
Logic Programs with Compiled Preferences
James P. Delgrande1 and Torsten Schaub2 and Hans Tompits3

Abstract. We describe an approach for compiling dynamic pref-
erences into logic programs under the answer set semantics. Anor-
deredlogic program is an extended logic program in which rules are
named by unique terms, and in which preferences among rules are
given by a set of atoms of the forms ≺ t wheres andt are names.
An ordered logic program is transformed into a second, regular, ex-
tended logic program wherein the preferences are respected, in that
the answer sets obtained in the transformed theory correspond with
the preferred answer sets of the original theory. Our approach allows
the specification ofstaticorderings (in which preferences are exter-
nal to a logic program), as well asdynamicorderings (in which pref-
erences can appear within a program), and orderings onsetsof rules.
In large part then, we are interested in describing a generalmethod-
ology for uniformly incorporating preference information in a logic
program. Since the result of our translation is an extended logic pro-
gram, we can make use of existing implementations, such asdlv
andsmodels . To this end, we have developed a compiler, available
on the web, as a front-end for these programming systems.

1 INTRODUCTION

In commonsense reasoning one frequently prefers one outcome over
another, or the application of one rule over another, or the drawing
of one default conclusion over another. For example, in buying a car
one may have various desiderata in mind (inexpensive, safe, fast, etc.)
where these preferences come in varying degrees of importance. In
legal reasoning, laws may apply by default but the laws themselves
may conflict. So municipal laws will have a lower priority than state
laws, and newer laws will take priority over old. Further, if these
preferences conflict, there will need to be higher preferences to de-
cide the conflict.

In this paper we explore the problem of preference orderings
within the framework of extended logic programs under the answer
set semantics [9]. The general methodology was first proposed in [5],
in addressing preferences in default logic. Previous work in dealing
with preferences has for the most part treated preference informa-
tion at themeta-level(see Section 6 for a discussion of previous ap-
proaches). In contrast, we remain within the framework of extended
logic programs: We begin with anorderedlogic program, which is
an extended logic program in which rules are named by unique terms
and in which preferences among rules are given by a new set of atoms

1 School of Computing Science, Simon Fraser University, Burnaby, B.C.,
Canada V5A 1S6, email: jim@cs.sfu.ca

2 Institut für Informatik, Universiẗat Potsdam, Postfach 60 15 53, D–14415
Potsdam, Germany, email: torsten@cs.uni-potsdam.de; also affiliated with
the School of Computing Science at Simon Fraser University, Burnaby,
Canada.

3 Institut für Informationssysteme, Abteilung Wissensbasierte Systeme
184/3, Technische Universität Wien, Favoritenstraße 9–11, A–1040 Wien,
Austria, email: tompits@kr.tuwien.ac.at

of the forms ≺ t, wheres andt are names. Thus, preferences among
rules are encoded at theobject-level. An ordered logic program is
transformed into a second, regular, extended logic program wherein
the preferences are respected, in the sense that the answer sets ob-
tained in the transformed theory correspond to the preferred answer
sets of the original theory. The approach is sufficiently general to al-
low the specification of preferences among preferences, preferences
holding in a particular context, and preferences holding by default.

Our approach can be seen as a generalmethodologyfor uniformly
incorporating preference information within a logic program. This
transformational approach has several advantages. First, it is flexible.
So one can encode how a preference order interacts with other infor-
mation, or how different types of preference orders (such as speci-
ficity, authority, recency, etc.) are to be integrated. Second, it is easier
to compare differing approaches handling such orderings, since they
can be represented uniformly in the same general setting. Thus, for
instance, if someone doesn’t like the notion of preference developed
here, they may encode their own within this framework. Lastly, it is
straightforward implementing our approach: In the present case, we
have developed a translator for ordered logic programs that serves as
a front-end for the logic programming systemsdlv [7] andsmod-
els [12].

The next section gives background terminology and notation,
while Section 3 describes our central approach. Section 4 explores
the formal properties of the approach; while Section 5 gives an
overview of further features and extensions, and provides a pointer to
the implementation. Section 6 compares related work, and Section 7
concludes with a short discussion.

