
Answer Set Programming as SAT modulo Acyclicity1

Martin Gebser 2 and Tomi Janhunen and Jussi Rintanen 3

Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science, Aalto University, Finland

Abstract. Answer set programming (ASP) is a declarative
programming paradigm for solving search problems arising in
knowledge-intensive domains. One viable way to implement the
computation of answer sets corresponding to problem solutions is to
recast a logic program as a Boolean satisfiability (SAT) problem and
to use existing SAT solver technology for the actual search. Such
mappings can be obtained by augmenting Clark’s completion with
constraints guaranteeing the strong justifiability of answer sets. To
this end, we consider an extension of SAT by graphs subject to an
acyclicity constraint, called SAT modulo acyclicity. We devise a lin-
ear embedding of logic programs and study the performance of an-
swer set computation with SAT modulo acyclicity solvers.

1 INTRODUCTION

Answer set programming (ASP) [4] is a declarative programming
paradigm featuring a rich rule-based syntax for modeling. The
paradigm offers an efficient way to solve search problems arising in
knowledge-intensive application domains. Typically, a search prob-
lem at hand is described in terms of rules in such a way that its solu-
tions tightly correspond to the answer sets of the resulting logic pro-
gram. Dedicated search engines, also known as answer set solvers
[15, 24, 33], can be used to compute answer sets for the program.
Thereafter solutions can be extracted from the answer sets found.

In addition to the native solvers mentioned above, one viable way
to implement the computation of answer sets is to reduce the search
problem to a Boolean satisfiability (SAT) problem and to use SAT
solvers instead. As regards the computational complexity of the un-
derlying decision problems, i.e., checking the existence of an answer
set for a normal logic program or a satisfying assignment for a set of
clauses, both are NP-complete. These results imply the existence of
polynomial-time computable reductions between the respective deci-
sion problems. However, such reductions are non-modular by nature
[21, 30]. The main complication is related with recursive rules al-
lowed in ASP and, in particular, positively interdependent rules.

Example 1 Given a normal logic program consisting of two rules
a ← b and b ← a, a reduction towards SAT can be worked out by
forming their completions [7], i.e., by rewriting the rules as equiv-
alences a ↔ b and b ↔ a that serve as the definitions of a and b.
The respective set S = {a ∨ ¬b,¬a ∨ b} of clauses has essentially
two models: M1 = {} and M2 = {a, b}. The latter is unacceptable

1 The support from the Finnish Centre of Excellence in Computational In-
ference Research (COIN) funded by the Academy of Finland (under grant
#251170) is gratefully acknowledged.

2 Also affiliated with the University of Potsdam, Germany.
3 Also affiliated with Griffith University, Brisbane, Australia.

as an answer set since a and b support each other in a self-justifying
way. An additional clause ¬a ∨ ¬b can be used to exclude M2.

A number of translations from normal programs into SAT have
been developed. The (incremental) approach based on loop formulas
[26] requires exponential space when applied as a one-shot transfor-
mation. There are also polynomial translations exploiting new atoms:
a quadratic one [25] in the length n of a program and a translation
of the order of n logn [20, 21]. However, obtaining a transformation
linear in n is unlikely and such compactness seems only achievable
if an extension of propositional logic, such as difference logic [32],
is used as target formalism [31].

In any case, Clark’s completion [7] forms a basis for practically all
transformations. Using new atoms, the completion can be kept linear
in n, and it allows one to capture supported models [28] of a logic
program as classical models of its completion. Given this relation-
ship, further constraints are needed in order to arrive at stable models,
also known as answer sets [17], in general. In [31], such constraints
are called ranking constraints, and their main purpose is to guaran-
tee that the rules of a logic program are applied in a non-circular way
(recall M2 from Example 1).

The goal of this paper is to define yet another translation from nor-
mal programs into an extension of SAT. This time, we consider an ex-
tension based on a graph G = 〈V,E〉 labeled by dedicated Boolean
variables e〈u,v〉 corresponding to directed edges 〈u, v〉 ∈ E. Each
truth assignment to these variables gives rise to a subgraph G′ of
G consisting of exactly those edges 〈u, v〉 of G for which e〈u,v〉 is
true. The idea is that G′ is constantly subject to an acyclicity con-
straint, i.e., the edges in E′ are not allowed to form a cycle. We call
this kind of an extension SAT modulo acyclicity due to high analogy
with the SAT modulo theories (SMT) framework. Indeed, SAT mod-
ulo acyclicity is closely related to graph algorithms used in efficient
implementations of difference logic [9, 32]. As this logic extends
propositional logic by (simple) linear inequalities, it is still concep-
tually different from SAT modulo acyclicity, where a graph is directly
exploited to represent structure relevant to the domain of interest.

