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Abstract. We introduce the first substantial approach to preprocess-
ing in the context of answer set solving. The idea is to simplify a
logic program while identifying equivalences among its relevant con-
stituents. These equivalences are then used for building a compact
representation of the program (in terms of Boolean constraints). We
implemented our approach as well as a SAT-based technique to re-
duce Boolean constraints. This allows us to empirically analyze both
preprocessing types and to demonstrate their computational impact.

1 INTRODUCTION
Answer Set Programming (ASP; [3]) has become an attractive
paradigm for declarative problem solving. This is partly due to the
availability of efficient off-the-shelf ASP solvers [9, 19]. In fact,
modern ASP solvers rely on Boolean constraint solving technol-
ogy [1, 8, 7], leading to a similar performance as advanced SAT
solvers [17]. On the other hand, the attractiveness of ASP stems from
its rich modeling language, allowing for an easy and elaboration-
tolerant handling of knowledge-intensive applications. In practice, an
input program is usually run through multiple preprocessing steps. At
first, a so-called grounder instantiates all variables, thus producing a
ground logic program. Classical ASP solvers, such as smodels [19],
more or less take the resulting program as is without doing further
optimizations. In contrast, modern ASP solvers translate a ground
program into a set of Boolean constraints (e.g., clauses) in order to
exploit advanced SAT solving technology. Such translations neces-
sitate the introduction of extra propositions (see below) in order to
avoid an exponential blow-up. Also, this addition may result in expo-
nentially smaller search spaces [16] and permits more succinct rep-
resentations of loop constraints [14]. Nonetheless, the question arises
in how far the introduced redundancy can be trimmed.

While ASP solvers still lack full-fledged preprocessing techniques,
they already constitute an integral part of many SAT solvers [2, 20,
10]. There are two principal ways to address preprocessing in ASP
solving: the external one, aiming at the reduction of a ground pro-
gram, and the internal one, (recurrently) optimizing its inner rep-
resentation. Within modern ASP solvers, the latter can be done by
adapting corresponding techniques from SAT. Hence, we concen-
trate in the sequel on the former approach, being specific to ASP.
Thereby, we build upon work on program transformations and equiv-
alence [4, 5, 11]. To be precise, we develop preprocessing techniques
for ground logic programs under answer set semantics. The idea is to
transform a program into a simpler one, along with an assignment and
a relation expressing equivalences among the assignable constituents
of the program. These equivalences are subsequently exploited when
transforming the resulting program into Boolean constraints, repre-
sented as clauses. We implemented both our external and a SAT-
based internal reduction strategy within the ASP solver clasp [7].
This makes clasp the first ASP solver incorporating advanced pre-
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processing techniques. Furthermore, our implementation allows us to
empirically assess both the external and the internal approach to pre-
processing, thus demonstrating their computational impact.

2 BACKGROUND
A (normal) logic program over an alphabet A is a finite multiset3

of rules of the form a ← b1, . . . , bm,∼cm+1, . . . ,∼cn, where
a, bi, cj ∈ A are atoms for 0 < i ≤ m,m < j ≤ n. A lit-
eral is an atom a or its (default) negation ∼a. Furthermore, let
∼A = {∼a | a ∈ A} and A = {a | a ∈ A}, where a is
used for (classical) negation in propositional formulas. For a rule r,
let head(r) = a be the head of r and the multiset body(r) =
{b1, . . . , bm,∼cm+1, . . . ,∼cn} be the body of r. Given a (multi)set
B of literals, let B+ = {a ∈ A | a ∈ B} and B− = {a ∈ A |
∼a ∈ B}. The set of atoms occurring in a logic program Π is de-
noted by atom(Π) and body(Π) = {body(r) | r ∈ Π}. Also, we
define body(a) = {body(r) | r ∈ Π, head(r) = a}.

Following [18], we characterize the answer sets of a logic pro-
gram Π by the models of the completion [6] and loop formulas
of Π. As mentioned above, in practice, this involves introducing extra
propositions pB for bodies B. Given a program Π over A, its com-
pletion formula is then defined as follows:
CF (Π,A) =

˘
a↔

`W
B∈body(a)pB

´
| a ∈ A

¯
∪˘

pB ↔
`V

b∈B+b ∧
V
c∈B−c

´
| B ∈ body(Π)

¯
. (1)

A loop is a (nonempty) set of atoms that circularly depend upon each
other in a program’s positive atom dependency graph [18]. The set of
all loops of Π is denoted by loop(Π). If loop(Π) = ∅, then Π is said
to be tight [12]. The loop formula of some L ∈ loop(Π) is

LF (Π, L) =
`W

a∈La
´
→
`W

a∈L,B∈body(a),B+∩L=∅pB
´
,

and LF (Π) = {LF (Π, L) | L ∈ loop(Π)}. The bodies contributing
to the consequent of a loop formula provide external support for the
antecedent’s atoms. An atom is said to be unfounded if it belongs to
the antecedent of a loop formula whose consequent is ⊥, expressing
the absence of external support.