2 DEFINITIONS AND NOTATION

We deal with extended logic programs [11], which allow for express-
ing both classical negationas well asnegation as failure. We use
“¬” for classical negation and “not” for negation as failure. Classi-
cal negation is also referred to asstrong negation, whilst negation as
failure is termedweak negation.

Our formal treatment is based on propositional languages. As
usual, aliteral, L, is an expression of the formA or ¬A, whereA
is an atom. We assume a possibly infinite set of such atoms. The set
of all literals is denoted byLit. A literal preceded by the negation as
failure signnot is said to be aweakly negated literal. A rule, r, is an
expression of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln, (1)

wheren ≥ m ≥ 0, and eachLi (0 ≤ i ≤ n) is a literal.
The literalL0 is called thehead of r, and the set{L1, . . . , Lm,
not Lm+1, . . . ,not Ln} is thebodyof r. If n = m, thenr is abasic
rule; if n = 0, thenr is a fact. An (extended) logic program, or sim-
ply aprogram, is a finite set of rules. A program isbasicif all rules in



it are basic. We usehead(r) to denote the head of ruler, andbody(r)
to denote the body ofr. Furthermore, letbody+(r) = {L1, . . . , Lm}
andbody−(r) = {Lm+1, . . . , Ln}. The elements ofbody+(r) are
referred to as theprerequisitesof r. We say that a ruler is defeated
by a set of literalsX iff body−(r) ∩X 6= ∅. As well, each literal in
body−(r) ∩X is said todefeatr.

A set of literalsX is consistentiff it does not contain a comple-
mentary pairA, ¬A of literals. We say thatX is logically closed
iff it is either consistent or equalsLit. Furthermore,X is closed un-
der a basic programΠ iff for any r ∈ Π, head(r) ∈ X whenever
body(r) ⊆ X. The smallest set of literals which is both logically
closed and closed under a basic programΠ is denoted by Cn(Π).

Let Π be a basic program andX a set of literals. The operatorTΠ

is defined as follows:

TΠX = {head(r) | r ∈ Π, body(r) ⊆ X}

if X is consistent, andTΠX = Lit otherwise. Iterated applications
of TΠ are written asT jΠ (j ≥ 0), whereT 0

ΠX = X andT iΠX =
TΠT

i−1
Π X for i ≥ 1. It is well-known that Cn(Π) =

⋃
i≥0 T

i
Π∅, for

any basic programΠ.
Let r be a rule. Thenr+ denotes the basic program obtained from

r by deleting all weakly negated literals in the body ofr, i.e.,r+ =
head(r)← body+(r). Thereduct, ΠX , of a programΠ relative toa
setX of literals is defined by

ΠX = {r+ | r ∈ Π andr is not defeated byX}.

In other words,ΠX is obtained fromΠ by (i) deleting anyr ∈ Π
which is defeated byX and (ii) deleting each weakly negated lit-
eral occurring in the bodies of the remaining rules. We say that a set
X of literals is ananswer setof a programΠ iff Cn(ΠX) = X.
Clearly, for each answer setX of a programP , it holds thatX =⋃
i≥0 T

i
ΠX∅. The answer set semantics for extended logic programs

has been defined in [9] as a generalization of the stable model se-
mantics [8] forgeneral logic programs(i.e., programs not containing
classical negation,¬). The reductΠX is often called theGelfond-
Lifschitz reduction.

The setΓXΠ of all generating rulesof an answer setX from Π is
given by

ΓXΠ = {r ∈ Π | r+ ∈ ΠX andbody+(r) ⊆ X}.

That is,ΓXΠ comprises all rulesr ∈ Π such thatr is not defeated by
X and each prerequisite ofr is inX. Finally, a sequence〈ri〉i∈I of
rules isgroundediff, for all i ∈ I, {head(rj) | j < i} is inconsis-
tent, or elsebody+(ri) ⊆ {head(rj) | j < i}.

3 LOGIC PROGRAMS WITH PREFERENCES

A logic program over a propositional languageL is said to beordered
iff L contains the following pairwise disjoint categories:

• a setN of terms serving asnamesfor rules;
• a setA of regular (propositional) atoms of a program; and
• a setA≺ of preference atomss ≺ t, wheres, t ∈ N are names.