In the sequel, we show how the dynamically varying graph com-
ponent and the acyclicity constraint imposed on it can be exploited to
capture the strong justifiability properties of answer sets in analogy
to ranking constraints [31]. Interestingly, this translation stays linear
in the length n of a program. Moreover, we have implemented the
respective translation for normal programs as well as the acyclicity
test in the context of the MINISAT (series 2) code base. This enables
a performance analysis against other methods available for comput-
ing answer sets. It is not necessary to restrict the analysis to normal
programs, since extended rule types [33] supported by contemporary
ASP solvers can be normalized, using existing transformations and

their implementation in the tool LP2NORMAL2 [2].
The rest of this paper is organized as follows. In Section 2, we re-

view the syntax and semantics of normal logic programs. The main
steps involved when translating ASP into propositional logic and its
extensions are recalled in Section 3. These steps guide us when devis-
ing a new reduction to SAT modulo acyclicity in Section 4. Then, in
Section 5, we discuss the constituents of the resulting linear transfor-
mation: first adding acyclicity constraints as normal rules, perform-
ing completion for the resulting program, and producing the clausal
representation. As back-end SAT solvers, we use new variants of the
MINISAT and GLUCOSE solvers extended with tests and propagators
for acyclicity. Section 6 is devoted to a performance evaluation. A
brief summary of related work is given in Section 7, and Section 8
concludes the paper.

2 NORMAL PROGRAMS
In this section, we review the syntax and semantics of ASP and, in
particular, the case of propositional normal programs. Such a pro-
gram P is defined as a set of rules r of the form

a← b1, . . . , bn,∼c1, . . . ,∼cm (1)

where a, b1, . . . , bn, and c1, . . . , cm are (propositional) atoms, and∼
stands for default negation. The intuition of (1) is that the head atom
H(r) = a can be inferred by r if the positive body atoms in B+(r) =
{b1, . . . , bn} can be inferred by the other rules of program P , but
none of the negative body atoms in B−(r) = {c1, . . . , cm}. The
entire body of r is B(r) = B+(r)∪{∼c | c ∈ B−(r)}. The positive
part r+ of a rule r is defined as H(r)← B+(r). A normal programP
is called positive, if we have that r = r+ for every rule r ∈ P .

Next we turn our attention to the semantics of normal programs.
The Herbrand base At(P) of a program P is defined as the set of
atoms that appear in P . An interpretation I ⊆ At(P) of P specifies
which atoms a ∈ At(P) are true in I (I |= a iff a ∈ I) and which
are false in I (I 6|= a iff a ∈ At(P) \ I). An entire rule r is satisfied
in I , denoted I |= r, iff I |= H(r) is implied by I |= B(r), where
∼ is treated classically, i.e., I |= ∼ci iff I 6|= ci. A (classical) model
M ⊆ At(P) of P , denoted M |= P , is an interpretation such that
M |= r for all r ∈ P . A model M |= P is ⊆-minimal iff there
is no model M ′ |= P such that M ′ ⊂ M . Every positive normal
program P has a unique ⊆-minimal model, the least model LM(P).

The least model semantics can also cover a normal program P in-
volving default negation if P is first reduced into a positive program
P I = {r+ | r ∈ P, I ∩ B−(r) = ∅} with respect to any interpre-
tation I ⊆ At(P). Then, an interpretation M ⊆ At(P) is called
a stable model of P iff M = LM(PM). Stable models are more
generally known as answer sets [17]. Given that their number can
vary, the set of stable models of P is denoted by SM(P). As shown
in [28], stable models form a special case of supported models [1]:
a model M |= P is supported iff, for every atom a ∈ M , there is a
rule r ∈ P such that H(r) = a and M |= B(r).

3 TRANSLATING ASP TOWARDS SAT
In what follows, we present the main ideas needed to translate a nor-
mal logic program into propositional logic and its extensions. To this
end, we use difference logic [32] as the target formalism and essen-
tially present the translation of [31]. For the sake of efficiency, we
address the translation at component level. To distinguish the com-
ponents of a normal logic program P , we define its positive depen-
dency graph DG+(P) as a pair 〈At(P),≤+〉, where b ≤+ a holds

whenever there is a rule r ∈ P such that H(r) = a and b ∈ B+(r).
A strongly connected component (SCC) of DG+(P) is a non-empty
and maximal subset C ⊆ At(P) such that a ≤∗+ b and b ≤∗+ a
hold for each a, b ∈ C and the reflexive and transitive closure ≤∗+
of ≤+. We let SCC+(P) stand for the set of SCCs of DG+(P).
Given an atom a ∈ At(P), we denote the SCC C ∈ SCC+(P)
such that a ∈ C by SCC(a). This allows us to split the definition
DefP (a) = {r ∈ P | H(r) = a} of a into external and internal
parts as follows.

EDefP (a) = {r ∈ DefP (a) | B+(r) ∩ SCC(a) = ∅}
IDefP (a) = {r ∈ DefP (a) | B+(r) ∩ SCC(a) 6= ∅}

3.1 Program Completion

The completion Comp(P) [7] of a normal program P contains

a↔
∨

r∈DefP (a)

(
∧

b∈B+(r)

b ∧
∧

c∈B−(r)

¬c) (2)

for each atom a ∈ At(P). Recall that empty disjunctions and con-
junctions correspond to propositional constants ⊥ and >, respec-
tively. Given a set F of propositional formulas and the set At(F)
of atoms appearing in F , we define interpretations as subsets I ⊆
At(F) in analogy to Section 2. The satisfaction of propositional
formulas is defined in the standard way, and I |= F iff I |= φ
for every formula φ ∈ F . The set of classical models of F is
CM(F) = {M ⊆ At(F) | M |= F}. As regards the completion
Comp(P) of a normal program P , it holds that CM(Comp(P))
coincides with the set of supported models of P [28]. This connec-
tion explains why completion is relevant when translating ASP into
propositional logic and, indeed, exploited in many translations.

