nogoods induced by
atom y in the above program. Atom y depends on two bodies: {x,∼q} and {∼x,∼z}
in (5) and (6). We get the nogoods {Ty,F{x,∼q},F{∼x,∼z}}, {Fy,T{x,∼q}},
and {Fy,T{∼x,∼z}} by taking for convenience the actual bodies rather than intro-
ducing new variables. For instance, the first nogood eliminates solutions where y is true
although neither the rule in (5) nor (6) are applicable. In turn, body {x,∼q} induces
nogoods {F{x,∼q},Tx,Fq}, {T{x,∼q},Fx}, and {T{x,∼q},Tq}. The last two
nogoods deny solutions where the body is true although one of its conjuncts is false.



3 Algorithms for Solution Projection

When enumerating solutions, standard backtracking algorithms like that of Davis, Put-
nam, Logemann, and Loveland (DPLL; [8, 9]) usually encounter multiple solutions be-
ing identical on a projected vocabulary. Such redundancy could easily be avoided by
branching on projected before any other variables. However, the limitation of branch-
ing can cause an exponential degradation of performance (see below).

Also our enumeration algorithms for projective solutions make use of a decision
heuristic: SELECT(∆,∇,A, P ) takes a set ∆ of (input) nogoods, a set∇ of (recorded)
nogoods, an assignment A, and a set P of variables as arguments. Dynamic heuristics
devised for DPLL typically consider ∆ and A for their decisions. In contrast, heuris-
tics devised for Conflict-Driven Clause Learning (CDCL; [1–3]) are far more interested
in∇, containing nogoods derived from conflicts. Finally, as speculated above, a heuris-
tic tailored for the enumeration of projective solutions could pay particular attention to
the set P of variables to project on. For instance, OPTSAT [10] makes use of a decision
heuristic preferring minimal literals in a partially ordered set. Although OPTSAT does
not aim at enumeration, a similar intervention could be used in our setting for canceling
redundancies. However, we argue below that constraining the heuristic in such a way
can have a drastic negative impact. Hence, we refrain from devising any ad hoc heuris-
tic and leave the internals of SELECT(∆,∇,A, P ) unspecified. As a matter of fact, the
formal properties of our algorithms are largely independent of heuristics.

Projective Solution Recording. Our goal is the repetition-free enumeration of all pro-
jective solutions for a given set ∆ of nogoods wrt a set P of variables. To illustrate
the peculiarities, we start with a straightforward approach recording all projective solu-
tions in order to avoid recomputation. Our enumeration algorithm is based on CDCL,
but presented in terms of nogoods and thus called Conflict-Driven Nogood Learning
(CDNL). It deviates from the corresponding decision algorithm, which halts at the first
solution found, merely by recording computed projective solutions as nogoods and then
searching for alternative solutions.

Algorithm 1 shows our first main procedure for enumerating projective solutions.
Its input consists of a set ∆ of nogoods, a set P of variables to project on, and a num-
ber s of projective solutions for ∆ wrt P to compute. Projective solutions are obtained
from assignments A (initialized in Line 1) that are solutions for ∆. The dynamic no-
goods in∇ (initialized in Line 2) are derived from conflicts (cf. Line 9–10). In general,
nogoods in ∇ are consequences of those in ∆ and may thus be deleted at any time in
order to achieve polynomial space complexity. Only such nogoods that are asserting
(explained below) must not be deleted from ∇, but their number is bound by the cardi-
nality of var(∆). Finally, the decision level dl (initialized in Line 3) counts the number
of heuristically selected decision literals in A. The global structure of Algorithm 1 is
similar to the one of the decision version of CDNL (or CDCL) by iterating propaga-
tion (Line 5) and distinguishing three resulting cases: a conflict (Line 6–11), a solution
(Line 12–20), or a heuristic decision (Line 22–24). Function BOOLEANCONSTRAINT-
PROPAGATION(∆∪∇,A) first augments A with implied literals, that is, literals neces-
sarily contained in any solution for ∆ ∪ ∇ that extends A. A well-known technique to
identify such literals is unit propagation (cf. [2, 3]); it iteratively adds complements σ



Algorithm 1: CDNL-RECORDING

Input : A set ∆ of nogoods, a set P of variables, and a number s of requested solutions.

A← ∅ // assignment1
∇ ← ∅ // set of (dynamic) nogoods2
dl ← 0 // decision level3
loop4

A← BOOLEANCONSTRAINTPROPAGATION(∆ ∪∇,A)5
if ε ⊆ A for some ε ∈ ∆ ∪∇ then // conflict6

if dl = 0 then exit7
else8

(δ, dl)← CONFLICTRESOLUTION(ε,∆ ∪∇,A)9
∇ ← ∇∪ {δ}10
A← A \ {σ ∈ A | dlevel(σ) > dl}11

else if {δ ∈ ∆ | ∃σ ∈ δ : σ ∈ A} = ∆ then // solution12
S← {σp ∈ A | var(σp) ∈ P}13
print S14

s← s− 2|P |−|S|15
if s ≤ 0 or max{dlevel(σp) | σp ∈ S} = 0 then exit16
else17

∆← ∆ ∪ {S} // record solution (persistently)18
dl ← max{dlevel(σp) | σp ∈ S} − 119
A← A \ {σ ∈ A | dlevel(σ) > dl}20

else21
σd ← SELECT(∆,∇,A, P ) // decision22
dlevel(σd)← dl ← (dl + 1)23
A← A ◦ σd24

to A, if δ \ A = {σ} for some δ ∈ ∆ ∪ ∇, until reaching a conflict or a fixpoint.
In the context of ASP, propagation also includes unfounded set checks (cf. [4, 11]). In
principle, other techniques, such as failed literal detection, could be applied in addition,
but they are less common in CDNL (or CDCL). We next detail the cases encountered
after propagation, starting with the simplest one of a decision.