For each ordered programΠ, we assume furthermore a bijective4

function n(·) assigning to each ruler ∈ Π a namen(r) ∈ N .
To simplify our notation, we usually writenr instead ofn(r) (and
we sometimes abbreviatenri by ni). Also, the relationt = n(r) is

4 In practice, functionn is only required to be injective in order to allow for
rules not participating in the resultant preference relation.

written ast : r, leaving the naming functionn(·) implicit. The el-
ements ofA≺ express preference relations among rules. Intuitively,
nr ≺ nr′ asserts thatr′ has “higher” priority thanr. Thus,r′ is
viewed as having precedence overr. That is, r′ should, in some
sense, always be considered “before”r.

Most importantly, we impose no restrictions on the occurrences of
preference atoms. This allows for expressing preferences in a very
flexible, dynamic way. For instance, we may specify

nr ≺ nr′ ← p,not q

wherep andq may themselves be (or rely on) preference atoms.
A special case is given by programs containing preference atoms

only among their facts. We say that a logic programΠ over L is
statically orderedif it is of the form Π = Π′ ∪ Π′′, whereΠ′ is an
ordered logic program overL \A≺ andΠ′′ ⊆ {(nr ≺ nr′) ← |
r, r′ ∈ Π′}. The static case can be regarded as being induced from
an external order “<”, where the relationr < r′ between two rules
holds iff the fact(nr ≺ nr′) ← is included in the ordered program.
We make this explicit by denoting a statically ordered programΠ as
a pair(Π′, <), representing the programΠ′∪{(nr ≺ nr′)← | r <
r′}. This static concept of preference corresponds in fact to most
previous approaches to preference handling in logic programming
and nonmonotonic reasoning, where the preference information is
specified as a fixed relation at the meta-level (see, e.g., [1, 2, 13, 4]).

Our approach provides a mappingT that transforms an ordered
logic programΠ into a regular logic programT (Π), such that the
preferred answer sets ofΠ are given by the (regular) answer sets
of T (Π). Intuitively, the translated programT (Π) is constructed in
such a way that the ensuing answer sets respect the inherent prefer-
ence information induced by the given programΠ (see Theorems 3
and 4 below). This is achieved by adding sufficient control elements
to the rules ofΠ which guarantee that successive rule applications
are in accord with the intended order.

Given the relationnr ≺ nr′ , we want to ensure thatr′ is con-
sidered beforer, in the sense that, for a given answer setX, rule r′

is known to be applied or defeatedahead ofr (with respect to the
grounded enumeration of generating rules ofX). We do this by first
translating rules so that the order of rule application can be explicitly
controlled. For this purpose, we need to be able to detect when a rule
has been applied or when a rule is defeated; as well we need to be
able to control the application of a rule based on other antecedent
conditions. For a ruler, there are two cases for it not to be applied: it
may be that some literal inbody+(r) does not appear in the answer
set, or it may be that a literal inbody−(r) is in the answer set. For de-
tecting non-applicability (i.e., blockage), we introduce, for each rule
r in the given programΠ, a new, special-purpose atombl(nr). Sim-
ilarly, we introduce a special-purpose atomap(nr) to detect the case
where a rule has been applied. For controlling application of ruler
we introduce the atomok(nr). Informally, we conclude that it isok
to apply a rule just if it isok with respect to every≺-greater rule; for
such a≺-greater ruler′, this will be the case just whenr′ is known
to be blocked or applied.

More formally, given an ordered programΠ overL, let L+ be
the language obtained fromL by adding, for eachr, r′ ∈ Π, new
pairwise distinct propositional atomsap(nr), bl(nr), ok(nr), and
ok′(nr,nr′). Then, our translationT maps an ordered programΠ
overL into a regular programT (Π) overL+ in the following way.

Definition 1 Let Π = {r1, . . . , rk} be an ordered logic program
overL. For eachr ∈ Π, letτ(r) be the collection of rules depicted in
Figure 1, whereL+ ∈ body+(r), L− ∈ body−(r), andr′, r′′ ∈ Π.



