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Abstract—An efficient Design Space Exploration (DSE) is
imperative for the design of modern, highly complex embedded
systems in order to steer the development towards optimal design
points. The early evaluation of design decisions at system-level
abstraction layer helps to find promising regions for subsequent
development steps in lower abstraction levels by diminishing the
complexity of the search problem. In recent works, symbolic
techniques, especially Answer Set Programming (ASP) modulo
Theories (ASPmT), have been shown to find feasible solutions of
highly complex system-level synthesis problems with non-linear
constraints very efficiently. In this paper, we present a novel
approach to a holistic system-level DSE based on ASPmT. To this
end, we include additional background theories that concurrently
guarantee compliance with hard constraints and perform the
simultaneous optimization of several design objectives. We imple-
ment and compare our approach with a state-of-the-art prefer-
ence handling framework for ASP. Experimental results indicate
that our proposed method produces better solutions with respect
to both diversity and convergence to the true Pareto front.

I. INTRODUCTION

In order to cope with the ever-increasing complexity of embed-
ded systems, system-level descriptions are utilized to diminish the
complexity of finding potentially good solutions which can then
be used as initial starting points for further optimization in lower
abstraction levels. At system level, applications are composed of
communicating tasks while the hardware architecture contains
heterogeneous processing elements (e.g. CPU, DSP, GPU) as
well as a communication infrastructure like routers and links.

Depending on the decisions that have been made, the qual-
itative properties (e.g. latency, energy consumption, area require-
ments) of the resulting system implementation may vary consider-
ably from solution to solution resulting into a multi-objective op-
timization problem (MOOP). Thus, a Design Space Exploration
(DSE) is imperative to find solutions with optimal properties.

Essentially, DSE approaches can be characterized into two
types [1]: First, (meta-)heuristics like evolutionary algorithms
and ant colony optimization (e.g. [2], [3]) and second, exact
methods such as Integer Linear Programming (ILP) and
branch-and-bound algorithms (e.g. [4], [5]).

Most of the works presented in the field of meta-heuristics
extend basic techniques in order to respect domain specific
characteristics. For example, in [2], the authors extend genetic
algorithms by utilizing domain knowledge. They state, that small
differences in design decisions lead to similar system implemen-
tations and that symmetrical design points can be pruned.

Another approach (e.g. [6], [7]) of handling the infeasibility
problem is to integrate dedicated constraint solvers into a
multi-objective evolutionary algorithm (MOEA). The work
of Schlichter et al. [7] integrates, for example, a Boolean

Satisfiability (SAT) solver into a MOEA. Here, the decisions are
not directly controlled by the randomized search algorithm of
the MOEA but the heuristic of the decision variables is subject
to exploration. This way, solutions are guaranteed to be feasible.

Finally, fully exact methods have been developed to explore the
design space systematically. While meta-heuristics normally only
cover a limited portion of the design space, exact methods are
guaranteed to find the optimal solutions. Nevertheless, for a long
time those methods were restricted to single-objective optimiza-
tion problems only. As one of the few exceptions, Lukasiewycz
et al. [4] present a complete multi-objective Pseudo-Boolean
solver based on branch-and-bound algorithms. The results show
that this technique is able to find the proven optimal solutions for
small problems in a short time. However, exact methods are often
replaced in favor of heuristic approaches as the complexity of
large systems hinders reasonable employment of those techniques.

The disadvantage of using meta-heuristics, on the other
hand, is that the initial population is created by a randomized
process. Finding feasible regions becomes therefore a problem for
stringently constraint environments. Moreover, because the search
is generally not executed systematically but based on combining
previously found solutions, MOEAs tend to run into saturation
and stop finding novel solutions after a number of iterations.

As a remedy, by encoding the problem symbolically, recent
advances of constraint solving technologies can be utilized to
cope with the complexity of finding feasible solutions. Especially,
Answer Set Programming (ASP) has been shown to deal with
such stringently constrained design problems very efficiently
(e.g. [8]). Opposed to other symbolic techniques like SAT,
reachability can be expressed naturally in ASP which fastens
the communication synthesis. However, one problem is that
non-linear constraints cannot be easily expressed within ASP.

In the paper at hand, we therefore propose an approach that
utilizes an exact symbolic encoding for both constraint solving
and design space exploration. To address the shortcomings
of ASP, we present specific background theory solvers to
handle non-linear objectives as well as Pareto filtering of found
solutions. By utilizing the state-of-the-art ASP solver clingo 5
[9], these background theories can be tightly integrated into
the solving process (ASP modulo Theories (ASPmT)). This way,
we are able to utilize conflict clauses on partial solutions to
prune the search space from infeasible and dominated regions
of design points early in the decision process.

