
What’s a head without a body?
Christian Anger1 and Martin Gebser1 and Tomi Janhunen2 and Torsten Schaub1,3

Abstract. Concepts in Answer Set Programming (ASP) are nor-
mally defined in terms of atoms. We show that the treatment of atoms
and bodies (of rules) as equitable computational objects may yield
exponential speed-ups, even for standard ASP-solvers such as smod-
els. To this end, we give simple transformations providing solvers
with access to both kinds of objects and show that some families
of examples can be solved exponentially faster after they have been
transformed. We prove that these transformations may yield expo-
nentially smaller search spaces.

1 SIMULATING HEADS AND BODIES
For a detailed introduction to Answer Set Programming (ASP),
we refer the reader to the literature (cf. [3]) and confine ourselves
to formalities essential to our contribution: Given an alphabet P ,
a logic program is a finite set of rules, r, of the form p0 ←
p1, . . . , pm,not pm+1, . . . ,not pn where n ≥ m ≥ 0 and pi ∈ P
is an atom for 0 ≤ i ≤ n. Let head(r) = p0 be the head of r
and body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} be the body
of r. The set of atoms occurring in a logic program Π is given by
atom(Π). The set of bodies in Π is body(Π) = {body(r) | r ∈ Π}.
An answer set of a logic program Π is a model of Π that satisfies a
certain “stability criterion” (cf. [3]).

We consider the following systems: (i) smodels [7], as a an atom-
based ASP-solver, assigning truth values to atoms only; (ii) dlv [5],
also atom-based, yet designed for handling disjunctive logic pro-
grams; (iii) nomore++ [1], pursuing a hybrid approach, wherein
truth values are assigned to both atoms and bodies; (iv) a restric-
tion of nomore++ to assignments to bodies only, indicated by
nomore++B . 4 All systems incorporate techniques such as propa-
gation and lookahead in their solving procedures [1, 7].

Inspired by structural normal form translations [2], we give two
simple transformations introducing new symbols for bodies and
atoms, respectively. This allows standard ASP-solvers to access the
underlying structures and implicitly incorporate them in their solving
procedures. To this end, we extend the alphabet P of a program Π
by adding a new atom αa for each a ∈ atom(Π) and a new atom
βB for each B ∈ body(Π). We then define a transformation over the
extended alphabet:

TB(Π) =


βB ← B

head(r) ← βB

˛̨̨̨
r ∈ Π, B = body(r)

ff
This enables ASP-solvers branching on atoms, like smodels, to in-
directly incorporate bodies as computable objects in their solving
procedures. Vice versa, a different transformation over the extended

1 Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam, Germany
2 Helsinki University of Technology, P.O. Box 5400, FI-02015 TKK, Finland.
3 Affiliated with Simon Fraser University, Canada.
4 To distinguish full-fledged nomore++ in (iii) from this restricted variant,

we sometimes add superscript a + B, yielding nomore++a+B .

alphabet enables body-based systems (such as nomore++B) to indi-
rectly incorporate atoms:

Ta(Π) =


αa ← body(r)
a ← αa

˛̨̨̨
r ∈ Π, a = head(r)

ff
As an example, consider program Π along with its transforms:

Π =


a ← b,not c
a ← d,not e

ff

TB(Π) =

8>><>>:
β{b,not c} ← b,not c

a ← β{b,not c}
β{d,not e} ← d,not e

a ← β{d,not e}

9>>=>>;
Ta(Π) =

8<:
αa ← b,not c
αa ← d,not e
a ← αa

9=;
To begin with, we empirically underpin our claim that treating

atoms and bodies as equitable computational objects may yield expo-
nential speed-ups by some experimental results. As common in proof
complexity [4], we need an infinite family of logic programs witness-
ing an exponential behavior in the best-case. For this, we consider the
following programs Πn

B and Πn
a for n ≥ 0:

Πn
B =

8>>>>>>>><>>>>>>>>:

r0 : x← not x
r1 : x← not a1,not b1...
rn : x← not an,not bn

rn+1 : a1 ← not b1 rn+2 : b1 ← not a1...
...

r3n−1 : an ← not bn r3n : bn ← not an

9>>>>>>>>=>>>>>>>>;

Πn
a =

8>>>>>>>><>>>>>>>>:

r0 : x← c1, . . . , cn,not x
r1 : c1 ← not a1 r2 : c1 ← not b1...

...
r2n−1 : cn ← not an r2n : cn ← not bn

r2n+1 : a1 ← not b1 r2n+2 : b1 ← not a1...
...

r4n−1 : an ← not bn r4n : bn ← not an

9>>>>>>>>=>>>>>>>>;
None of these programs has an answer set, that is, all of them

are unsatisfiable. Importantly, this can be determined linearly. In
both programs, the source of unsatisfiability lies in r0. For Pro-
grams Πn

B , this can be found out linearly by assigning “true” to
bodies of the form {not ai,not bi} (1 ≤ i ≤ n) and by sub-
sequent propagation. For smodels, transformation TB makes these
bodies indirectly accessible. With Programs Πn

a , assigning “false”
to an atom ci (1 ≤ i ≤ n) leads to a conflict by propagation. For
nomore++B , transformation Ta makes these atoms indirectly acces-
sible. The programs are composed in such a way that lookahead on
the crucial structures (bodies and atoms, respectively) is able to de-



termine the optimal choices and thus ensures that the minimal num-
ber of choices is obtained. 5 Unlike this, detecting the unsatisfiability
of Πn

B with the atom-based smodels strategy requires exponentially
many choices. The same holds for Πn

a with nomore++B’s strategy.
The dlv system employs a slightly different lookahead strategy with
fewer lookahead operations, which is why it is unable to identify the
best choices for the given program classes. We give dlv results purely
for the record.