3.2 Difference Logic

As illustrated by Example 1, extra constraints are needed to close
the gap between stable and supported models. To this end, we resort
to difference logic, which extends propositional logic with simple
linear constraints of the form x + k ≥ y, where k is an arbitrary
integer constant and x and y are integer variables. An interpretation
in difference logic consists of a pair 〈I, v〉, where I is a propositional
interpretation and v maps integer variables to their domain so that
〈I, v〉 |= x+k ≥ y iff v(x)+k ≥ v(y). Deciding the satisfiability of
a formula in difference logic is NP-complete, and efficient decision
procedures have been developed in the SMT framework [9, 32].

In what follows, we review the main ideas behind the translation
of ASP into difference logic [31]. Given a rule r of the form (1), we
introduce a new atom bdr denoting the satisfaction of B(r). This
is defined by the formula (3) below, and consequently (2) can be
rewritten as the formula (4).

bdr ↔
∧

b∈B+(r)

b ∧
∧

c∈B−(r)

¬c (3)

a ↔
∨

r∈DefP (a)

bdr (4)

In addition to program completion, the translation of [31] utilizes
ranking constraints to capture stable models. The translation is fur-
ther refined in [23] by distinguishing external and internal support
for atoms a ∈ At(P) that belong to non-trivial components, so that

IDefP (a) 6= ∅. To formalize this, two new atoms exta and inta are
introduced for such atoms a and defined by the formulas below.

exta ↔
∨

r∈EDefP (a)

bdr (5)

inta ↔
∨

r∈IDefP (a)

(bdr ∧
∧

b∈B+(r)∩SCC(a)

(xa − 1 ≥ xb)) (6)

a → exta ∨ inta (7)

¬exta ∨ ¬inta (8)

¬a → (xa = z) (9)

exta → (xa = z) (10)

In (6), xa and xb are integer variables introduced for a as well as
other atoms b ∈ SCC(a). The intuition behind (6) is that internal
support for a requires at least one rule r whose positive body atoms
within SCC(a) must be derived before a in a non-circular way. Yet
another special variable z, essentially denoting 0, is used to fix the
value of xa whenever a is false (9) or has external support (10). The
translation of a normal program P consisting of the formulas pre-
sented above is denoted by TrDIFF(P). It does not yield a bijective
correspondence of models, but the following relationship can be es-
tablished in general. For a tighter relation, the reader is referred to
additional formulas based on strong ranking constraints [23, 31].

Theorem 1 ([23]) Let P be a normal logic program and TrDIFF(P)
its translation into difference logic.

1. If M ∈ SM(P), then there is a model 〈N, v〉 |= TrDIFF(P) such
that M = N ∩At(P).

2. If 〈N, v〉 |= TrDIFF(P), thenM ∈ SM(P) forM = N∩At(P).

4 TRANSLATION INTO SAT MODULO
ACYCLICITY

In this section, the goal is to reformulate the translation TrDIFF(P)
for SAT modulo acyclicity. The idea is to extend a set S of clauses
by a digraph G = 〈V,E〉 whose edges 〈u, v〉 ∈ E are labeled by
propositional atoms e〈u,v〉 present in the set At(S) of atoms appear-
ing in S. Each interpretation I ⊆ At(S) selects a subgraph GI of
G based on the edges 〈u, v〉 ∈ E such that I |= e〈u,v〉. Thus it is
reasonable to assume that this mapping from edges to propositions
is injective. An interpretation I is a model of S combined with G
iff I |= S and the subgraph GI is acyclic, i.e., there is no sequence
〈v0, v1〉, . . . , 〈vn−1, vn〉 of edges such that vn = v0.

The if-direction of (3) is captured by the clause (11) below. On
the other hand, the only-if-direction requires a clause (12) for each
b ∈ B+(r) and a clause (13) for each c ∈ B−(r).

bdr ∨
∨

b∈B+(r)

¬b ∨
∨

c∈B−(r)

c (11)

¬bdr ∨ b (12)

¬bdr ∨ ¬c (13)

Rather than formalizing internal and external support explicitly,
we distinguish well-supporting rules r ∈ IDefP (a) for an atom a.
The purpose of the clauses below is to make wsr equivalent to the
respective conjunction in (6). The clause (14) is responsible for the
if-direction whereas (15) and (16), introduced for each atom b ∈
B+(r) ∩ SCC(a), capture the only-if part.

wsr ∨ ¬bdr ∨
∨

b∈B+(r)∩SCC(a)

¬e〈a,b〉 (14)

¬wsr ∨ bdr (15)

¬wsr ∨ e〈a,b〉 (16)

It remains to clausify (4), but taking the external and internal sup-
port of a properly into account. We introduce (17) to make a true
whenever it is supported by some rule r ∈ DefP (a). On the other
hand, (18) falsifies awhen it lacks both external and internal support.

a ∨ ¬bdr (17)

¬a ∨
∨

r∈EDefP (a)

bdr ∨
∨

r∈IDefP (a)

wsr (18)

The translation TrACYC(P) of a normal program P has the
clauses defined above, and the resulting graph G = 〈V,E〉 con-
sists of V = {a ∈ At(P) | IDefP (a) 6= ∅} and E = {〈a, b〉 |
a ∈ At(P), r ∈ IDefP (a), b ∈ B+(r)∩SCC(a)}. The correctness
of TrACYC(P) can be justified on the basis of Theorem 1 as follows.