Then, the logic programT (Π) overL+ is given by
⋃
r∈Π τ(r).

The first four rules of Figure 1 express applicability and blocking
conditions of the original rules: For each ruler ∈ Π, we obtain two
rules,a1(r) anda2(r), along withn rules of the formb1(r, L+) and
m rules of the formb2(r, L−), wheren andm are the numbers of the
literals in body+(r) andbody−(r), respectively. The second group
of rules encodes the strategy for handling preferences. The first of
these rules,c1(r), “quantifies” over the rules inΠ. This is necessary
when dealing with dynamic preferences since preferences may vary
depending on the corresponding answer set. The three rulesc2(r, r′),
c3(r, r′), andc4(r, r′) specify the pairwise dependency of rules in
view of the given preference ordering: For any pair of rulesr, r′

with nr ≺ nr′ , we deriveok′(nr,nr′) whenevernr ≺ nr′ fails to
hold, or whenever eitherap(nr′) or bl(nr′) is true. This allows us to
deriveok(nr), indicating thatr may potentially be applied whenever
we have for allr′ with nr ≺ nr′ thatr′ has been applied or cannot be
applied. It is important to note that this is only one of many strategies
for dealing with preferences: different strategies are obtainable by
changing the specification ofok(·) andok′(·, ·).

We have the following characterisation ofpreferred answer sets.

Definition 2 Let Π be an ordered logic program over languageL
andX a set of literals. We say thatX is a preferred answer set ofΠ
iff X = Y ∩ L for some answer setY of T (Π).

In what follows, answer sets of standard (i.e., unordered) logic
programs are also referred to asregular answer sets.

As an illustration of our approach, consider the following pro-
gramΠ:

r1 = ¬a ←
r2 = b ← ¬a,not c
r3 = c ← not b
r4 = n3 ≺ n2 ← not d

whereni denotes the name of ruleri (i = 1, . . . , 4). This program
has two regular answer sets, one containingb and the other contain-
ing c; both contain¬a andn3 ≺ n2. However, only the first is a pre-
ferred answer set. To see this, observe that for anyX ⊆ {head(r) |
r ∈ T (Π)}, we haveni ≺ nj 6∈ X for each(i, j) 6= (3, 2). We thus
get for suchX and i, j that ok′(ni,nj) ∈ T 1

T (Π)X∅ by (reduced)

rules c2(ri, rj)
+, and sook(ni) ∈ T 2

T (Π)X∅ via rule c1(ri)
+ =

c1(ri). Analogously, we getap(n1), ap(n4),¬a, n3 ≺ n2. Now
consider the following rules fromT (Π):

a2(r2) : ap(n2) ← ok(n2),¬a,not c
b1(r2,¬a) : bl(n2) ← ok(n2),not ¬a
b2(r2, c) : bl(n2) ← ok(n2), c

a2(r3) : ap(n3) ← ok(n3),not b
b2(r3, b) : bl(n3) ← ok(n3), b

c3(r3, r2) : ok′(n3,n2) ← (n3 ≺ n2), ap(n2)
c4(r3, r2) : ok′(n3,n2) ← (n3 ≺ n2), bl(n2)

Given ok(n2) and¬a, rule a2(r2) leaves us with the choice be-
tweenc 6∈ X or c ∈ X. First, assumec 6∈ X. We getap(n2)
from a2(r2)+ ∈ T (Π)X . Hence, we getb, ok′(n3,n2), and finally
ok(n3), which results inbl(n3) via b2(r3, b). Omitting further de-
tails, this yields an answer set containingb while excludingc. Sec-
ond, assumec ∈ X. This eliminatesa2(r2) when turningT (Π) into
T (Π)X . Also,b1(r2,¬a) is defeated since¬a is derivable.b2(r2, c)
is inapplicable, sincec is only derivable (fromap(n3) via a1(r3))
in the presence ofok(n3). But ok(n3) is not derivable since neither
ap(n2) nor bl(n2) is derivable. Since this circular situation is unre-
solvable, there is no preferred answer set containingc.