We represent (classical) models by their set of entailed proposi-
tions, and letM(F ) stand for the set of all models of F . For some
alphabet A, we define M(F )|A = {M ∩ A | M ∈ M(F )}.
Then, a set X ⊆ A is an answer set of a logic program Π over A
if X ∈ M(CF (Π,A) ∪ LF (Π))|A. We let AS(Π) denote the set
of all answer sets of Π. Note that, whenever Π is tight, we have
X ∈ AS(Π) iff X ∈M(CF (Π,A))|A.

Consider the following program Π over A = {a, . . . , f}:
{a←; b← a,∼c; c← ∼b,∼d; e← ∼c; e← f ; f ← a, e} .

We get the following completion formula, CF (Π,A):
{a↔ p0; b↔ p1; c↔ p2; d↔ ⊥; e↔ p3 ∨ p4; f ↔ p5} ∪˘
p0↔>; p1↔a ∧ c; p2↔b ∧ d; p3↔c; p4↔f ; p5↔a ∧ e

¯
.

3 The usage of multisets is motivated by the syntactic nature of our approach
and the fact that grounders produce duplicates. For simplicity, we keep stan-
dard set notation for multiset operations.



CF (Π,A) has three models: {a, b, e, f, p0, p1, p3, p4, p5}, {a, c,
p0, p2}, and {a, c, e, f, p0, p2, p4, p5}. Furthermore, program Π has
one loop, {e, f}, yielding LF (Π) = {e ∨ f → p3}. This loop for-
mula is falsified by {a, c, e, f, p0, p2, p4, p5}, thus {a, c, e, f} is no
answer set of Π. The other two models of CF (Π,A) satisfy LF (Π)
and correspond to the answer sets {a, b, e, f} and {a, c} of Π.

Finally, a (partial) Boolean assignment A over A ∪ 2A∪∼A is
a set of possibly negated elements of its domain. We define A =
{a ∈ A | a ∈ A} ∪ {B ⊆ A ∪∼A | B ∈ A}. For instance,
A = {a, d, {a,∼c}} assigns true to a and false to d as well as body
{a,∼c}, and A = {d, {a,∼c}} contains all false elements of A.

3 PREPROCESSING
Our initial goal is to turn a given program Π over an alphabet A
into a simplified program Π′, a partial assignment A, and an equiv-
alence relation E on the atoms and bodies in Π′. More formally, we
transform a triple (Π, ∅, ∅) into (Π′, A, E). Thereby, Π′ is obtained
from Π by program transformations, mainly involving rule elimi-
nations and body modifications. The semantics of the original pro-
gram Π is captured by Π′ along with assignment A and E , where the
latter is also exploited to generate a compact representation of Π′ in
terms of Boolean constraints. Our transformation rules, shown in Ta-
ble 1, are grouped into four building blocks: s = {(s0), . . . , (s15)},
e = {(e16), . . . , (e27)}, a = {(a28), . . . , (a35)}, and u = {(u36)}.
(Note that many of them are subject to conditions, given in the right-
most column.) Roughly, the rules in s permit elementary simplifica-
tions, while e partitions atoms and bodies into equivalence classes. As
a byproduct of this, all unclassified atoms are unfounded and set to
false via (u36). Finally, the rules in a substitute the atoms in an equiv-
alence class by a unique representative for that class. Note that s, e,
a, and u are intended to be applied till saturation before proceeding
to another block of transformations. In what follows, we gradually
explain the different transformations and also provide examples.

To begin with, rules (s0) to (s10) build upon well-known pro-
gram transformations [4, 5, 11]. Let T 7→∗ T ′ represent the com-
putation of a fixpoint T ′ by repeated applications of 7→ to T . Then,
s ∗7→ amounts to computing the fixpoint of Fitting’s operator [13].