Note that our methodology uses exact search strategies with
”any-time” characteristic, i.e., canceling the search at any time
returns an approximate Pareto set that strictly improves with
increased solving time until the true Pareto front is reached.
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Figure 1. Specification example consisting of two applications A1 and A2,
a 2× 2 platform template with four processing elements p1−4 and routers
r1−4, and mapping options m1 to m9 annotated with WCET values.

II. PREREQUISITES

The focus of the work at hand is on how to efficiently explore
the design space of embedded systems using ASPmT. To this
end, the description of the specification model considered in the
remainder of the paper is followed by the basics of Answer Set
Programming (ASP) and the utilization of background theories.

A. Specification Model

As depicted in Fig. 1, we model the system specification as a
graph separated into applications, an heterogeneous architecture
template, and mapping options that connect the former two.

Application: An application is specified in task-level
granularity and is modeled as a directed acyclic graph
A = (T, C, E). That is, it contains sets of computational
tasks T and communication messages C. A set of edges
E⊆T×C∪C×T specifies dependency relations between the
elements. Each message c∈C has exactly one predecessor task,
i.e. inter process communication is characterized in a point-
to-point fashion. Furthermore, each application is constrained
by a maximum period by which it repeats its execution.

Architecture Template: The architecture, or platform
template P =(VP ,VR,L) consists of processing elements VP

and the communication infrastructure split into routers VR and
links L. Both processing elements and routers are annotated
by individual area and static power requirements that are used
in the evaluation process to determine the quality of a solution.
Additionally, the routing delay and energy determine the time
and energy needed for each message to get send over one link.
In this paper, we assume a circuit switching strategy for the
routing of messages. That is, a message blocks the whole route
from sender to receiver until it has been received completely.
Note that bidirectional arrows represent two separate links.

Problem Instance: For each task, a set of mapping options
M⊆T×VP is specified. A mapping option m=(t,p) indicates
that task t may be executed on processing element p and
is annotated with a worst case execution time (WCET) as
well as the dynamic energy consumed by p when executing
t. Specifying several mapping options per tasks with different
WCETs and energy annotations corresponds to the modeling of
heterogeneous systems. Together with the applications and the
platform template, the mapping options complete the problem
instance I=(A,P,M).

Exploration Model: Acquiring a feasible solution to the
problem instance involves selecting a mapping for each task,
routing the messages over the communication infrastructure,
and determining a schedule while adhering to given timing
constraints. Each solution is evaluated by three objective

functions latency, area, and energy, that determine timing
properties as well as area and energy requirements, respectively.
These objective functions represent soft constraints that have to
be optimized. Without loss of generality, the DSE is formulated
as a minimization problem as follows:

minimize f(x)=(latency(x),area(x),energy(x)),
subject to:

x is a feasible system implementation.
Here, a feasible system implementation is a solution that
adheres to all given mapping, routing, and timing constraints.

In this work, we consider three different routing strategies.
First, dimension order routing (DOR) only allows one route
for each pair of sending and receiving processing elements but
simultaneously guarantees the shortest path. Second, shortest path
routing (SPR) also guarantees a shortest path between sender and
receiver. However, the route is not fixed and various alternative
routes can be selected. Finally, arbitrary length routing (ALR)
allows every acyclic route over the communication infrastructure
and may be able to find solutions that distribute communication
traffic over less congested links. That is, the number of decision
variables and thus the complexity increases from DOR to ALR.

B. Answer Set Programming
The specification model and the constraints described in

the previous section are encoded as Answer Set Programming
(ASP) facts and rules. ASP is a programming paradigm that is
tailored towards NP-hard search problems and is based on the
stable model (answer set) semantics. Problems are formulated
in a first-order input language as a set of facts and rules that
are used to represent and infer domain knowledge, respectively.

Determining answer sets of logic programs (i.e., the combina-
tion of facts and rules) in ASP is a two-step process. First, the
logic program is translated (grounded) into a variable free repre-
sentation before it can be solved by an answer set solver that deter-
mines stable models (solutions). The actual solving process is out
of scope of this paper and we refer to [10] for further information.

Generally, ASP is capable of finding stable models efficiently
if there are only linear constraints involved. However, in system
design, non-linear constraints such as timing requirements
must be taken into account. To this end, we use ASP modulo
Theories (ASPmT) (see [9]) to incorporate custom background
theories directly into the solving process. The details are
displayed in the following section.

III. OPTIMIZATION FRAMEWORK

In this section, we present our novel system-level Design
Space Exploration (DSE) framework for finding Pareto optimal
solutions. It utilizes the ASPmT paradigm to evaluate non-linear
objectives and performs dominance checks of feasible design
points in individual background theories. In the following,
an overview of our framework is given before various exact
optimization strategies are presented.