We have implemented the above transformations and run bench-
marks on a number of instances of Πn

B and Πn
a and their transforms.

The implementation is available at [6]. Results of these benchmarks
are given in Table 1 and 2. All tests were run on an AMD Athlon
1.4GHz PC with 512MB RAM. We limited memory to 256MB and
time to 900s. All results are given in terms of number of choices6

and seconds (in parentheses), reflecting the average of 10 runs. The
application of a translation is indicated by TB or Ta, respectively,
otherwise a hyphen indicates no such application. We see that the
application of transformation TB leads to an exponential speed-up
for smodels on Πn

B , while Ta exponentially speeds up nomore++B

on Πn
a . On the other hand, a superfluous transformation (as in the

case of Ta(Πn
a) when running smodels) seems not to hurt the per-

formance significantly. In terms of choices, the hybrid approach of
nomore++a+B lets it perform optimally on both Πn

B and Πn
a .

dlv (2006.01.12) smodels (2.28) nomore++ (1.4)
B a+B

n – TB – TB – TB – TB
2 (0.00) (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01)
4 (0.00) (0.01) 3 (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01)
6 (0.00) (0.01) 15 (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.02)
8 (0.00) (0.01) 63 (0.01) 0 (0.01) 0 (0.01) 0 (0.02) 0 (0.01) 0 (0.02)
10 (0.01) (0.03) 255 (0.01) 0 (0.02) 0 (0.01) 0 (0.02) 0 (0.01) 0 (0.02)
12 (0.05) (0.07) 1,023 (0.02) 0 (0.02) 0 (0.01) 0 (0.02) 0 (0.01) 0 (0.02)
14 (0.20) (0.24) 4,095 (0.03) 0 (0.02) 0 (0.01) 0 (0.02) 0 (0.01) 0 (0.02)
16 (0.81) (0.93) 16,383 (0.12) 0 (0.02) 0 (0.01) 0 (0.02) 0 (0.01) 0 (0.02)
18 (3.25) (3.76) 65,535 (0.45) 0 (0.02) 0 (0.01) 0 (0.02) 0 (0.01) 0 (0.02)
20 (13.16) (15.05) 262,143 (1.77) 0 (0.02) 0 (0.01) 0 (0.02) 0 (0.01) 0 (0.02)
22 (53.06) (61.17) 1,048,575 (7.09) 0 (0.02) 0 (0.01) 0 (0.03) 0 (0.01) 0 (0.02)
24 (213.93) (247.57) 4,194,303 (28.54) 0 (0.02) 0 (0.01) 0 (0.03) 0 (0.01) 0 (0.02)
26 (862.69) > 900 16,777,215 (114.56) 0 (0.02) 0 (0.01) 0 (0.02) 0 (0.01) 0 (0.02)
28 > 900 > 900 67,108,863 (460.30) 0 (0.02) 0 (0.02) 0 (0.03) 0 (0.02) 0 (0.03)
30 > 900 > 900 > 900 0 (0.03) 0 (0.02) 0 (0.03) 0 (0.02) 0 (0.03)

Table 1. Results for family {Πn
B}.

dlv (2006.01.12) smodels (2.28) nomore++ (1.4)
B a+B

n – Ta – Ta – Ta – Ta
2 (0.00) (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01) 0 (0.01)
4 (0.00) (0.01) 0 (0.01) 0 (0.01) 3 (0.01) 0 (0.01) 0 (0.01) 0 (0.01)
6 (0.00) (0.01) 0 (0.01) 0 (0.01) 15 (0.01) 0 (0.02) 0 (0.01) 0 (0.02)
8 (0.01) (0.02) 0 (0.01) 0 (0.02) 63 (0.02) 0 (0.02) 0 (0.01) 0 (0.02)
10 (0.02) (0.05) 0 (0.01) 0 (0.02) 255 (0.03) 0 (0.02) 0 (0.01) 0 (0.02)
12 (0.06) (0.16) 0 (0.01) 0 (0.01) 1,023 (0.07) 0 (0.02) 0 (0.01) 0 (0.02)
14 (0.24) (0.60) 0 (0.01) 0 (0.02) 4,095 (0.25) 0 (0.02) 0 (0.01) 0 (0.02)
16 (0.95) (2.47) 0 (0.01) 0 (0.02) 16,383 (0.98) 0 (0.02) 0 (0.01) 0 (0.02)
18 (3.86) (10.18) 0 (0.01) 0 (0.02) 65,535 (3.88) 0 (0.03) 0 (0.01) 0 (0.02)
20 (15.61) (42.04) 0 (0.01) 0 (0.02) 262,143 (15.51) 0 (0.03) 0 (0.02) 0 (0.02)
22 (63.36) (173.98) 0 (0.01) 0 (0.02) 1,048,575 (61.99) 0 (0.03) 0 (0.02) 0 (0.02)
24 (257.14) (718.17) 0 (0.01) 0 (0.02) 4,194,303 (248.74) 0 (0.03) 0 (0.02) 0 (0.02)
26 > 900 > 900 0 (0.02) 0 (0.02) > 900 0 (0.03) 0 (0.02) 0 (0.03)
28 > 900 > 900 0 (0.01) 0 (0.03) > 900 0 (0.04) 0 (0.02) 0 (0.03)
30 > 900 > 900 0 (0.02) 0 (0.03) > 900 0 (0.04) 0 (0.02) 0 (0.03)