Theorem 2 Let P be a normal logic program and TrACYC(P) its
translation into SAT modulo acyclicity.

1. If M ∈ SM(P), then there is a model N |= TrACYC(P) such
that M = N ∩At(P).

2. If N |= TrACYC(P), then M ∈ SM(P) for M = N ∩At(P).

Proof sketch. LetG be the graph associated with TrACYC(P). For
the first item, it is sufficient to show that, if 〈N, v〉 |= TrDIFF(P),
then there is an interpretation I satisfying the clauses of TrACYC(P)
such that GI is acyclic and I ∩ At(P) = N ∩ At(P). For the sec-
ond item, it needs to be established that, if N satisfies the clauses of
TrACYC(P) and GN is acyclic, then 〈I, v〉 |= TrDIFF(P) such that
I ∩ At(P) = N ∩ At(P) and v is obtained from GN by setting
v(xa) to be the maximum distance from a to a leaf node in GN . 2

The translation introduced above does not yet include any clauses
corresponding to formulas (9) and (10), which reset the integer vari-
able xa associated with awhen the value of this variable is irrelevant.
For the translation into SAT modulo acyclicity, the respective idea
is to explicitly disable edges that are clearly irrelevant for checking
non-circular support through rules. The clause (19), i.e., the analog
of (9), is introduced for any pair a and b of atoms such that there is
some r ∈ IDefP (a) with b ∈ B+(r) ∩ SCC(a). To cover (10), we
need a similar clause (20) conditioned by external support provided
by r ∈ EDefP (a).

a ∨ ¬e〈a,b〉 (19)

¬bdr ∨ ¬e〈a,b〉 (20)

¬wsr ∨ ¬e〈a,b〉 (21)

Actually, it is possible to generalize this principle for internally and,
more precisely, well-supporting rules. The clause (21) can be incor-
porated for any pair a and b of atoms such that {r, r′} ⊆ IDefP (a)
and b ∈ (B+(r′) \ B+(r)) ∩ SCC(a). The last condition is es-
sential: note that wsr being true presumes that each e〈a,b〉 such that
b ∈ B+(r)∩SCC(a) is true. The intuition is that r alone is sufficient
to provide the internal support for a and no other r′ ∈ IDefP (a) is
necessary in this respect. Thus the check for non-circular support is
feasible with (potentially) fewer edges present in the graph. The re-
spective extension of TrACYC(P) by the clauses of forms (19)–(21)
above is denoted by Tr+ACYC(P).

Proposition 1 Let P be a normal logic program and Tr+ACYC(P)
its extended translation into SAT modulo acyclicity.

1. If M ∈ SM(P), then there is a model N |= Tr+ACYC(P) such
that M = N ∩At(P).

2. If N |= Tr+ACYC(P), then M ∈ SM(P) for M = N ∩At(P).

The main observation behind Proposition 1 is that any subgraph
of an acyclic graph is also acyclic. This is why the additional clauses
do not interfere with satisfiability but, on the other hand, can favor
computational performance. Finally, it is worth pointing out that the
translation of [23] does not have any corresponding formula, and
hence the extension based on (21) is a novel contribution.

Example 2 To illustrate Tr+ACYC(P), consider a logic program P
as follows.

r1 : a← b r3 : b← a r5 : c← a, b
r2 : a← c r4 : b← c,∼d r6 : c← ∼d r7 : d← ∼c

We have SCC+(P) = {{a, b, c}, {d}}, so that EDefP (a) =
EDefP (b) = ∅, EDefP (c) = {r6}, and EDefP (d) = {r7}. The
following definitions are captured by the clauses of forms (11)–(13).

bdr1 ↔ b bdr3 ↔ a bdr5 ↔ a ∧ b
bdr2 ↔ c bdr4 ↔ c ∧ ¬d bdr6 ↔ ¬d bdr7 ↔ ¬c

Moreover, the clauses of forms (14)–(16) define well-support through
r1, . . . , r5 as follows.

wsr1 ↔ bdr1 ∧ e〈a,b〉 wsr3 ↔ bdr3 ∧ e〈b,a〉
wsr2 ↔ bdr2 ∧ e〈a,c〉 wsr4 ↔ bdr4 ∧ e〈b,c〉

wsr5 ↔ bdr5 ∧ e〈c,a〉 ∧ e〈c,b〉

The introduced atoms are used by the clauses of forms (17) and (18),
expressing that any supported atom must be true but also requires
some well-supporting rule if it has no external support.

a ∨ ¬bdr1 a ∨ ¬bdr2 ¬a ∨ wsr1 ∨ wsr2
b ∨ ¬bdr3 b ∨ ¬bdr4 ¬b ∨ wsr3 ∨ wsr4
c ∨ ¬bdr5 c ∨ ¬bdr6 ¬c ∨ bdr6 ∨ wsr5
d ∨ ¬bdr7 ¬d ∨ bdr7