Decision. As mentioned above, we do not assume any particular heuristic but stip-
ulate for any literal σd returned by SELECT(∆,∇,A, P ) that {σd, σd} ∩ A = ∅ and
var(σd) ∈ var(∆ ∪ ∇). That is, σd must be undecided and occur in the input. For
every literal σ ∈ A, dlevel(σ) provides its decision level. Based on this, operation
A ◦ σ′ inserts σ′ as the last literal of dlevel(σ′) into A, before any σ ∈ A such that
dlevel(σ)>dlevel(σ′). A decision literal σd is always appended to A (in Line 24).

Conflict. A conflict is encountered whenever some nogood ε is violated by A
(cf. Line 6). If no decision has been made, there is no (further) solution for ∆, and
enumeration terminates (Line 7). Otherwise, a reason δ for the conflict is calculated
(Line 9) and recorded as a dynamic nogood (Line 10). We assume that the nogood δ
returned by CONFLICTRESOLUTION(ε,∆ ∪ ∇,A) is violated by A and contains a
Unique Implication Point (UIP; [1, 12]), viz., there is some literal σ ∈ δ such that
dlevel(σ)>max{dlevel(σ′) | σ′ ∈ δ \ {σ}}. We assume conflict resolution to work
according to the First-UIP scheme [3, 12], resolving ε against nogoods used to derive



implied literals in ε (this is why A is a sequence; cf. [4, 11]) until reaching the first UIP,
which is not necessarily a decision literal. Backjumping (Line 11) then returns to deci-
sion level dl = max{dlevel(σ′) | σ′ ∈ δ\{σ}}, where δ implies σ by unit propagation.
Note that δ is the single nogood in ∆∪∇ justifying the inclusion of σ in A at decision
level dl ; such a dynamic nogood is called asserting. Even though Algorithm 1 does not
mention deletion, dynamic nogoods that are not asserting may be deleted at any time.
Since there cannot be more asserting nogoods than literals in A, this permits running
the decision version of CDNL in polynomial space. Finally, by altering conflict resolu-
tion to simply return all decision literals in A, we can mimic DPLL with Algorithm 1
(rather than explicitly flipping a decision literal, its complement is asserted). Thus, the
considerations below apply also to DPLL variants for enumerating projective solutions.

Solution. The last case is that of a solution, viz., an assignment A containing the
complement of at least one literal from each nogood (cf. Line 12). The corresponding
projective solutions for ∆ wrt P are represented by S, the set of literals in A over
variables in P (cf. Line 13). After printing S (Line 14), we calculate the number of pro-
jective solutions still requested (Line 15). Note that, for P \(AT∪AF) = {p1, . . . , pk},
each of the 2k sets S ∪ {Xipi | 1 ≤ i ≤ k} such that Xi ∈ {T,F} for 1 ≤ i ≤ k is
a projective solution for ∆ wrt P , so that A represents 2|P |−|S| of them. If the num-
ber of requested projective solutions have been enumerated or if all literals in S are
implied at decision level 0 (independent of decisions), we are done with enumeration
(Line 16). Otherwise, our first procedure records S persistently in ∆ (Line 18). In fact,
unlike dynamic nogoods in ∇, S is not a consequence of ∆ because its literals belong
to a solution for ∆. Hence, we must exclude the deletion of S, and so cannot store it as
a dynamic nogood in ∇. Finally, at least one literal of S has to be unassigned in order
to enumerate any further projective solutions. This is accomplished by retracting the
maximum decision level of literals in S as well as all greater decision levels (Line 19–
20). In principle, it is also possible to backtrack further or even to restart search from
scratch by retracting all decision levels except for 0. The strategy of leaving as many
decision levels as possible assigned is guided by the goal of facilitating the discovery of
projective solutions nearby S. However, as with nogood deletion, restarts can optionally
be included, permitting the customization of backtracking from a solution.

We proceed by stating formal properties of Algorithm 1. The first one, termination,
follows from the termination of CDNL on unsatisfiable sets of nogoods (cf. [13] for a
proof) and the fact that solutions are excluded by strengthening the original problem.

Theorem 1. Let ∆ be a finite set of nogoods, P a set of variables, and s a number.
Then, we have that CDNL-RECORDING(∆,P, s) terminates.

The second property, soundness, is due to the condition in Line 12 of Algorithm 1.