A. Framework Overview
The general overview of our proposed DSE is depicted in

Fig. 2 and essentially consists of three pillars - the ASP solver
clingo, a theory and an optimization propagator. A problem
instance I as described in Sec. II in conjunction with a uniform
problem definition encoded as ASP program serve as input for
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Figure 2. Architecture of the ASPmT optimization framework

our framework. In a first step, the program is grounded into a vari-
able free representation that can be processed by the ASP solver
module of clingo. During solving, clingo propagates and assigns
ASP variables. In each solving step, routing and mapping deci-
sions are made by clingo before the (possibly partial) assignment
is relayed to the background theory propagator that evaluates the
current decisions w.r.t. the objectives latency, area, as well as en-
ergy and checks if given timing constraints are met. Subsequently,
the current solution is forwarded to the optimization propagator
that checks if it is non-dominated w.r.t. already found solution
stored in an archive.1 Both constraint and dominance checking
steps directly return conflict clauses to the ASP solver whenever
the results are negative. Here, they are utilized to restrict the
search space that results in backtracking of already performed de-
cisions. Note that this procedure is applied to partial assignments,
i.e., incomplete solutions where not all decisions have been made,
to prune infeasible and dominated regions early from the search.

While partial assignments that pass constraint and dominance
checks are handed back to clingo, complete solutions trigger an
archive update, i.e., adding the current and removing dominated
design points. Furthermore, a conflict clause is propagated to the
ASP solver to avoid visiting the same design point multiple times.

Note that the system synthesis problem, i.e., acquiring
a feasible binding, routing, and schedule, has to be solved
for every design point considered in the DSE. To this end,
we utilize an ASPmT approach as presented in [11] that
makes mapping and routing decisions in ASP and leverages
qunatifier-free integer difference logic (QF–IDL) as background
theory to guarantee compliance to timing constraints.

B. Optimization Strategies
To the best of our knowledge, this work presents for the

first time a system-level DSE executed in a background theory
of a symbolic constraint solver. However, with asprin [12], a
general framework for preference handling has been developed
that supports multi-objective optimization of linear objectives.
Therefore, our first DSE strategy is similar to asprin but with
the extension of additional background theory propagators in
order to support non-linear constraint solving. As it is based on
the combination of asprin with background theories, we call it
the hybrid approach in the following. Here, linear objectives are
calculated and the dominance checks are performed directly by
the solver while background theories are only utilized to evaluate
design points w.r.t. non-linear objectives. This strategy adds
1 Partial solutions can be used for dominance checks iff the problem is assign-

ment monotonous, i.e., an additional decision must not improve the evaluation.

constraints to the problem definition ensuring an improvement of
a solution compared to the previous one or the incomparability to
already obtained Pareto optimal solutions. As a consequence, only
after a design point is proven to be located on the true Pareto front,
incomparable design points can be found. Hence, the convergence
of the approximation set towards the Pareto front contains a
depth-first characteristic. As is common in ASP, previous stable
models are partly saved via facts within the logic program
rendering an explicit archive in a background theory obsolete.

In contrast to the first hybrid strategy, our second one
utilizes background theory propagators for both evaluation and
dominance checks. Similar to hybrid, it follows a depth-first
characteristic. Consequently, this strategy is called theorydepth in
the following. The archive of the optimization propagator saves
all found Pareto optima as well as the current design point that
is guaranteed to be incomparable to them. Hence, the current
approximation set can be obtained at any time.

Finally, theorybreadth again makes use of the dominance check
in the Pareto propagator and thus, contains the current approxi-
mation set. In contrast to theorydepth, design points are not strictly
required to dominate the previously found solution but rather
the archive is also updated whenever an incomparable design
point w.r.t. the whole approximation set is found. The possible
advantage of this strategy is two fold. First, diverse design
points may be obtained more frequently as novel non-dominated
solutions are added independent of the previously found design
point. Second, as a consequence, the dominance check step has
more information on dominated regions of the design space which
allows for a more efficient pruning in early steps of the decision
process. However, the convergence of the approximation set
towards the true Pareto front may be slower as the solving is not
primarily directed to prove Pareto optimality of found solutions.2

IV. EXPERIMENTS

In this section, we evaluate our proposed framework with
a number of test instances. The focus is on the different search
strategies presented in the previous section, namely hybrid,
theorydepth, and theorybreadth.

A. Experimental Setup
We randomly generated 30 test instances that are composed

of series-parallel applications and a heterogeneous platform
template organized in a regular grid. Each test instance consists
of one to four applications A that are comprised of |S|
series and |P | parallel patterns, resulting into a number of
|A|+2 · |S|+3 · |P | tasks and 2 · |S|+4 · |P | messages per
instance. Depending on the number of applications, the platform
template size is accordingly adjusted. For all test instances
with up to two applications, a grid size of 3×3×1 is chosen
while for instances with three and four applications grid sizes of
3×3×2 and 3×3×3 are chosen, respectively. In this work, we
consider test instance with up to 166 task and 200 messages.