The above formulas correspond to the set TrACYC(P) of clauses.
While P has two stable models, {a, b, c} and {d}, there are 30
(acyclic) models of TrACYC(P). The reason for this sharp increase
is that edges may be freely added to the ones from well-supporting
rules as long as the respective subgraph remains acyclic. In order
to tighten the selection of edges, Tr+ACYC(P) further contains the
following clauses of forms (19)–(21).

a ∨ ¬e〈a,b〉 b ∨ ¬e〈b,a〉 c ∨ ¬e〈c,a〉
a ∨ ¬e〈a,c〉 b ∨ ¬e〈b,c〉 c ∨ ¬e〈c,b〉

¬wsr2 ∨ ¬e〈a,b〉 ¬wsr4 ∨ ¬e〈b,a〉 ¬bdr6 ∨ ¬e〈c,a〉
¬wsr1 ∨ ¬e〈a,c〉 ¬wsr3 ∨ ¬e〈b,c〉 ¬bdr6 ∨ ¬e〈c,b〉

The addition of these clauses reduces the number of models to 4.
Since edges from false atoms are suppressed, the model correspond-
ing to {d} yields a subgraph without any edge. The three remain-
ing models augment {a, b, c,bdr1 , . . . , bdr6} with either {e〈a,b〉,
e〈b,c〉,wsr1 ,wsr4}, {e〈a,c〉, e〈b,c〉,wsr2 ,wsr4}, or {e〈a,c〉, e〈b,a〉,
wsr2 ,wsr3}, representing distinct derivations of a and b by means of
internal support. Notably, the viable derivations do not contain one
another, given that Tr+ACYC(P) prohibits redundant edges.

5 IMPLEMENTATION

In this section, we describe our translation-based implementation of
ASP using the reduction presented in Section 4. First of all, we as-
sume that GRINGO is run to instantiate ASP programs, typically con-
taining term variables in first-order style. The outcome is a ground
logic program, which is subsequently processed as follows.

Normalization. Besides normal rules (1), contemporary ASP
solvers support a number of extensions such as choice rules, car-
dinality rules, weight rules, and optimization statements [33]. We
use the existing tool LP2NORMAL2 (v. 1.10) [2] to normalize ground
programs involving extended rules of the first three types. For the
moment, we do not support optimization statements, mainly because
the current back-end solvers are lacking optimization capabilities.

Translation into Extended CNF and SMT. The actual transfor-
mation from normal rules into clauses takes place in two steps. Each
rule r ∈ P of an input program P is first rewritten by using the new
atoms bdr and wsr involved in the translation TrACYC(P) and by
adding normal rules defining these new atoms. In addition, atomic
propositions e〈a,b〉 corresponding to the edges of the graph are in-
troduced, and the further constraints of Tr+ACYC(P) are optionally
incorporated. This first step is implemented by a translator called
LP2ACYC (v. 1.13) [13]. The second step of the transformation con-
cerns the completion of the program as well as producing the clausal
representation in an extended DIMACS format. The output produced
by the tool ACYC2SAT (v. 1.24) has a dedicated section for express-
ing the graph for acyclicity checking. Support for difference logic in
the SMT LIB 2.0 format is obtained similarly by using the translator
ACYC2SOLVER (v. 1.7), which produces the required formula syn-
tax (command line option --diff). The graph is here represented
by implications e〈a,b〉 → (xa > xb), where xa and xb are integer
variables associated with atoms a and b involved in the same SCC.

Back-End Solvers. To implement the search for satisfying as-
signments corresponding to answer sets, we use high-performance
extensions of SAT solvers by acyclicity constraints as presented in
[13, 14]. These solvers are based on the publicly available MINISAT

solver, and they take as input a set of clauses, a graph, and a mapping
from the edges of the graph to propositional variables. The solvers’
search algorithms work exactly like the underlying MINISAT solver,
except that when assigning an edge variable to true, corresponding
to the addition of an edge to the graph, a propagator for the acyclicity
constraint checks whether the graph contains a cycle. If so, a conflict
is reported to the solver. Moreover, the propagator checks whether
the graph now contains any path leading from some node u to an-
other node v such that 〈v, u〉 is a potential edge. In that case, the
solver infers ¬e〈v,u〉 for the the propositional variable e〈v,u〉 rep-
resenting the presence of the edge 〈v, u〉 in the graph. The solvers
presented in [14] include ACYCGLUCOSE and ACYCMINISAT, which
are analogous extensions of the GLUCOSE and MINISAT solvers for
plain SAT. We below compare our SAT modulo acyclicity solvers to
the Z3 SMT solver, winner of the difference logic category (QF IDL)
in the 2011 SMT solver competition.

6 EXPERIMENTS

We empirically evaluate the introduced translations into SAT mod-
ulo acyclicity on the Hamiltonian cycle problem as well as the tasks
of finding a directed acyclic graph, forest, or tree subject to XOR-
constraints over edges [13]. The formulation of the Hamiltonian cy-
cle problem as a logic program relies on positively recursive rules to
keep track of the reachability of nodes. Likewise, the aforementioned