Table 2. Results for family {Πn
a}.

Finally, let us show that our observation is not accidental and for-
mally prove that the availability of both atoms and bodies may lead
to exponentially smaller search spaces than obtainable in either re-
stricted case. To this end, we apply well-known concepts from proof
complexity [4] and show that there are infinite witnessing families of
programs for which even the best-case complexity is exponential. To

5 With lookahead disabled, propagation does not suffice to detect unsatisfia-
bility. Thus, linearly many choices must be made.

6 The choices of dlv are omitted since they rely on a different concept.

be more precise, we show that minimal refutations for Πn
B and Πn

a ,
i.e. proofs that the respective programs have no answer sets, require
exponentially many choices in the cases of Πn

B with smodels and Πn
a

with nomore++B , while a linear number of choices is required for
the transformed programs.

Theorem 1 There is an infinite family {Πn} of logic programs such
that the minimal number of choices made by smodels for determining
the unsatisfiability of Πn is O(2n) and of TB(Πn) is O(n).

Theorem 2 There is an infinite family {Πn} of logic programs such
that the minimal number of choices made by nomore++B for deter-
mining the unsatisfiability of Πn is O(2n) and of Ta(Πn) is O(n).

In neither case is it possible to simulate this behavior polynomially,
as witnessed by families {Πn

B} and {Πn
a}, respectively. Finally, we

note that the hybrid approach pursued by nomore++a+B gives a
best-case complexity of O(n) for both classes of programs: A hy-
brid approach can polynomially simulate both uniform approaches.

2 DISCUSSION
We have shown that the integration of bodies as explicitly referable
objects into atom-based ASP-solvers may have a great computational
impact. The same holds for purely body-based (or rule-based) ap-
proaches, when introducing special atoms. Considering bodies rather
than more complex formulas is motivated by the fact that they allow
for replacing rules in characterizing computational concepts (see be-
low) and by applying an “input strategy” (similar to linear resolu-
tion). Very simple transformations allow for exponential reductions
of the best-case complexity on witnessing families of logic programs.
That is, any uniform ASP-solver even equipped with the optimal
heuristics will be unable to solve all witnessing programs in polyno-
mial time. This is only possible by means of a genuinely hybrid ap-
proach, as realized in nomore++, or via respective transformations.

Our discovery is insofar surprising as standard ASP-solvers, such
as smodels, rely already on twofold data structures but somehow stop
“halfway”: The abstract smodels algorithm [7] relies on atoms (in
branching and assigning truth values). However, underlying propa-
gation and its implementation must also take rules (or bodies) into
account. Consequently, the primary data structure of smodels is an
“atom-rule graph.” Furthermore, propagation takes advantage of the
concept of “active” rules, that is, rules whose bodies are not false [7].
Although bodies are vital objects in smodels’ propagation, they are
ignored when branching.
Acknowledgements. The first, second, and fourth author were sup-
ported by DFG under grant SCHA 550/6-4, TP C.

REFERENCES
[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub, ‘The

nomore++ approach to answer set solving’, in Proceedings of LPAR’05,
eds., G. Sutcliffe and A. Voronkov, pp. 95–109. Springer-Verlag, (2005).

[2] M. Baaz, U. Egly, and A. Leitsch, ‘Normal form transformations’, in
Handbook of Automated Reasoning, eds., J. Robinson and A. Voronkov,
273–333, Elsevier, (2001).

[3] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving, Cambridge University Press, 2003.

[4] P. Beame and T. Pitassi, ‘Propositional proof complexity: Past, present,
and future’, Bulletin of EATCS, 65, 66–89, (1998).

[5] N. Leone, W. Faber, G. Pfeifer, T. Eiter, G. Gottlob, C. Koch, C. Mateis,
S. Perri, and F. Scarcello, ‘The DLV system for knowledge representa-
tion and reasoning’, ACM TOCL, (2006). To appear.

[6] http://www.cs.uni-potsdam.de/nomore.
[7] P. Simons, ‘Extending and implementing the stable model semantics’,

Helsinki University of Technology, (2000). Doctoral dissertation.