a1(r) : head(r) ← ap(nr)
a2(r) : ap(nr) ← ok(nr), body(r)

b1(r, L+) : bl(nr) ← ok(nr),not L+

b2(r, L−) : bl(nr) ← ok(nr), L
−

c1(r) : ok(nr) ← ok′(nr,nr1), . . . , ok′(nr,nrk )
c2(r, r′) : ok′(nr,nr′) ← not (nr ≺ nr′)
c3(r, r′) : ok′(nr,nr′) ← (nr ≺ nr′), ap(nr′)
c4(r, r′) : ok′(nr,nr′) ← (nr ≺ nr′), bl(nr′)

t(r, r′, r′′) : nr ≺ nr′′ ← nr ≺ nr′ ,nr′ ≺ nr′′

as(r, r′) : ¬(nr′ ≺ nr) ← nr ≺ nr′

Figure 1. Translated rulesτ(r).

4 PROPERTIES OF THE APPROACH

Our first result ensures that the dynamically generated preference in-
formation enjoys the usual properties of strict orderings. To this end,
we define the following relation: for each setX of literals and every
r, r′ ∈ Π, the relationr <X r′ holds iff nr ≺ nr′ ∈ X.

Theorem 1 Let Π be an ordered logic program andX a consistent
answer set ofT (Π). Then<X is a strict partial order. Moreover, if
Π has only static preferences, then<X=<Y , for any answer setY
of T (Π).

The following properties shed light on the functioning induced by
translationT ; they elaborate upon the logic programming operator
TT (Π)X of a reductT (Π)X :

Theorem 2 Let X be a consistent answer set ofT (Π) for an or-
dered programΠ, and letΩ = T (Π)X . Then, for anyr ∈ Π:

1. ok(nr) ∈ X;
2. ap(nr) ∈ X iff bl(nr) 6∈ X;
3. if r is not defeated byX, ok(nr) ∈ T iΩ∅, andbody+(r) ⊆ T jΩ∅,

thenap(nr) ∈ Tmax(i,j)+1
Ω ∅;

4. ok(nr) ∈ T iΩ∅ andbody+(r) 6⊆ X impliesbl(nr) ∈ T i+1
Ω ∅;

5. if r is defeated byX andok(nr) ∈ T iΩ∅, thenbl(nr) ∈ T jΩ∅ for
somej > i;

6. ok(nr) 6∈ T iΩ∅ impliesap(nr) 6∈ T jΩ∅ andbl(nr) 6∈ T kΩ∅ for all
j, k < i+ 2.

The next result shows that the translated rules are considered in
accord to the partial order induced by the given preference relation:

Theorem 3 Let Π be an ordered logic program,X a consistent an-
swer set ofT (Π), and 〈ri〉i∈I a grounded enumeration of the set
ΓXT (Π) of generating rules ofX fromT (Π). Then, for allr, r′ ∈ Π:

If r <X r′, thenj < i,

for all ri equalingak(r) or bk(r, L), and somerj equalingak′(r
′)

or bk′(r
′, L′), with k, k′ = 1, 2, L ∈ body(r), andL′ ∈ body(r′).

For static preferences, our translationT amounts to selecting the
answer sets of the underlying unordered program that comply with
the ordering,<.

Definition 3 Let(Π, <) be a statically ordered program. An answer
setX of Π is called<-preserving ifX is either inconsistent, or else
there exists a grounded enumeration〈ri〉i∈I of ΓXΠ such that, for
everyi, j ∈ I, we have that:



1. if ri < rj , thenj < i; and
2. if ri < r′ and r′ ∈ Π \ ΓXΠ , thenbody+(r′) 6⊆ X or r′ is de-

feated by the set{head(rj) | j < i}.

The next result furnishes semantical underpinnings for statically or-
dered programs; it provides a correspondence between preferred an-
swer sets and regular answer sets of the original program:

Theorem 4 Let(Π, <) be a statically ordered logic program andX
a set of literals. Then,X is a preferred answer set of(Π, <) iff X is
a<-preserving answer set ofΠ.

This gives rise to the following corollary:

Corollary 1 Let (Π, <) andX be as in Theorem 4. IfX is a pre-
ferred answer set of(Π, <), thenX is an answer set ofΠ.