Theorem 2. Let ∆ be a finite set of nogoods, P a set of variables, and s a number.
For every S printed by CDNL-RECORDING(∆,P, s) and every Q ⊆ P , we have that
S∪{Tq | q ∈ Q\SF}∪{Fr | r ∈ P \ (Q∪ST)} is a projective solution for∆ wrt P .



The third property, completeness, follows from the prerequisite that any nogood
in ∇ is a consequence of those in ∆. Hence, no projective solution for ∆ wrt P is ever
excluded by ∆ ∪∇ before it was enumerated.1

Theorem 3. Let ∆ be a finite set of nogoods, P a set of variables, and P∆ =
var(∆) ∩ P . For every projective solution P for ∆ wrt P , we have that CDNL-
RECORDING(∆,P∆, 2|P∆|) prints some S ⊆ P.

Finally, redundancy-freeness is obtained from the fact that each already enumerated
projective solution is represented by a nogood δ ∈ ∆, so that all further solutions for ∆
must contain the complement σp of at least one literal σp ∈ δ.

Theorem 4. Let ∆ be a finite set of nogoods, P a set of variables, and s a number. For
every projective solution P for ∆ wrt P , we have that CDNL-RECORDING(∆,P, s)
prints some S ⊆ P at most once.

In the worst case, there are exponentially many (representative literal sets of) projec-
tive solutions for∆wrt P , each of which must be recorded in some way by Algorithm 1.
Thus, our next goal is revising Algorithm 1 to work in polynomial space under main-
taining its properties, in particular, redundancy-freeness. The peculiarities of this task
are listed next. For brevity, we refrain from giving exemplary inputs∆ and P exhibiting
the listed possibilities, but it is not difficult to come up with them.

First, for a solution A for∆, there can be another solution B for∆ differing from A
only on variables outside P (requiring a different decision on some variable outside P ).

Fact 1. Let A be a solution for a set ∆ of nogoods containing decision literals
{σ1, . . . , σj}. It is possible that there is some solution B for ∆ such that {σp ∈ A |
var(σp) ∈ P} ⊆ B, but {σ1, . . . , σj} ∩B 6= ∅. Then, if σi ∈ B for 1≤ i≤ j, we have
var(σi) /∈ P . We conclude that flipping some literal(s) in {σi | 1≤ i≤j, var(σi) /∈ P}
may not exclude repetitions of projective solutions for ∆ wrt P .

Second, for a solution A for ∆, there can be another solution B for ∆ differing
from A on some variable in P , but not on any decision literal in A over P .

Fact 2. Let A be a solution for a set ∆ of nogoods containing decision literals
{σ1, . . . , σj}. It is possible that there is some solution B for ∆ such that {σp ∈ A |
var(σp) ∈ P} 6⊆ B, but {σi | 1 ≤ i ≤ j, var(σi) ∈ P} ⊆ B. Then, B includes
the decision literals over P from A, still covering different projective solutions for ∆
wrt P . We conclude that flipping some literal(s) in {σi | 1≤ i≤ j, var(σi) ∈ P} may
eliminate non-redundant projective solutions for ∆ wrt P .

Combining Fact 1 and 2, we observe that flipping decision literals over variables
outside P does not guarantee redundancy-freeness, while flipping decision literals
over P might sacrifice completeness. Hence, with a heuristic free to return an arbi-
trary decision literal, we do not know which literal of a solution A for ∆ should be
flipped. This obscurity could be avoided by deciding variables in P before those out-
side P . However, such an approach suffers from a negative proof complexity result on
unsatisfiable inputs, and for hard satisfiable problems, similar declines are not unlikely.

1 It is sufficient to consider the set P∆ of variables occurring in both ∆ and P , along with the
size 2|P∆| of the power set of P∆.



Fact 3. Any restricted decision heuristic that returns a literal σd such that
var(σd) /∈ P only wrt assignments A such that var(∆ \ {δ ∈ ∆ | ∃σ ∈ δ : σ ∈ A})∩
P ⊆ AT∪AF (that is, var(σ) /∈ P holds for all undecided literals σ in not yet satisfied
nogoods of ∆) incurs super-polynomially longer optimal computations than can be ob-
tained with an unrestricted decision heuristic on certain inputs. This handicap follows
from Lemma 3 in [14], showing that CDCL with decisions restricted to variables P act-
ing as input gates of Boolean circuits has super-polynomially longer minimum-length
proofs of unsatisfiability than DPLL on infinite family {EPHPn+1

n } of Boolean circuits.
The circuits in this family can be translated into a set∆ of nogoods [14] such that every
assignment A satisfying var(∆ \ {δ ∈ ∆ | ∃σ ∈ δ : σ ∈ A}) ∩ P ⊆ AT ∪AF yields
an immediate conflict. We conclude that any restricted decision heuristic is doomed to
return only literals σd such that var(σd) ∈ P ; hence, it handicaps CDNL computations
in the sense of Lemma 3 in [14].
The last fact tells us that any heuristic guaranteeing redundancy-freeness (and com-
pleteness) right away must fail on certain inputs. To avoid this, we need to devise a
procedure that adaptively excludes redundancies.