Problem Hamilton Acyclic Forest Tree
Size 100 150 25 50 75 100 25 50 75 100 25 50 75 100
CLASP 0.95 20.16 0.12 0.76 282.01 831.33 4.09 1039.26 1501.76 1632.94 4.37 1193.09 1495.32 1995.19
ACYCGLUCOSE 0.07 0.15 0.05 0.28 8.09 964.28 0.64 304.44 1006.73 1418.25 0.74 315.83 999.07 1414.68
ACYCMINISAT 0.04 0.12 0.03 0.29 4.76 647.13 0.72 498.00 920.43 1269.47 0.83 544.43 1025.02 1224.28
Z3 2.45 50.64 0.29 7.61 167.74 2278.63 4.54 1205.63 1755.28 2690.67 4.75 1208.36 1726.56 2538.20
ACYCGLUCOSE-TrACYC 0.93 13.75 0.09 0.34 5.47 1165.24 1.28 328.93 1012.53 1447.94 1.40 271.93 973.22 1388.82
ACYCMINISAT-TrACYC 0.76 7.28 0.09 0.57 3.54 404.14 0.86 505.18 894.59 1123.87 0.80 484.92 879.18 1030.79
Z3-TrACYC 35.80 331.11 24.47 7.21 907.72 2335.39 6.78 1156.39 2211.60 2585.17 6.30 1178.44 2266.66 2714.01
ACYCGLUCOSE-Tr+ACYC

0.04 0.18 0.14 0.33 5.91 1215.41 1.05 294.43 1044.64 1471.99 1.09 264.28 931.28 1379.15
ACYCMINISAT-Tr+ACYC 0.08 0.32 0.09 0.58 3.25 258.47 0.80 495.43 887.67 1040.15 0.77 473.64 852.78 1016.50
Z3-Tr+ACYC 27.72 239.83 20.32 6.47 952.43 2240.60 8.99 1111.26 2101.47 2524.52 7.03 1230.51 1976.20 2562.70

Table 1. Empirical comparison between direct encodings and SAT modulo acyclicity translations of Hamiltonian cycle and directed acyclic graph problems

acyclicity properties can be expressed in terms of recursive specifica-
tions based on elimination orders, and respective ASP encodings are
developed in [12]. Direct SAT modulo acyclicity or difference logic
encodings, on the other hand, focus on the absence of cycles (by dis-
regarding the incoming edges of a fixed starting node in case of the
Hamiltonian cycle problem). Acyclic graph structures, in general, are
central to numerous application problems, e.g., [3, 5, 8, 10, 19].

Our evaluation includes the ASP solver CLASP (v. 3.0.4), the
SAT modulo acyclicity solvers ACYCGLUCOSE (based on GLUCOSE

v. 3.0) and ACYCMINISAT (based on MINISAT v. 2.2.0), and the SMT
solver Z3 (v. 4.3.1) supporting difference logic. While CLASP is run
on logic programs P encoding the investigated problems, the other
three solvers are applied to corresponding direct problem formula-
tions as well as the translations TrACYC(P) and Tr+ACYC(P), as
indicated by the suffix TrACYC or Tr+ACYC, respectively, in Table 1,
which provides average runtimes over 100 (randomly generated) in-
stances per problem and graph size in terms of nodes. The instances
consist of planar directed graphs in case of the Hamiltonian cycle
problem or, otherwise, XOR-constraints over edges to be fulfilled by
a directed acyclic graph, forest, or tree, respectively. All experiments
were run on a cluster of Linux machines with a timeout of 3600 sec-
onds per instance, taking aborts as 3600 seconds within averages.
Minimum average runtimes per column are highlighted in boldface.

Among direct encodings of the Hamiltonian cycle problem in the
upper left part of Table 1, the SAT modulo acyclicity solvers ACYC-
GLUCOSE and ACYCMINISAT have an edge over the SMT solver
Z3 and CLASP running on logic programs P . While the transla-
tions TrACYC(P) and Tr+ACYC(P) do not yield the same perfor-
mance of Z3 as direct problem formulation, the average runtimes of
ACYCGLUCOSE and ACYCMINISAT with the translation Tr+ACYC(P)
come close to direct encoding. This indicates the adequacy of the
translation from logic programs into SAT modulo acyclicity.

For finding directed acyclic graphs, forests, or trees fulfilling
XOR-constraints, the performance of ACYCMINISAT is even better
with the translation Tr+ACYC(P) than direct formulation on graphs
with 75 or 100 nodes. The search statistics of ACYCMINISAT re-
vealed a reduction of the number of decisions and conflicts by about
one order of magnitude on average, recompensating the size over-
head (roughly factor 5) of the translation. This observation suggests
that translation, in particular, Tr+ACYC(P), exposes problem struc-
ture that is not immediately accessible to search with the direct SAT
modulo acyclicity encoding. The effect of translations on search per-
formance is nevertheless solver-specific, as ACYCGLUCOSE and Z3

cannot take similar advantage of them as ACYCMINISAT. Unlike with
the Hamiltonian cycle problem, ACYCGLUCOSE does also not ben-
efit significantly from using Tr+ACYC(P) and in some cases, e.g.,
finding directed acyclic graphs or forests with 100 nodes, performs
even better with TrACYC(P). Despite of this, running ACYCGLU-
COSE and ACYCMINISAT with translations from logic programs into
SAT modulo acyclicity turns out to be competitive to direct encoding.
Both solvers are further able to achieve performance improvements
compared to the ASP solver CLASP on the considered problems. The
disadvantages of Z3 are presumably owed to the fact that difference
logic is more expressive than what is needed for acyclicity checking.