In addition, s ∗7→ makes assignments to bodies and simplifies the
program at hand. Finally, rules (s11) to (s15) preserve the corre-
spondence between the program Π and its associated assignment A.
For Π0 = {a←; b← a,∼c; c← ∼b,∼d}, we get (Π0, ∅, ∅)

s ∗7→
(Π1, A1, ∅), where Π1 = {b← ∼c; c← ∼b} and A1 = {a, d}.

In general, a fixpoint of s7→ has the following syntactic properties.
Proposition 1 Let (Π, ∅, ∅) s ∗7→ (Π′, A, ∅), for logic program Π
over alphabet A. Then, we have:
1. body(r) 6= ∅, for all r ∈ Π′;
2. body(a) 6= ∅, for all a ∈ atom(Π′);
3. (atom(Π′) ∪ body(Π′)) ∩ (A ∪A) = ∅;
4. A ∩A = ∅;
5. {B ⊆ A ∪∼A | B ∈ A ∪A} ⊆ A;
6.
S
B∈A\A(B+ ∪B−) ⊆ atom(Π′).

Using BF (Y ) = {(
W
b∈B+b ∨

W
c∈B−c) | B ∈ Y }, we can cap-

ture the relationship between the original program Π and the reduced
program Π′ along with assignment A as follows.
Proposition 2 Let (Π, ∅, ∅) s ∗7→ (Π′, A, ∅), for logic program Π
over alphabet A. Then, we have

AS(Π) =M(CF (Π′,A\A)∪LF (Π′)∪(A∩A)∪BF (A\A))|A .
Rules (e16) to (e27) comprise the heart of our approach and build

an equivalence relation on atoms and bodies. We represent equiva-
lence classes as triples, viz., E = [a,B,C], where a is an atom

representative for E, B is a body (externally) supporting E, and C
contains all atoms and bodies belonging to E. We denote the com-
ponents of E by aE = a, BE = B, and CE = C. Thereby, ∅
denotes a null value, where aE = ∅ means that CE ∩ A = ∅ and
BE = ∅ expresses that E is not (externally) supported. For a set E
of equivalence classes, define:4

EsC =
S

[a,B,C]∈E,B 6=∅C EC =
S

[a,B,C]∈EC

EsB =
S

[a,B,C]∈E,B 6=∅B
+ .

Some classes in E are defined as dual to each other (and are finally
represented by complementary propositional literals). In Table 1, the
rules (e16) and (e17) each introduce a new equivalence classE along
with its dual class eE, and we assume both classes to be correlated via
some unique name (e.g., E1, eE1;E2, eE2; . . . ). Finally, we use eE to
denote the dual class of E, and let eeE = E.

Let us illustrate e ∗7→ starting from (Π1, A1, ∅):
e7→ Rule E

(e16) b←∼c E1 = {E1 = [∅, {∼c}, {{∼c}}], eE1 = [∅, ∅, ∅]}
(e17) b←∼c E2 = E1 ∪ {E2 = [b, {∼c}, {b}], eE2 = [∅, ∅, ∅] }
(e18) b←∼c E3 = {E1 = [b, {∼c}, {b, {∼c}}], eE1, eE2 }
(e16) c←∼b E4 = E3 ∪ {E3 = [∅, {∼b}, {{∼b}}], eE3 = [∅, ∅, ∅]}
(e20) E5 = { eE1 = [∅, {∼b}, {{∼b}}], E1, eE2, eE3 }
(e17) c←∼b E6 = E5 ∪ {E4 = [c, {∼b}, {c}], eE4 = [∅, ∅, ∅] }
(e18) c←∼b E7 = { eE1 = [c, {∼b}, {c, {∼b}}],

E1 = [b, {∼c}, {b, {∼c}}],eE2 = eE3 = eE4 = [∅, ∅, ∅] }

We get two non-trivial, dual equivalence classes: E1 and eE1.
Class E1 is represented by b and supported by {∼c}; eE1 is repre-
sented by c and supported by {∼b}. Observe that (e16) and (e17)
introduce equivalence classes and their duals, while (e18) and (e20)
merge different classes. (For simplicity, trivial dual classes are kept.)

The overall proceeding of e ∗7→ is support-driven, that is, rules are
only taken into account if their positive body atoms have been clas-
sified. Moreover, each (vital) class [a,B,C] must be supported by
some body B 6= ∅. To illustrate this, consider Π0 ∪Π?

1, where

Π?
1 = {e←∼c; e←f ; f←e; g←e,∼f ; g←h,∼f ; h←f, g} .