Note that the last two results have no counterparts in the general (dy-
namic) case, due to the lack of a regular answer set of the original
program. The preference information is only fully available in the
answer sets of the translated program (hence the restriction of the
notion of<-preservation to the static case).

Also, if no preference information is present, our approach is
equivalent to standard answer set semantics. Moreover, the notions
of statically ordered and (dynamically) ordered programs coincide in
this case.

Theorem 5 LetΠ be a logic program overL andX a set of literals.
If Π contains no preference information, i.e. ifL ∩ A≺ = ∅, then
the following statements are equivalent:

1. X is a preferred answer set of statically ordered logic program
(Π, ∅);

2. X is a preferred answer set of ordered logic programΠ;
3. X is a regular answer set of logic programΠ.

Recently, Brewka and Eiter [4] suggested two principles, simply
termedPrinciple I andPrinciple II, which, they argue, any defeasi-
ble rule system handling preferences should satisfy. The next result
shows that our approach obeys these principles. However, since the
original formulation of Principle I and II is rather generic—motivated
by the aim to cover as many different approaches as possible—we
must instantiate them in terms of our formalism. It turns out that
Principle I is only suitable for statically ordered programs, whilst
Principle II admits two guises, one for statically ordered programs,
and another one for (dynamically) ordered programs.

Principles I and II, formulated for our approach, are as follows:

Principle I. Let (Π, <) be a statically ordered logic program, and
let X1 andX2 be two (regular) answer sets ofΠ generated by
R∪{r1} andR∪{r2}, respectively, wherer1, r2 6∈ R. If r1 < r2,
thenX1 is not a preferred answer set of(Π, <).

Principle II-S (Static Case). Let X be a preferred answer set of
statically ordered logic program(Π, <), let r be a rule wherein
body+(r) 6⊆ X, and let<′ be a strict partial order which
agrees with< on rules fromΠ. Then,X ∪ A is an answer set
of (Π ∪ {r}, <′), whereA = {(nr ≺ ns) | r <′ s} ∪
{¬(ns ≺ nr) | r <′ s}.5

Principle II-D (Dynamic Case). LetX be a preferred answer set of
a (dynamically) ordered logic programΠ, and letr be a rule such
thatbody+(r) 6⊆ X. Then,X is an answer set ofΠ ∪ {r}.

5 The inclusion ofA is necessary because we encode the preference informa-
tion at the object level.

Theorem 6 Statically ordered logic programs obey Principles I and
II-S. Furthermore, ordered logic programs enjoy Principle II-D.

Observe that, since transformationT is clearly polynomial in the
size of ordered logic programs, and because of Theorem 5, the com-
plexity of our approach is inherited from the complexity of standard
answer set semantics in a straightforward way. We just note the fol-
lowing result:

Theorem 7 Given an ordered programΠ, checking whetherΠ has
a preferred answer set is NP-complete.

5 FURTHER ISSUES AND REFINEMENTS

In this section, we sketch the range of applicability and point out dis-
tinguishing features of our approach. We briefly mention two points
concerning expressiveness, and then sketch how we can deal with
preferences over sets of rules. Lastly, we refer to the implementation
of our approach.

First, we draw the reader’s attention to the expressive power of-
fered by dynamic preferences in connection with variables in the in-
put language, such as

n1(x) ≺ n2(y)← p(y),not (x = c), (2)

wheren1(x), n2(y) are names of rules containing the variablesx
andy, respectively. Although such a rule represents only its set of
ground instances, it is actually a much more concise specification.
Also, since most other approaches employ static preferences of the
form n1(x) ≺ n2(y) ←, such approaches would necessarily have
to express (2) as an enumeration of static ground preferences rather
than a single rule.

Second, we note that transformationT is also applicable to dis-
junctive logic programs (where rule heads are disjunctions of liter-
als). To see this, observe that the transformed rules unfold the condi-
tions expressed in the body of the rules, while the rules’ head remain
untouched, as manifested by rulea1(r).