Projective Solution Enumeration. Our second procedure for the enumeration of pro-
jective solutions for ∆ wrt P is shown in Algorithm 2. Its overall structure, iterating
propagation before distinguishing the cases of conflict (Line 6–18), solution (Line 19–
38), and decision (Line 40–42), is similar to our first algorithm. We thus focus on the
differences between both procedures. In this regard, the progress information of Algo-
rithm 2 involves an additional systematic backtracking level bl (initialized in Line 3).
The basic idea is to gather decision literals over P at decision levels 1 to bl that are to
be backtracked systematically for the sake of enumerating further non-redundant pro-
jective solutions. In this way, Algorithm 2 establishes an enumeration scheme that can
be maintained in polynomial space, abolishing the need of persistent solution record-
ing. But as mentioned above, an important objective is to avoid interference with the
actual search. In particular, before any projective solutions have been found, there is no
cause for enforcing systematic backtracking. Hence, systematic backtracking levels are
introduced only after finding some projective solutions, but not a priori. The case of a
solution is explained next.

Solution. Projective solutions for ∆ wrt P are extracted from a solution A for ∆
and counted like in the first algorithm (cf. Line 19–22). As before, enumeration termi-
nates if enough projective solutions have been computed or if the search space has been
exhausted (Line 23). If neither is the case, the treatment of the discovered projective
solutions in S distinguishes Algorithm 2 from its predecessor that simply records S.
Let us assume that S has been constructed from at least one heuristically selected literal
(Line 31–38), so that alternative decisions may lead to distinct projective solutions. In
order to enumerate them, we must certainly flip some decision literal(s) in A, but Fact 1
and 2 tell us that we cannot be sure about which one(s). This obscurity is now dealt with
via systematic backtracking, and thus we increment bl (Line 31) in order to introduce
a new systematic backtracking level. The introduction involves storing S in ∆, but now
as a nogood δ(bl) associated with bl (Line 32–33). The other cases of Algorithm 2 are
such that δ(bl) is removed from ∆ as soon as bl is retracted, which establishes polyno-
mial space complexity. Until then, δ(bl) guarantees redundancy-freeness. The next step



Algorithm 2: CDNL-PROJECTION

Input : A set ∆ of nogoods, a set P of variables, and a number s of requested solutions.

A← ∅ // assignment1
∇ ← ∅ // set of (dynamic) nogoods2
dl ← bl ← 0 // decision and (systematic) backtracking level3
loop4

A← BOOLEANCONSTRAINTPROPAGATION(∆ ∪∇,A)5
if ε ⊆ A for some ε ∈ ∆ ∪∇ then // conflict6

if dl = 0 then exit7
else if dl = bl then8

∆← ∆ \ {δ(bl)} // remove for polynomial space complexity9
σd ← dliteral(bl)10
A← A \ {σ ∈ A | dlevel(σ) = bl}11
dlevel(σd)← dl ← bl ← (bl − 1)12
A← A ◦ σd13

else14
(δ, k)← CONFLICTRESOLUTION(ε,∆ ∪∇,A)15
∇ ← ∇∪ {δ}16
dl ← max{k, bl}17
A← A \ {σ ∈ A | dlevel(σ) > dl}18

else if {δ ∈ ∆ | ∃σ ∈ δ : σ ∈ A} = ∆ then // solution19
S← {σp ∈ A | var(σp) ∈ P}20
print S21

s← s− 2|P |−|S|22
if s ≤ 0 or max{dlevel(σp) | σp ∈ S} = 0 then exit23
else if max{dlevel(σp) | σp ∈ S} = bl then24

∆← ∆ \ {δ(bl)} // remove for polynomial space complexity25
σd ← dliteral(bl)26
A← A \ {σ ∈ A | dlevel(σ) ≥ bl}27
dlevel(σd)← dl ← bl ← (bl − 1)28
A← A ◦ σd29

else30
bl ← bl + 131
δ(bl)← S32
∆← ∆ ∪ {δ(bl)} // record solution (temporarily)33
A← A \ {σ ∈ A | dlevel(σ) ≥ bl}34
let σd ∈ δ(bl) \A in35

dliteral(bl)← σd36
dlevel(σd)← dl ← bl37
A← A ◦ σd38

else39
σd ← SELECT(∆,∇,A, P ) // decision40
dlevel(σd)← dl ← (dl + 1)41
A← A ◦ σd42

consists of retracting all literals of decision levels not smaller than bl from A (Line 34)
to make a clean cut on some unassigned literal σd (selected in Line 35) from δ(bl).



Recall Fact 2 telling us that flipping σd may eliminate non-redundant projective solu-
tions, hence, it is taken unflipped as decision literal of bl (Line 36–38). In summary, the
reassignment of a literal σd from S makes sure that not yet enumerated projective solu-
tions are not excluded by A (for completeness), while the temporary inclusion of δ(bl)
in ∆ prohibits a recomputation of S (for redundancy-freeness and termination). In the
subsequent iterations, Algorithm 2 first exhausts the search space for further projective
solutions including σd, and afterwards flips σd to σd along with removing the then satis-
fied nogood δ(bl) from ∆ (for polynomial space complexity). In fact, such a systematic
backtracking step is performed (in Line 25–29) if the maximum decision level of liter-
als in S is bl (tested in Line 24), which means that the decision literal σd of bl (marked
before in Line 36 and recalled in Line 26) must now be flipped for enumerating any
further projective solutions. Finally, note that complement σd is assigned (in Line 29)
at decision level (bl −1) or the new systematic backtracking level (cf. Line 28), respec-
tively. As a matter of fact, there is no nogood in ∆ ∪∇ that implies σd, so that conflict
resolution (as in Line 15) cannot be applied at the new systematic backtracking level.