We get (Π0 ∪ Π?
1, ∅, ∅)

s ∗7→ (Π1 ∪ Π?
1, A1, ∅) and continue by ap-

plying e ∗7→ to (Π1 ∪Π?
1, A1, E7):

e7→ Rule E

(e17) e←∼c E?1 = E7 ∪ {E?1 = [e, {∼c}, {e}], eE?1 = [∅, ∅, ∅] }
(e16) f← e E?2 = E?1 ∪ {E?2 = [∅, {e}, {{e}}], eE?2 = [∅, ∅, ∅] }
(e21) E?3 = E7 ∪ {E?1 = [e, {∼c}, {e, {e}}], eE?1 , eE?2 }
(e17) f← e E?4 = E?3 ∪ {E?3 = [f, {e}, {f}], eE?3 = [∅, ∅, ∅] }
(e16) e← f E?5 = E?4 ∪ {E?4 = [∅, {f}, {{f}}], eE?4 = [∅, ∅, ∅]}
(e21) E?6 = E?3 ∪ {E?3 = [f, {e}, {f, {f}}], eE?3 , eE?4 }
(e19) f← e E?7 = E7 ∪ {E?1 = [e, {∼c}, {e, {e}, f, {f}}],eE?1 = eE?2 = eE?3 = eE?4 = [∅, ∅, ∅] }
(e22) g←e,∼f E?7

We thus get (Π?
2, A1, E?7 ), where Π?

2 = Π1 ∪ (Π?
1 \ {g ← e,∼f}).

Set E?7 augments E7 with E?1 , revealing that e and f can be treated
as equals. Note that the supporting body {∼c} does not belong to
CE?

1
, given that bodies {e} and {f} in CE?

1
are involved in loop

{e, f}. Notably, the application of (e22) to g← e,∼f allows us to
stop without classifying g and h, which are unfounded relative to Π?

2.
However, by delaying the removal of g←e,∼f , an equivalence rela-
tion E??7 such that g and h belong to classes E satisfying BE = ∅
4 The superscript s indicates supporting bodies B 6= ∅.



(s0) (Π ∪ {r, r}, A, E)
s7→ (Π ∪ {r}, A, E)

(s1) (Π ∪ {a← `, `, B}, A, E)
s7→ (Π ∪ {a← `, B}, A, E)

(s2) (Π ∪ {a← b,∼b, B}, A, E)
s7→ (Π, A, E)

(s3) (Π ∪ {a← a, B}, A, E)
s7→ (Π, A, E)

(s4) (Π ∪ {a←}, A, E)
s7→ (Π, A ∪ {a}, E)

(s5) (Π, A, E)
s7→ (Π, A ∪ {a}, E)

`
a ∈ atom(Π) \ (A ∪A), body(a) = ∅

´
(s6) (Π ∪ {a← ∼a, B}, A, E)

s7→ (Π, A ∪ {{∼a} ∪B}, E)

(s7) (Π ∪ {a← B}, A ∪ {a}, E)
s7→ (Π, A ∪ {a}, E)

(s8) (Π ∪ {a← B}, A ∪ {B}, E)
s7→ (Π, A ∪ {B}, E)

(s9) (Π ∪ {a← `, B}, A ∪ {`}, E)
s7→ (Π ∪ {a← B}, A ∪ {`}, E)

(s10) (Π ∪ {a← ∼`, B}, A ∪ {`}, E)
s7→ (Π, A ∪ {`}, E)

(s11) (Π, A ∪ {{`, `} ∪B}, E)
s7→ (Π, A ∪ {{`} ∪B}, E)

(s12) (Π, A ∪ {{b,∼b} ∪B}, E)
s7→ (Π, A, E)

(s13) (Π, A ∪ {`, {`} ∪B}, E)
s7→ (Π, A ∪ {`, B}, E)

(s14) (Π, A ∪ {`, {`} ∪B}, E)
s7→ (Π, A ∪ {`}, E)

(s15) (Π, A ∪ {B}, E)
s7→ (Π, A ∪ {a, B}, E)

`
a ∈ (B+ ∪B−) \ (atom(Π) ∪A ∪A)