7 RELATED WORK
Native ASP solvers, such as SMODELS [33], DLV [24], and CLASP

[15], use search techniques analogous to those for SAT, yet tailored
to the needs of logic programs. Albeit rules and clauses are dif-
ferent base primitives, it is interesting to compare the unfounded
set [34] falsification of ASP solvers to the propagation principles of
SAT modulo acyclicity solvers [14]. For instance, with reachability-
based encodings of the Hamiltonian cycle problem (cf. [13]), ASP
solvers are able to detect inconsistency of a partial assignment such
that false edge variables yield a partition of the given graph. How-
ever, true edge variables need not necessarily form a cycle yet, so
that SAT modulo acyclicity solvers are not guaranteed to detect
such an inherent inconsistency. On the other hand, the falsification
of edge variables that would close a cycle has no counterpart in
ASP solvers, where proposals to converse unfounded set propagation
[6, 11, 16] did not lead to practical success. Even if such mechanisms
were available, with reachability-based encodings of the Hamilto-
nian cycle problem, they would aim at identifying edges necessary to
avoid the partitioning of a graph, which is orthogonal to preventing
(sub)cycles. With our translation technique into SAT modulo acyclic-
ity, true edge variables represent some derivation for the atoms in a
stable model, which can be viewed as making source pointers [33],
originally introduced as a data structure for unfounded set checking,
explicit. The inclusion of source pointers or respective edge variables
is the reason why one stable model may correspond to several (clas-
sical) models in SAT modulo acyclicity.

Several systems translate a logic program given as input into a
set of clauses and use a SAT solver for the actual search. The early
ASSAT system [26] exploits loop formulas to exclude non-stable sup-
ported models, and the same idea is adopted in the design of the
CMODELS system [18]. The LP2SAT system [21] and its derivatives

[22] are based on a subquadratic one-shot transformation, hence im-
proving the quadratic encoding described in [25]. However, the rep-
resentation of well-supporting rules, possibly augmented with the
completing clauses in (19)–(21), in SAT modulo acyclicity is linear
and thus more compact than translations into plain SAT.

Logic programs can also be translated into SMT. In this respect,
difference logic [23] and the logic of bit vectors [29] are covered
by linear translations, such as the one detailed in Section 3. Yet an-
other translation into mixed integer programming (MIP) is presented
in [27]. Due to the use of numeric variables, this translation is also
linear, and it enables the application of MIP solvers like CPLEX to
compute answer sets. The respective translations into SMT and MIP
are based on similar principles as the translation into SAT modulo
acyclicity developed in this paper.

8 CONCLUSION
We have presented novel mappings of logic programs under stable
model semantics to SAT modulo acyclicity. Similar to previous SMT
and MIP translations, our embeddings in SAT modulo acyclicity are
linear, yet without relying on numeric variables utilized in SMT
and MIP formulations. Although our translations into SAT modulo
acyclicity yield, in general, a one-to-many correspondence between
stable and classical models, our experiments indicate that solvers
for SAT modulo acyclicity can be highly effective. The translators
LP2NORMAL2, LP2ACYC, and ACYC2SAT, together with our SAT
modulo acyclicity solvers ACYCGLUCOSE and ACYCMINISAT [14],
form a new translation-based implementation [13] of ASP.

REFERENCES
[1] K. Apt, H. Blair, and A. Walker, ‘Towards a theory of declarative

knowledge’, in Foundations of Deductive Databases and Logic Pro-
gramming, ed., J. Minker, pp. 89–148. Morgan Kaufmann, (1988).

[2] J. Bomanson and T. Janhunen, ‘Normalizing cardinality rules using
merging and sorting constructions’, in Proc. International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’13),
pp. 187–199. Springer, (2013).

[3] M. Bonet and K. John, ‘Efficiently calculating evolutionary tree mea-
sures using SAT’, in Proc. International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT’09), pp. 4–17. Springer, (2009).

[4] G. Brewka, T. Eiter, and M. Truszczyński, ‘Answer set programming at
a glance’, Communications of the ACM, 54(12), 92–103, (2011).

[5] D. Brooks, E. Erdem, S. Erdogan, J. Minett, and D. Ringe, ‘Inferring
phylogenetic trees using answer set programming’, Journal of Auto-
mated Reasoning, 39(4), 471–511, (2007).

[6] X. Chen, J. Ji, and F. Lin, ‘Computing loops with at most one ex-
ternal support rule’, in Proc. International Conference on Principles
of Knowledge Representation and Reasoning (KR’08), pp. 401–410.
AAAI Press, (2008).

[7] K. Clark, ‘Negation as failure’, in Logic and Data Bases, eds., H. Gal-
laire and J. Minker, pp. 293–322. Plenum Press, (1978).

[8] J. Corander, T. Janhunen, J. Rintanen, H. Nyman, and J. Pensar, ‘Learn-
ing chordal Markov networks by constraint satisfaction’, in Proc. An-
nual Conference on Neural Information Processing Systems (NIPS’13),
pp. 1349–1357. Volume 26 of Advances in Neural Information Process-
ing Systems, (2013).

[9] S. Cotton and O. Maler, ‘Fast and flexible difference constraint propa-
gation for DPLL(T)’, in Proc. International Conference on Theory and
Applications of Satisfiability Testing (SAT’06), pp. 170–183. Springer,
(2006).