The design space exploration is conducted by our proposed
framework with every possible combination of the presented
search (i.e. hybrid, theorydepth, and theorybreadth) and routing
(i.e. arbitrary length routing (ALR), shortest path routing (SPR),
and dimension order routing (DOR)) strategies. That is, for
each test instance, nine individual optimization runs have been
2 As all the presented methods are exact, the Pareto optimality is proven

inherently after all possible decisions have been made.



Table I. QUALITY FOR SOME TEST INSTANCES ACHIEVED BY THE DIFFERENT CONFIGURATIONS

hybrid theorybreadth theorydepth|A | |S | |P | Platform Indicator ALR SPR DOR ALR SPR DOR ALR SPR DOR

1 10 10 3×3×1 ε-Dominance
Entropy

inf
0.000

1.248
2.472

1.288
2.473

inf
0.000

1.153
3.528

1.085
3.514

inf
0.000

1.437
2.473

1.391
2.471

2 13 16 3×3×1 ε-Dominance
Entropy

1.602
2.467

1.578
2.473

1.356
2.473

1.271
3.130

1.153
3.586

1.196
3.415

1.662
2.473

1.425
2.473

1.779
2.466

3 22 27 3×3×2 ε-Dominance
Entropy

1.855
2.473

1.650
2.463

1.477
2.473

1.835
2.501

1.279
3.166

1.309
2.572

1.855
2.473

1.637
2.473

1.594
2.473

4 21 20 3×3×3 ε-Dominance
Entropy

1.610
2.473

1.614
2.471

1.000
2.473

1.510
2.743

1.301
3.043

1.151
3.110

1.615
2.473

1.579
2.472

1.435
2.473

4 24 38 3×3×3 ε-Dominance
Entropy

inf
0.000

1.892
2.472

1.533
2.472

inf
0.000

1.515
2.915

1.103
2.976

1.895
2.473

1.894
2.473

1.837
2.473

conducted. To evaluate the performance of the variant strategies,
we calculate the quality of found non-dominated solutions
w.r.t. convergence and diversity. To this end, we utilize the
ε-Dominance indicator from [13] and the Entropy method as pre-
sented in [14]. The ε-Dominance indicator determines how close
a solution is situated to the Pareto front. A lower ε-Dominance
value corresponds to a better convergence towards the reference
front with a minimum value of one. The latter quality indicator
evaluates the diversity of a Pareto front approximation. An ap-
proximation set with a high Entropy has a high diversity as well.

All optimization runs were configured to use eight threads and
have been executed on an Intel Core i7-4770 with 32 GiB RAM
running Ubuntu 14.04. The timeout has been set to 1800 s.

B. Results

For sake of brevity, the results of the optimization runs
presented in Tab. I only constitute a representative part of all
optimization runs. In each line, the value in the upper row
represents the ε-Dominance while the value in the lower row
indicates the entropy.

Regarding the diversity of the found non-dominated solutions,
the search strategy theorybreadth that explores the search space
on a wider range outperforms both strategies hybrid and
theorydepth. Due to the search strategy of the latter two, design
points that are incomparable to previously found solutions are
not considered until an optimal one on the front is found. In
combination with the vast decision space, those two strategies
were unable to find even one proven Pareto optimal solution
(except for the first test instance, where hybrid in combination
with DOR found two Pareto optimal solutions). Hence, hybrid
and theorydepth stick to an Entropy value of around 2.47.

With regard to the routing strategy, DOR and SPR achieve
more diverse solutions than ALR. As expected, the strictly
bounded search space of the former two enables faster
exploration of larger regions in the design space.

As the hybrid strategy is adjusted towards good convergence,
it performs better in this category. Here, it even finds solutions
for two test instances that are not dominated by any other
solution of another optimization run. However, theorybreadth still
outperforms the other approaches in most of the test instances.

The overall results are two fold. First, the achieved quality
indicates that a search strategy which does not discard found
incomparable design points explores the design space more
efficiently. Second, a complex communication model hinders
the exploration performance significantly. That is, ALR did not
find any solution for 11 test instances and could exploit the
advantages of more routing options only once.

V. CONCLUSION

In this paper, we have presented a design space exploration
framework that extends the preference handling capabilities
of the Answer Set Programming (ASP) solver clingo towards
multi-objective optimization of non-linear constraints. To this
end, we utilized background theory solving to execute the search
for novel solutions as well as the constraint solving of non-linear
constraints. We presented and implemented three different
search strategies to perform the design space exploration. The
experimental results indicate that a combination of a simple
exploration model and a concurrent search of multiple regions
in the objective space delivers the best results with respect to
convergence and diversity of the found non-dominated solutions.
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