´
(e16) (Π ∪ {a← B}, A, E)

e7→ (Π ∪ {a← B}, A, E ∪ {E = [∅, B, {B}], eE = [∅, ∅, ∅]})
`
B+ ∪ EsB ⊆ E

s
C , B /∈ EC

´
(e17) (Π ∪ {a← B}, A, E)

e7→ (Π ∪ {a← B}, A, E ∪ {E = [a, B, {a}], eE = [∅, ∅, ∅]})
`
B+ ∪ EsB ⊆ E

s
C , a /∈ EC

´
(e18) (Π ∪ {a← B}, A, E ∪ {E, [a, B, C]}) e7→ (Π ∪ {a← B}, A, E ∪ {E = [a, B, C ∪ CE ]})

`
body(a) ⊆ CE , CE ∩ atom(Π) = ∅

´
(e19) (Π ∪ {a← B}, A, E ∪ {E, [a, B, C]}) e7→ (Π ∪ {a← B}, A, E ∪ {E = [aE , BE , CE ∪ C]})

`
body(a) ⊆ CE , CE ∩ atom(Π) 6= ∅

´
(e20) (Π, A, E ∪ {E, eE, [a, B, C]}) e7→ (Π, A, E ∪ {E = [a, B, C ∪ CE ], eE}) `

B ∈ C, B+ = ∅, B− ⊆ C eE , CE ∩ atom(Π) = ∅
´

(e21) (Π, A, E ∪ {E, eE, [a, B, C]}) e7→ (Π, A, E ∪ {E = [aE , BE , CE ∪ C], eE}) `
B ∈ C, B+ ⊆ CE , B− ⊆ C eE , CE ∩ atom(Π) 6= ∅

´
(e22) (Π ∪ {a← B}, A, E ∪ {E, eE}) e7→ (Π, A, E ∪ {E, eE}) `

(B+ ∩ CE) ∪ (B− ∩ C eE) 6= ∅, (B+ ∩ C eE) ∪ (B− ∩ CE) 6= ∅
´

(e23) (Π, A, E ∪ {[a, B, C]}) e7→ (Π, A, E ∪ {[a, ∅, C]})
`
B 6= ∅, B /∈ body(Π)

´
(e24) (Π, A, E ∪ {[a, B, C]}) e7→ (Π, A, E ∪ {[a, ∅, C]})

`
B 6= ∅, B+ 6⊆ EsC

´
(e25) (Π ∪ {a← B}, A, E ∪ {[a, ∅, C]}) e7→ (Π ∪ {a← B}, A, E ∪ {[a, B, C]})

`
B+ ∪ EsB ⊆ E

s
C

´
(e26) (Π ∪ {a← B}, A, E ∪ {[a′, ∅, C′]}) e7→ (Π ∪ {a← B}, A, E ∪ {[a, B, C]})

`
{a, a′} ⊆ C′, a 6= a′, B+ ∪ EsB ⊆ E

s
C ,

C = ({a, B} ∩ C′) ∪ (C′ \ (atom(Π) ∪ body(Π)))
´

(e27) (Π ∪ {a← B}, A, E ∪ {[∅, ∅, C]}) e7→ (Π ∪ {a← B}, A, E ∪ {[∅, B, C]})
`
B ∈ C, B+ ∪ EsB ⊆ E

s
C

´
(a28) (Π ∪ {a← B}, A, E ∪ {E, eE}) a7→ (Π, A, E ∪ {E, eE}) `

a ∈ CE \ {aE}, {(a′ ← B′) ∈ Π ∪ {a← B} | a′ ∈ CE \ {aE},
B′+ = ∅, a′ ∈

S
r∈Π∪{a←B} body(r)+} = ∅

´
(a29) (Π ∪ {a← b, B}, A, E ∪ {E, eE}) a7→ (Π ∪ {a← aE , B}, A, E ∪ {E, eE}) `

b ∈ CE \ {aE}, {(a′ ← B′) ∈ Π | a′ ∈ CE \ {aE},
B′+ = ∅, a′ ∈

S
r∈Π∪{a←b,B} body(r)+} = ∅

´
(a30) (Π ∪ {a← b, B}, A, E ∪ {E, eE}) a7→ (Π ∪ {a← ∼a eE , B}, A, E ∪ {E, eE}) `

b ∈ CE \ {aE}, (b← B′) ∈ Π, B′+ = ∅
´

(a31) (Π ∪ {a← ∼c, B}, A, E ∪ {E, eE}) a7→ (Π ∪ {a← B}, A, E ∪ {E, eE}) `
c ∈ CE , B+ ∩ C eE 6= ∅´