Conflict. As before, a conflict at decision level 0 means that there are no (further)
projective solutions (Line 7). Otherwise, we now distinguish two cases: a conflict at
systematic backtracking level bl (Line 9–13) or beyond bl (Line 15–18). As men-
tioned above, a conflict at bl cannot be analyzed because of literals in A lacking a
reason in ∆ ∪ ∇. In fact, any conflict at bl is caused by δ(bl) or flipped decision lit-
eral(s) σd such that σd belongs to previously computed projective solutions. Unlike in
Algorithm 1, such projective solutions are no longer available in∆, and the mere reason
for the presence of σd in A is that the search space of σd has been exhausted. Thus, a
conflict at bl is not analyzed, and systematic backtracking proceeds as with projective
solutions located at bl (compare Line 9–13 with Line 25–29). On a conflict beyond bl ,
conflict resolution (Line 15) returns a dynamic nogood δ (recorded in Line 16), as with
Algorithm 1. The modification consists of restricting backjumping (in Line 18) to nei-
ther retracting bl nor any smaller decision level (Line 17), even if δ is asserting at a
decision level k < bl . Note that such an assertion reassigns some literal of previously
computed solutions. If this leads to a conflict, δ(bl) or some flipped literal σd at bl is in-
volved. Then, both are retracted by a systematic backtracking step in the next iteration.

For illustration, consider Figure 1 giving a trace of Algorithm 2 on (nogoods re-
sulting from) the rules in (1)–(12) and P = {p, q, r}. We give all five assignments Ai

yielding either a conflict or a solution; a resulting nogood is shown below. Column dl
provides the decision levels of literals in Ai, where the systematic backtracking level bl
is given in bold. For (flipped) decision literals, column l provides the line of Algo-
rithm 2 in which the literal has been assigned; all other literals are inferred by propa-
gation (in Line 5). For simplicity, we do not include variables for bodies of the rules
in (1)–(12) in Ai, but note that such variables are functionally dependent. Tracing Al-
gorithm 2, successive decisions on Ty, Tp, and Tx give rise to the conflicting as-
signment A1 by propagation. While Tq is needed for deriving x from the rule in (1),
complementary literal Fq is mandatory for deriving y from the rule in (5). This makes
us enter conflict resolution (in Line 15), yielding nogood {Tx,Ty} and decision level 1
to jump back to. Hence, assignment (Ty) constitutes the basis of A2. Propagating
with {Tx,Ty} gives Fx; further propagation and decision literal Tq lead to solution
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Fig. 1. Trace of Algorithm 2.

A2 = (Ty,Fx,Fz,Tp,Tq,Fr), whose projective solution, {Tp,Tq,Fr}, is printed
(in Line 21). At this point, our proceeding starts to deviate from standard CDNL.
Given that the maximum decision level 2 of literals Tp, Tq, and Fr lies above 0,
we store {Tp,Tq,Fr} (in Line 33) to avoid computing answer sets comprising the
same projective solution. Afterwards, selecting Tq at the new systematic backtracking
level 1 makes us first explore further projective solutions containing Tq. Assignment
(Tq) is then extended to conflicting assignment A3, and conflict resolution results in
the addition of nogood {Fp}, effective at decision level 0. Nonetheless, the systematic
backtracking and decision level remain at 1, and further propagation yields solution A4,
comprising projective solution {Tp,Tq,Tr}. The fact that all its literals are established
at 1 indicates the exhaustion of the search space for Tq. Hence, the projective solution
at hand is not recorded, while {Tp,Tq,Fr}, associated with systematic backtracking
level 1, is removed to stay in polynomial space. All literals assigned at 1 are then re-
tracted from A4 (in Line 27). Finally, the systematic backtracking level is decremented
and the search directed to projective solutions with Fq. The construction of solution A5

thus starts with Tp and Fq at the new systematic backtracking level 0 and ends after
printing the corresponding projective solution {Tp,Fq,Tr}. Notably, A5 still contains
a decision literal, Ty, but flipping it cannot lead to any further projective solutions.