[10] J. Cussens, ‘Bayesian network learning with cutting planes’, in Proc.
International Conference on Uncertainty in Artificial Intelligence
(UAI’11), pp. 153–160. AUAI Press, (2011).

[11] C. Drescher and T. Walsh, ‘Efficient approximation of well-founded
justification and well-founded domination’, in Proc. International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’13), pp. 277–289. Springer, (2013).

[12] M. Gebser, T. Janhunen, and J. Rintanen, ‘ASP encodings of acyclicity
properties’, in Proc. International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’14). AAAI Press, (2014).

[13] M. Gebser, T. Janhunen, and J. Rintanen, ‘SAT modulo acyclicity
tools’. http://research.ics.aalto.fi/software/asp/
lp2acyc/, (2014).

[14] M. Gebser, T. Janhunen, and J. Rintanen, ‘SAT modulo graphs:
Acyclicity’. Submitted, (2014).

[15] M. Gebser, B. Kaufmann, and T. Schaub, ‘Conflict-driven answer set
solving: From theory to practice’, Artificial Intelligence, 187, 52–89,
(2012).

[16] M. Gebser and T. Schaub, ‘Tableau calculi for logic programs under an-
swer set semantics’, ACM Transactions on Computational Logic, 14(2),
15:1–15:40, (2013).

[17] M. Gelfond and V. Lifschitz, ‘Classical negation in logic programs
and disjunctive databases’, New Generation Computing, 9, 365–385,
(1991).

[18] E. Giunchiglia, Y. Lierler, and M. Maratea, ‘Answer set programming
based on propositional satisfiability’, Journal of Automated Reasoning,
36(4), 345–377, (2006).

[19] T. Jaakkola, D. Sontag, A. Globerson, and M. Meila, ‘Learning
Bayesian network structure using LP relaxations’, in Proc. Inter-
national Conference on Artificial Intelligence and Statistics (AIS-
TATS’10), pp. 358–365. Volume 9 of JMLR Proceedings, (2010).

[20] T. Janhunen, ‘Representing normal programs with clauses’, in Proc.
European Conference on Artificial Intelligence (ECAI’04), pp. 358–
362. IOS Press, (2004).

[21] T. Janhunen, ‘Some (in)translatability results for normal logic programs
and propositional theories’, Journal of Applied Non-Classical Logics,
16(1-2), 35–86, (2006).

[22] T. Janhunen and I. Niemelä, ‘Compact translations of non-disjunctive
answer set programs to propositional clauses’, in Logic Program-
ming, Knowledge Representation, and Nonmonotonic Reasoning: Es-
says Dedicated to Michael Gelfond on the Occasion of His 65th Birth-
day, eds., M. Balduccini and T. Son, pp. 111–130. Springer, (2011).

[23] T. Janhunen, I. Niemelä, and M. Sevalnev, ‘Computing stable models
via reductions to difference logic’, in Proc. International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
pp. 142–154. Springer, (2009).

[24] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello, ‘The DLV system for knowledge representation and rea-
soning’, ACM Transactions on Computational Logic, 7(3), 499–562,
(2006).

[25] F. Lin and J. Zhao, ‘On tight logic programs and yet another transla-
tion from normal logic programs to propositional logic’, in Proc. In-
ternational Joint Conference on Artificial Intelligence (IJCAI’03), pp.
853–858. Morgan Kaufmann, (2003).

[26] F. Lin and Y. Zhao, ‘ASSAT: Computing answer sets of a logic program
by SAT solvers’, Artificial Intelligence, 157(1), 115–137, (2004).

[27] G. Liu, T. Janhunen, and I. Niemelä, ‘Answer set programming via
mixed integer programming’, in Proc. International Conference on
Principles of Knowledge Representation and Reasoning (KR’12), pp.
32–42. AAAI Press, (2012).

[28] V. Marek and V. Subrahmanian, ‘The relationship between stable,
supported, default and autoepistemic semantics for general logic pro-
grams’, Theoretical Computer Science, 103(2), 365–386, (1992).

[29] M. Nguyen, T. Janhunen, and I. Niemelä, ‘Translating answer-set pro-
grams into bit-vector logic’, in Proc. International Conference on Ap-
plications of Declarative Programming and Knowledge Management
(INAP’11), pp. 95–113. Springer, (2013).

[30] I. Niemelä, ‘Logic programs with stable model semantics as a con-
straint programming paradigm’, Annals of Mathematics and Artificial
Intelligence, 25(3-4), 241–273, (1999).

[31] I. Niemelä, ‘Stable models and difference logic’, Annals of Mathemat-
ics and Artificial Intelligence, 53(1-4), 313–329, (2008).

[32] R. Nieuwenhuis and A. Oliveras, ‘DPLL(T) with exhaustive theory
propagation and its application to difference logic’, in Proc. Interna-
tional Conference on Computer Aided Verification (CAV’05), pp. 321–
334. Springer, (2005).

[33] P. Simons, I. Niemelä, and T. Soininen, ‘Extending and implementing
the stable model semantics’, Artificial Intelligence, 138(1-2), 181–234,
(2002).

[34] A. Van Gelder, K. Ross, and J. Schlipf, ‘The well-founded semantics for
general logic programs’, Journal of the ACM, 38(3), 620–650, (1991).