(a32) (Π ∪ {a← ∼c, B}, A, E ∪ {E, eE}) a7→ (Π ∪ {a← ∼aE , B}, A, E ∪ {E, eE}) `
c ∈ CE \ {aE}, B+ ∩ C eE = ∅

´
(a33) (Π, A ∪ {B}, E ∪ {E, eE}) a7→ (Π, A, E ∪ {E, eE}) `

(B+ ∩ CE) ∪ (B− ∩ C eE) 6= ∅, (B+ ∩ C eE) ∪ (B− ∩ CE) 6= ∅
´

(a34) (Π, A ∪ {{b} ∪B}}, E ∪ {E}) a7→ (Π, A ∪ {{aE} ∪B}}, E ∪ {E})
`
b ∈ CE \ {aE}

´
(a35) (Π, A ∪ {{∼c} ∪B}}, E ∪ {E}) a7→ (Π, A ∪ {{∼aE} ∪B}}, E ∪ {E})

`
c ∈ CE \ {aE}

´
(u36) (Π, A, E)

u7→ (Π, A ∪ {a}, E)
`
a ∈ atom(Π) \ (EsC ∪A)

´
Table 1. Transformation rules for preprocessing (where ` ∈ A ∪A, ∼a = a, ∼a = a, and a = a).

could have been obtained as well. The latter again signals that g and h
are unfounded, as in the case that they remain unclassified.

The next results shed some light on the syntactic properties of the
consecutive application of s ∗7→ and e ∗7→ , abbreviated by s ∗7→ e ∗7→ .

Proposition 3 Let (Π, ∅, ∅) s ∗7→ e ∗7→ (Π′, A, E), for logic pro-
gram Π over alphabet A. Then, we have:

1. EsB ⊆ EsC ⊆ atom(Π′) ∪ body(Π′);
2. EC ∩ (A ∪A) = ∅;
3. CE ∩ CE′ = ∅, for all E,E′ ∈ E such that E 6= E′;
4. (aE ← BE) ∈ Π′, for all E ∈ E such that aE 6= ∅, BE 6= ∅;
5. body(r)+ 6⊆ EsC , for all r ∈ Π′ such that head(r) /∈ EsC .

We next show that our transformations preserve answer sets and
that duality among equivalence classes carries forward to answer sets.

Proposition 4 Let (Π, ∅, ∅) s ∗7→ e ∗7→ (Π′, A, E), for logic pro-
gram Π over alphabet A, and let X ∈ AS(Π). Then, we have:

1. A ∩ A ⊆ X ⊆ (A ∩ A) ∪ EsC ;

2. CE∩A ⊆ X andC eE∩X = ∅ orC eE∩A ⊆ X andCE∩X = ∅,
for all {E, eE} ⊆ E .
Equivalences and implicit or explicit unfoundedness of atoms (cf.

E?7 and E??7 above) are exploited by the remaining transformations:
(a28) to (a35) substitute equivalent atoms by the representative aE
(or ∼a eE via rule (a30)) for their class E, while (u36) assigns false
to unfounded atoms.

Although a7→ and u7→ leave program Π1 unchanged, they allow for
further reducing Π?

2 in view of the obtained equivalence classes. We
obtain (Π?

2, A1, E?7 )
a ∗7→ (Π?

3, A1, E?7 )
u ∗7→ (Π?

3, A2, E?7 ), where
Π?

3 = Π1 ∪ {e← ∼c; e← e; g ← h,∼e; h← e, g}
and A2 = A1 ∪ {g, h} = {a, d, g, h}.

Using E [X] =
S

[a,B,C]∈E,C∩X 6=∅(C ∩ A) for accumulating all
atoms equivalent to members of X , we obtain the following result.
Proposition 5 Let (Π, ∅, ∅) s ∗7→ e ∗7→ a ∗7→ u ∗7→ (Π′, A, E), for logic
program Π over alphabet A. Then, we have
AS(Π) = {X∪E [X]∪(A∩A) | X ∈ AS(Π′)∩M(BF (A\A))} .