We conclude this section by providing formal properties of Algorithm 2. As with
Algorithm 1, soundness is clear due to verifying solutions (in Line 19) before printing
anything. Termination and redundancy-freeness are obtained from the fact that enumer-
ated projective solutions are excluded either by temporarily storing them (in Line 33)
or by flipping some of their literals (in Line 13 or 29) upon systematic backtracking. Fi-
nally, completeness is guaranteed because temporarily stored projective solutions do not
exclude not yet enumerated ones, while a systematic backtracking step is applied only if
no further projective solutions are left beyond bl . Notably, any dynamic nogood derived
by resolving with temporarily stored projective solutions S (in Line 15) is universally
valid: since the literals of S are not to be reestablished in the future, S is indeed a no-
good. Given the above considerations, we conclude that Theorem 1, 2, 3, and 4 remain
valid if replacing CDNL-RECORDING in their statements with CDNL-PROJECTION.
Beyond this, Algorithm 2 runs in polynomial space, in view of the fact that there cannot
be more temporarily stored projective solutions and asserting dynamic nogoods than
literals in A, while all other dynamic nogoods can be deleted at any time. However, it
would be unfair to claim that the exponential savings in space complexity come without
a cost: an introduced systematic backtracking level can only be retracted by a system-



atic backtracking step (in either Line 11 or 27), while backjumping (cf. Line 17–18)
and optional restarts must leave all decision levels up to bl intact for not losing progress
information.2 However, systematic backtracking levels are introduced only after finding
projective solutions, so that negative proof complexity results for procedures restricting
decisions a priori [14] do not apply to Algorithm 2.

4 Experiments

We implemented our approach to solution projection within the ASP solver clasp (1.2.0-
RC3; [4]). Our experiments consider clasp using four different types of enumeration: (a)
its standard solution enumeration mode [11]; (b) enumeration by appeal to standard so-
lution recording; (c) projective solution recording; (d) projective solution enumeration.
Moreover, we implemented and evaluated two refinements of Algorithm 2 differing in
the way selections are made in Line 35 and 40, respectively. Variant (d[h]) uses clasp’s
BerkMin-like decision heuristic to select σd in Line 35 (without sign selection); other-
wise, simply the first unassigned literal in δ(bl) is selected. Variant (d[p]) makes use
of clasp’s progress saving option to direct the choice of σd in Line 40. Progress saving
enforces sign selection according to the previously assigned truth value and thus directs
search into similar search spaces as visited before (cf. [15]). Variant (d[hp]) combines
both features, while (d[]) uses none of them. We refrained from testing further solvers
because, to the best of our knowledge, no ASP nor SAT solver features the redundancy-
free computation of projective solutions. Furthermore, ASP solvers enumerate standard
solutions either via systematic backtracking, e.g., smodels, or like SAT solvers via solu-
tion recording, e.g., cmodels. The latter strategy is subsumed by clasp variant (b), while
the former has in [11] been shown to have no edge over variant (a). Also note that we did
not implement any decision heuristic specialized to preferring projected variables, as it
had required another customization of clasp. All experiments were run on a 3.4GHz PC
under Linux, each individual run restricted to 1000s time and 1GB RAM.3

In Table 1 and 2, we investigate the relative performance of the different enumera-
tion approaches in terms of the proportion of projected variables. To this end, we con-
sider two highly combinatorial benchmarks, the 11/11-Pigeons “problem” and the 15-
Queens puzzle. For both of them, we gradually increase the number of projected vari-
ables (in columns #var), viz., the number of monitored pigeons or queens, respectively.
The number of obtained projective solutions is given in columns #sol; the two last ones
give the number of standard solutions. Columns (a)–(d[hp]) provide the runtimes of the
different clasp variants in seconds; “>1000” stands for timeout. Note that #var and #sol
do not affect (a) and (b), which always (attempt to) enumerate all standard solutions. At
the bottom of Table 1 and 2, row ∅ provides the average runtime of each clasp variant.

Looking into Table 1, it is apparent that variant (b) and (c), persistently recording
either standard or projective solutions, do not scale. For the last problem solved by (c),
projecting to 6 out of 11 pigeons, the ratio of standard to projective solutions is 120.
Furthermore, all variants of (d) are faster than standard solution enumeration (a) up
to 9 out of 11 pigeons, at which point there are twice as many standard as projective

2 This is similar to the enumeration algorithm for non-projected solutions in [11].
3 The benchmarks are available at: http://www.cs.uni-potsdam.de/clasp/



#var #sol (a) (b) (c) (d[]) (d[h]) (d[p]) (d[hp])
1 11 100.38 >1000 0.01 0.01 0.01 0.01 0.01
2 110 100.38 >1000 0.01 0.01 0.01 0.01 0.01
3 990 100.38 >1000 0.05 0.07 0.06 0.07 0.07
4 7920 100.38 >1000 0.60 0.35 0.34 0.35 0.35
5 55440 100.38 >1000 9.08 1.67 1.68 1.61 1.67
6 332640 100.38 >1000 281.05 6.34 6.32 6.50 6.34
7 1663200 100.38 >1000 >1000 20.63 20.17 21.04 20.39
8 6652800 100.38 >1000 >1000 49.97 51.20 50.10 49.18
9 19958400 100.38 >1000 >1000 88.77 88.73 89.63 91.18

10 39916800 100.38 >1000 >1000 114.17 119.36 119.12 114.82
11 39916800 100.38 >1000 >1000 114.30 113.92 116.80 118.83

∅ 100.38 >1000 480.98 36.03 36.53 36.84 36.62
Table 1. Benchmark Results: 11/11-Pigeons.