Third, we have extended the approach to allow for preferences be-
tween sets of rules. Although we do not include a full discussion here,
we remark that this extension has also been implemented (see below).
In order to refer to sets of rules, the language is adjoined by a setM
of terms serving as names for sets of rules, and, in addition, the set
A≺ may now include atoms of the formm ≺ m′ with m,m′ ∈M.
Accordingly, set-ordered programscontain preference information
between names of sets. Informally, setM of rules is applicable iff all
its members are applicable. Consequently, ifM ′ is preferred overM ,
thenM is considered afterall rules inM ′ are found to be applicable,
or some rule inM ′ is found to be inapplicable. As before, set-ordered
programs are translated into standard logic programs, where suitable
control elementsok(·), bl(·), andap(·), ranging over names of sets,
take care of the intended ordering information.

As an example, consider where in buying a car one ranks the price
(e) over safety features (s) over power (p), but safety features to-
gether with power is ranked over price. Takingrx = x ← not ¬x
for x ∈ {e, s, p}, we can write this (informally) as:

m1 : {rp} < m2 : {rs} < m3 : {re} < m4 : {rp, rs}

The termsm1, m2, m3, andm4 are names of sets of rules. If we
were given only that not all desiderata can be satisfied then we
could apply the rules in the set (named)m4 and conclude thatp
and s can be met. Furthermore, sets of rules are described exten-
sionally by means of atomsin(·, ·). Thus, the setm4 : {rp, rs}



is captured byin(np,m4) ← and in(ns,m4) ←. Accordingly, we
havein(np,m1)←, in(ns,m2)←, andin(ne,m3)←. Given rules
re, rp, rs and the previous facts aboutin, the specification of our ex-
ample is completed by the preferencesmi ≺ mi+1← for i = 1, 2, 3.

Besides the discussed extensions, our overall framework is general
enough to express other strategies for preference handling, like that
proposed in [4]. This instance of our framework is described in a
companion paper.

Lastly, the approach has been implemented in Prolog and serves
as a front-end to the logic programming systemsdlv [7] andsmod-
els [12]. The current prototype is available at

http://www.cs.uni-potsdam.de/˜torsten/plp/ .
This URL contains also diverse examples taken from the literature.
Both the dynamic approach to (single) preferences and the set-based
approach have been implemented. We note also that the implemen-
tation differs from the approach described here in two respects: first,
the translation applies to named rules only, i.e., it leaves unnamed
rules unaffected; and second, it provides a module which admits the
specification of rules containing variables, whereby rules of this form
are processed by applying an additional grounding step. More details
on the implemented front-end can be found in [6].

6 RELATED WORK

Dealing with preferences on rules seems to necessitate a two-level
approach. This in fact is a characteristic of many approaches found
in the literature. The majority of these approaches treat preference at
the meta-level by defining alternative semantics. [3] proposes a mod-
ification of well-founded semantics in which dynamic preferences
may be given for rules employingnot. [13] and [4] propose different
prioritized versions of answer set semantics. In [13] static prefer-
ences are addressed first, by defining thereductof a logic program
Π, which is a subset ofΠ that is most preferred. For the following
example, their approach gives two answer sets (one withp and one
with ¬p) which seems to be counter-intuitive; ours in contrast has a
single answer set containing¬p.

r1 = p← not q1
r2 = ¬p← not q2

r1 < r2 ←

Moreover, the dynamic case is addressed by specifying a transforma-
tion of a dynamic program to a set of static programs.

Brewka and Eiter [4] address static preferences on rules in ex-
tended logic programs. They begin with a strict partial order on a
set of rules, but define preference with respect to total orders that
conform to the original partial order. Preferred answer sets are then
selected from among the collection of answer sets of the (unpriori-
tised) program. In contrast, we deal only with the original partial
order, which is translated into the object theory. As well, only pre-
ferred extensions are produced in our approach; there is no need for
meta-level filtering of extensions.