Finally, we consider the saturated result of preprocessing, where
Π
∗7→ (Π′, A, E) stands for (Π, ∅, ∅) (

s ∗7→ e ∗7→ a ∗7→ u ∗7→ )∗ (Π′, A, E).
Let σ = {y1/y

′
1, . . . , yn/y

′
n} denote a substitution, and let Yσ be Y

with every occurrence of yi replaced by y′i for 1 ≤ i ≤ n. This allows
us to formulate the following termination and confluence result.
Theorem 6 Let Π be a logic program over A. Then, we have:
1. Every derivation ∗7→ from Π terminates with some (Π′, A, E) such

that no transformation rule in Table 1 is applicable to (Π′, A, E);
2. If Π

∗7→ (Π1, A1, E1) and Π
∗7→ (Π2, A2, E2), then (A1 ∩ A) ∪

E [A1] = (A2∩A)∪E [A2], Π1σ = Π2, and (A1\A)σ = A2\A,
where σ = {a/aE | E ∈ E2, a ∈ CE ∩ A};

3. If Π
∗7→ (Π1, A1, E1), Π

∗7→ (Π2, A2, E2), and {E1, eE1} ⊆ E1
such that BE1 6= ∅, then {E2, eE2} ⊆ E2 such that BE2 6= ∅,
CE1σ = CE2σ, and C eE1

σ = C eE2
σ, where σ = {a/aE |

E ∈ E2, a ∈ CE ∩ A}.
Reconsidering Π0 ∪ Π?

1, we get (Π0 ∪ Π?
1)

∗7→ (Π1, A2, E?),
where E? contains two vital classes, viz., E? = [b, {∼c}, {b, {∼c},
e, {e}, f, {f}}] and eE? = [c, {∼b}, {c, {∼b}}], while all other
classes E ∈ E? are such that BE = ∅. This outcome is independent
from the order in which transformations are applied. Also note that
all six rules of Π?

1 are removed by preprocessing, thus transforming
non-tight program Π0 ∪Π?

1 into tight program Π1.
Notably, the result of our transformations goes beyond the well-

founded model [21] of a logic program.
Proposition 7 Let Π

∗7→ (Π′, A, E), for logic program Π over A,
and let I ⊆ A ∪ A be the well-founded model of Π. Then, we have
I∩A ⊆ (A∩A)∪E [A] and I∩A ⊆ (A \ (A ∪ E [A ∪ atom(Π′)])).

Similar to the known algorithms for computing a program’s well-
founded model, ∗7→ can be computed in quadratic time. In fact, if no
program rule is removed (via rules other than (a28)) after the initial
application of s ∗7→ , a linear pass of s ∗7→ e ∗7→ a ∗7→ u ∗7→ suffices to com-
pute ∗7→, while iteration, viz., (

s ∗7→ e ∗7→ a ∗7→ u ∗7→ )∗, is needed otherwise.
We now take advantage of the result of our initial preprocess-

ing phase, (Π′, A, E), for obtaining a compact completion for-
mula. To this end, we use E to induce a variable mapping ν :
atom(Π′) ∪ {pB | B ∈ body(Π′)} → V ∪ V , where V is an alpha-
bet of variable names. For each {E, eE} ⊆ E such that BE 6= ∅, we
select a unique v ∈ V and map the elements of E and eE as follows:
1. ν(y) = v iff y ∈ (CE ∩ atom(Π′)) ∪ {pB | B ∈ CE ∩

body(Π′)};
2. ν(y) = v iff y ∈ (C eE ∩ atom(Π′)) ∪ {pB | B ∈ C eE ∩

body(Π′)}.
Practically, ν amounts to an abstraction of the original program, as
used for the internal representation within ASP solvers. We then use
ν for inducing a substitution σν = {y/ν(y) | y ∈ atom(Π′)∪{pB |
B ∈ body(Π′)}}. For (Π1, A2, E?), we get mapping ν1 = {b 7→ v;
c 7→ v; p{∼c} 7→ v; p{∼b} 7→ v}, using only one variable v.

Having mapping ν induced by (Π′, A, E), we express the comple-
tion and loop formulas of Π′ using the variables in V:

VFν(Π′, A, E) =
`
LF (Π′) ∪ BF (A \ A) ∪

CF (Π′, atom(Π′) ∪ (A \ (A ∪ E [A ∪ atom(Π′)])))
´
σν .

Note that applying σν leaves the introduction of body propositions
(cf. (1)) implicit. In our example, we get

VFν1(Π1, A2, E?) = CF (Π1, {b, c, d, g, h})σν1
= {v ↔ v; v ↔ v; d↔ ⊥; g ↔ ⊥; h↔ ⊥} .