#var #sol (a) (b) (c) (d[]) (d[h]) (d[p]) (d[hp])
1 15 243.14 773.57 0.01 0.02 0.01 0.02 0.01
2 182 243.14 773.57 0.08 0.08 0.08 0.14 0.12
3 1764 243.14 773.57 0.79 0.63 0.66 1.47 1.37
4 13958 243.14 773.57 11.69 5.79 6.08 10.91 11.51
5 86360 243.14 773.57 158.40 40.71 43.71 63.76 69.88
6 369280 243.14 773.57 454.33 153.49 168.46 219.87 226.75
7 916096 243.14 773.57 >1000 331.42 357.31 444.69 437.23
8 1444304 243.14 773.57 >1000 463.46 461.78 584.59 542.46
9 1795094 243.14 773.57 >1000 512.19 523.86 652.37 577.66

10 2006186 243.14 773.57 >1000 528.36 436.70 647.49 478.34
11 2133060 243.14 773.57 >1000 525.23 407.40 616.43 450.80
12 2210862 243.14 773.57 >1000 516.56 357.22 552.67 384.30
13 2254854 243.14 773.57 >1000 462.83 322.50 496.17 356.18
14 2279184 243.14 773.57 >1000 413.72 283.82 432.62 327.35
15 2279184 243.14 773.57 >1000 250.13 250.06 245.97 249.11

∅ 243.14 773.57 641.69 280.31 241.31 331.28 274.20
Table 2. Benchmark Results: 15-Queens.

solutions. For 10 and 11 pigeons, variant (a) is a bit faster than (d). In fact, (a) saves
some overhead by not distinguishing projected variables within solutions. Finally, there
are no significant differences between the variants of (d), given that the underlying
problem is fully symmetric.

With the 15-Queens puzzle in Table 2, search becomes more important than with
11/11-Pigeons. Due to the reduced number of solutions, standard solution recording (b)
now completes in less than 1000s, even though it is still slower than all enumeration
schemes without persistent recording. We also see that projective solution recording (c)
is the worst approach. In fact, its recorded projective solutions consist of #var literals
each, while (b) stores decision literals whose number decreases the more solutions have
been enumerated. For the variants of (d), we see that the number of projective solutions
does not matter that much beyond 7 queens. Rather, heuristic aspects of the search start
to gain importance, and variant (d[h]), which aims at placing the most critical queen
first, has an edge. In contrast, progress saving alone here tends to misdirect search,



as witnessed by (d[p]). Finally, (a) enumerating standard solutions becomes more effi-
cient than (d) from 7 queens on, where the ratio of standard to projective solutions is
about 2.5. As with 11/11-Pigeons, the reason is less overhead; in particular, (a) does not
even temporarily store any nogoods for excluding enumerated solutions. The reconver-
gence between (a) and variants of (d) at 15 queens is by virtue of an implementation
trick: if the decision literal at level (bl + 1) in a solution (cf. Line 31–38 in Algo-
rithm 2) is over a variable in P , then clasp simply increments bl and backtracks like in
Algorithm 1 (Line 19). This shortcut permits unassigning fewer variables.

The benchmarks in Table 3 belong to three different classes. The first one deals
with finding Hamiltonian cycles in clumpy graphs containing n clumps of n vertices
each. For each value of n, we average over 11 randomly generated instances. Note that,
due to high connectivity within clumps, clumpy graphs typically allow for a vast num-
ber of Hamiltonian cycles, but finding one is still difficult for systematic backtracking
methods. In our experiments, we project Hamiltonian cycles to the edges connecting
different clumps, thus, reducing the number of distinct solutions by several orders of
magnitude. Second, we study benchmarks stemming from consistency checks of bio-
logical networks [16]. The five categories, each containing 30 randomly generated yet
biologically meaningful instances, are distinguished by the number n of vertices in a
network. The task is to reestablish consistency by flipping observed variations (increase
or decrease) of vertices. Solutions are then projected to the vertices whose variations
have been flipped, while discarding witnesses for the consistency of the repaired net-
work. After a repair, there are typically plenty of witnesses, so that the number of pro-
jective solutions is several orders of magnitude smaller than that of standard ones. The
third class considers a variation of Ravensburger’s Labyrinth game on quadratic boards
with n rows and n columns, each size comprising 20 randomly generated configura-
tions. The idea is that an avatar is guided from a starting to a goal position by moving
the rows and columns of the board as well as the avatar itself, and projection consists of
disregarding the moves of the avatar. It turns out that Labyrinth instances are pretty dif-
ficult to solve, and usually there are not many more standard than projective solutions.

Table 3 shows average runtimes and numbers of timeouts per benchmark category;
timeouts are taken as maximum time, viz., 1000s. The rows with ∅/Σ provide the av-
erage runtime and sum of timeouts for each clasp variant over all instances of a bench-
mark class and in total, respectively. For the clumpy graphs and biological networks,
denoted by Clumpy and Repair in Table 3, there are far too many standard solutions to
enumerate them all with either (a) or (b). Even on the smallest category of Clumpy, (a)
and (b) already produce timeouts, while enumerating projective solutions with (c) or (d)
is unproblematic. On the larger Clumpy categories, there is no clear winner among (c)
and the variants of (d), taking also into account that difficulty and number of projec-
tive solutions vary significantly over instances. However, it appears that progress sav-
ing (d[p]) and its combination with heuristic (d[hp]) tend to help. In the Repair cat-
egories, there are hardly any differences between the variants of (d), and projective
solution recording (c) is competitive too. Finally, on Labyrinth, non-projecting enumer-
ation approaches (a) and (b) have an edge on projecting ones. This is not a surprise
because there are not many more standard than projective solutions here. The disadvan-
tages of projective solution enumeration are still not as drastic as their advantages are