Gelfond and Son [10] propose a special-purpose language for di-
rectly encoding preferences in a logic programming setting. To this
end, they pursue a “two-level” approach in reifying rules and prefer-
ences. For example, a rule likep← r,¬s,not q is expressed by the
formuladefault(n, p, [r,¬s], [q]) (or, after reification, by the corre-
spondingterm inside aholds-predicate, respectively) wheren is the
name of the rule. The semantics of a domain description is given in
terms of a set of domain-independent rules for predicates likeholds.
These rules can be regarded as a meta-interpreter for the domain de-
scription.

7 CONCLUSION

We have described an approach for compiling preferences into logic
programs under the answer set semantics. An ordered logic program,
in which preferences appear in the program rules, is transformed into
a second, extended logic program wherein the preferences are re-
spected, in that the answer sets obtained in the transformed theory
correspond with the preferred answer sets of the original theory. In
a certain sense, our transformation can be regarded as an axiomati-
sation of (our interpretation of) preference. Arguably then, we de-
scribe a generalmethodologyfor uniformly incorporating preference
information in a logic program. In this approach, we avoid the two-
level structure of previous work. While the previous “meta-level” ap-
proaches must commit themselves to a semantics and a fixed strategy,
our approach (as well as that of [10]) is very flexible with respect to
changing strategies, and is open for adaptation to different semantics
and different concepts of preference handling.

The approach is easily restricted to reflect astatic ordering in
which preferences are external to a logic program. We also indicated
how the approach can be extended to deal with preferences among
sets of rules. Finally, this paper demonstrates that our approach is
easily implementable; indeed, we have developed a compiler, as a
front-end fordlv andsmodels .

ACKNOWLEDGEMENTS

The second author was partially supported by the German Science
Foundation (DFG) under grant FOR 375/1-1, TP C. The third author
was partially supported by the Austrian Science Fund (FWF) under
grants N Z29-INF and P13871-INF.

REFERENCES
[1] F. Baader and B. Hollunder, ‘How to prefer more specific defaults in

terminological default logic’, inProc. IJCAI, pp. 669–674, (1993).
[2] G. Brewka, ‘Adding priorities and specificity to default logic’, inProc.

JELIA, eds., L. Pereira and D. Pearce, pp. 247–260. Springer, (1994).
[3] G. Brewka, ‘Well-founded semantics for extended logic programs with

dynamic preferences’,J. Artificial Intelligence Research, 4, 19–36,
(1996).

[4] G. Brewka and T. Eiter, ‘Preferred answer sets for extended logic pro-
grams’,Artificial Intelligence, 109(1-2), 297–356, (1999).

[5] J. Delgrande and T. Schaub, ‘Compiling reasoning with and about pref-
erences into default logic’, inProc. IJCAI, ed., M. Pollack, pp. 168–
174. Morgan Kaufmann, (1997).

[6] J. Delgrande, T. Schaub, and H. Tompits, ‘A compiler for ordered logic
programs’, inProc. NMR, ed., C. Baral and M. Truszczyński, (2000).

[7] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello, ‘A deductive
system for nonmonotonic reasoning’, inProc. LPNMR, eds., J. Dix,
U. Furbach, and A. Nerode, pp. 363–374. Springer, (1997).

[8] M. Gelfond and V. Lifschitz, ‘The stable model semantics for logic
programming’, inProc. ICLP, (1988).

[9] M. Gelfond and V. Lifschitz, ‘Classical negation in logic programs and
deductive databases’,New Generation Computing, (1991).

[10] M. Gelfond and T. Son, ‘Reasoning with prioritized defaults.’, inProc.
LPKR, eds., J. Dix, L. Pereira, and T. Przymusinski, pp. 164–223.
Springer, (1997).

[11] V. Lifschitz, ‘Foundations of logic programming’, inPrinciples of
Knowledge Representation, ed., G. Brewka, 69–127, CSLI, (1996).

[12] I. Niemel̈a and P. Simons, ‘Smodels: An implementation of the sta-
ble model and well-founded semantics for normal logic programs’, in
Proc. LPNMR, eds., J. Dix, U. Furbach, and A. Nerode, pp. 420–429.
Springer, (1997).

[13] Y. Zhang and N. Foo, ‘Answer sets for prioritized logic programs’, in
Proc. ILPS, ed., J. Maluszynski, pp. 69–84. MIT Press, (1997).