Benchmark n (a) (b) (c) (d[]) (d[h]) (d[p]) (d[hp])
Clumpy 08 204.50/02 468.48/05 0.02/0 0.02/0 0.02/0 0.02/0 0.02/0

18 >1000/11 >1000/11 99.65/1 104.43/1 105.18/1 81.31/0 79.72/0
20 >1000/11 >1000/11 255.04/2 254.80/2 313.22/1 219.05/1 118.95/0
21 >1000/11 >1000/11 603.74/6 612.33/6 619.37/6 396.47/4 318.04/3
22 >1000/11 >1000/11 144.64/1 266.72/2 275.54/2 410.98/4 321.07/3

∅/Σ 840.90/46 893.70/49 220.62/10 247.66/11 262.67/10 221.57/9 167.56/6
Repair 2000 >1000/30 >1000/30 126.81/0 118.43/0 118.69/0 113.04/0 112.79/0

2500 >1000/30 >1000/30 232.57/2 223.07/2 223.37/2 217.17/2 216.22/2
3000 >1000/30 >1000/30 404.75/6 386.70/5 387.39/5 377.74/5 378.18/5
3500 >1000/30 >1000/30 322.10/6 312.76/6 312.72/6 306.93/6 306.67/6
4000 >1000/30 >1000/30 424.23/7 409.50/7 409.84/7 400.44/7 399.78/7

∅/Σ >1000/150 >1000/150 302.09/21 290.09/20 290.40/20 283.06/20 282.73/20
Labyrinth 16 52.49/0 58.46/1 59.69/1 61.72/1 59.03/1 61.54/1 59.11/1

17 165.15/2 162.60/2 198.32/2 220.13/2 196.83/3 220.26/3 198.25/3
18 212.59/2 218.90/2 289.84/4 298.56/3 253.06/3 286.05/3 257.38/3
19 238.24/4 241.26/4 260.63/4 266.96/5 245.83/4 264.68/5 250.90/4
20 319.67/5 324.43/5 355.48/6 359.51/7 343.47/6 360.33/7 346.13/6

∅/Σ 197.63/13 201.13/14 232.79/17 241.38/18 219.64/17 238.57/19 222.35/17
Total ∅/Σ 708.24/209 718.91/213 264.68/48 266.47/49 262.20/47 257.39/48 242.17/43

Table 3. Benchmark Results: Clumpy, Repair, and Labyrinth.

on other benchmarks. Among the different (d) variants, the use of a heuristic slightly
promotes (d[h]), while progress saving alone (d[p]) is not very helpful. Finally, the last
row in Table 3 shows that, over all instances, projective solution enumeration variants
are not far away from each other, even though (d[hp]) has a slight advance. In fact,
enumeration can benefit from the incorporation of search techniques, such as a heuris-
tic or progress saving. Their usefulness, however, depends on the particular benchmark
class, so that fine-tuning is needed. Importantly, the enumeration of all projective solu-
tions may still be possible when there are far too many standard solutions, which can
be crucial for the feasibility of applications.

5 Discussion

Answer set projection is already supported by almost all ASP systems, given that hide
and show directives are available in the input language. However, up to now, no ASP
system was able to enumerate projective solutions without duplicates. Rather, the ex-
isting solvers exhaustively enumerate the entire set of solutions and merely restrict the
output to visible atoms. This is accomplished either via systematic backtracking or via
solution recording; the latter is also done by SAT solvers. To the best of our knowl-
edge, the first dedicated solution enumeration algorithm that integrates with CDNL in
polynomial space was proposed in [11] in the context of ASP; cf. variant (a) in Sec-
tion 4. This algorithm turned out to be competitive for exhaustive solution enumeration,
but it cannot be used for redundancy-free solution projection in view of the arguments
given in Section 3. Although our new technique has also been implemented for ASP, it



is readily applicable in neighboring areas dealing with Boolean or (with the necessary
adaptions) even general constraints.

From a user’s perspective, the sometimes intolerable redundancy of exhaustive so-
lution enumeration necessitates the development of wrappers feeding projections of
computed solutions as constraints back into a solver. For instance, such a workaround
was originally used for the diagnosis task in [16] where certificates are required for solu-
tions. These certificates, however, do neither belong to a projective solution nor can the
resulting symmetries be broken by hand. The sketched approach boils down to projec-
tive solution recording, which does not scale because of exponential space complexity.
If there are too many (projective) solutions to store them all, it is of course also impos-
sible for a user to inspect each of them individually. However, if one is interested in
counting occurrences of (combinations of) literals within solutions, enumerating more
solutions than can be stored explicitly is tolerable. To enable it, the duplicate-free enu-
meration of solutions projected to relevant parts is crucial. Finally, abolishing the need
of developing wrappers to cut redundancies is already something that should help users
to concentrate on the interesting aspects of their applications.
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