Note that LF (Π1) is empty (since Π1 is tight), and so is BF (A2\A).
Clearly, CF (Π1, {b, c, d, g, h})σν1 possesses the models ∅ and {v}.
Such models are linked to the atoms in an original program Π by

appeal to EFν(E) = {a↔ν(aE) | E ∈ E , BE 6= ∅, a ∈ CE ∩ A};
e.g., EFν1(E?) = {b↔v; e↔v; f↔v; c↔v}.

Formally, we have the following result.
Theorem 8 Let Π

∗7→ (Π′, A, E), for logic program Π over A, and
let ν be a variable mapping induced by (Π′, A, E). Then, we have

AS(Π) =M((A ∩ A) ∪ E [A] ∪VFν(Π′, A, E) ∪ EFν(E))|A .
For instance, for (Π1, A2, E?), ν1, and A = {a, . . . , h},

we obtain M({a} ∪ ∅ ∪ VFν1(Π1, A2, E?) ∪ EFν1(E?))|A =
{{a, b, e, f}, {a, c}}, which are the two answer sets of Π0 ∪ Π?

1.
Finally, note that our implementation within clasp takes advantage of
the preprocessing result only for the initial construction of a compact
completion formula, while loop formulas are not computed a priori,
but only if they are used for propagation or conflict analysis.

4 EXPERIMENTS
We conducted systematic experiments on the benchmark sets used in
the categories SCore and SLparse of the ASP competition [15]. Our
comparison considers the ASP solver clasp in four modes: (1) no
elaborated preprocessing, only elementary simplifications as in (s0)
to (s15); (2) external program reduction (as described in Section 3);
(3) internal reduction, extending SatELite-like techniques [10];5 and
(4) both types of preprocessing. Table 2 summarizes results in sec-
onds (t), indicating the number of timeouts via a superscript. Each
line averages over n runs on n/3 instances, each shuffled three times.
Furthermore, |r|, |a|, and |b| give the average number of rules, atoms,
and bodies, respectively, in the original programs of each class; |v|
and |c| give the average number of variables and Boolean constraints
in the internal representation. The number of variables |v| is the same
for variant (1) and (3) as well as for (2) and (4), respectively, and thus
not duplicated in Table 2. At the bottom of Table 2, all individual runs
are summed up, not taking averages. Full details are provided at [7].

In total, we see that variant (4) performs best, even though
SatELite-like techniques are currently not applied to so-called ex-
tended rules (allowed within SLparse instances, shown in the sec-
ond part of Table 2), while we have generalized external program
reduction to work on such rules too. Furthermore, SatELite-like tech-
niques work best on tight examples, being released from unfounded
set checking. (Note that 2/3 of the benchmark classes are tight.) Un-
like this, the approach in Section 3 is advantageous on non-tight pro-
grams due to its support-driven strategy. Another factor is the size of
input programs. While our external technique ( s ∗7→ e ∗7→ a ∗7→ u ∗7→ ) is im-
plemented in a linear fashion, SatELite-like techniques involve sub-
sumption tests yielding a quadratic worst case behavior. Regarding
the number of variables, one has to compare |a|+|b| with |v|. In the
worst case, both would be equal. However, we sometimes see signif-
icant reductions of more than one order of magnitude. Given that the
elementary simplifications already cut down the number of variables,
the speed-ups of version (2) over (1) are mainly due to the reduced
completion formula (reflected by |c|). Also, the number |c| of con-
straints is often much smaller than the original number |r| of rules.

5 DISCUSSION
We provided the first ASP-specific approach to preprocessing logic
programs, aiming at reducing an input program as well as the num-
ber of variables in its internal representation. The latter goal is also
pursued by smodels [19], where choices rely on atoms occurring neg-
atively in bodies, and by cmodels [8], where heuristics are used to

5 Note that a straightforward application of SatELite-like techniques is insuf-
ficient since it interferes with unfounded set detection.



Problem clasp (1) clasp (2) clasp (3) clasp (4)
Name (n) |r| |a| |b| |v| |c| t |v| |c| t |c| t |c| t

15-Puzzle (30) 17203 5161 13029 3100 24348 0.3 2930 23942 0.3 13497 0.3 13296 0.3

BlockedN-Queens (42) 308796 5503 155646 53716 69281 18285.8 50613 2988 16254.5 2720 18265.1 2720 18265.7
EqTest (15) 6901 434 2996 1143 12338 16.0 999 11514 14.4 9866 16.4 9419 14.7
Factoring (15) 6974 4965 6782 3637 13407 5.6 2244 9524 3.9 3791 1.8 3765 1.9
HamiltonianPath (42) 4228 1533 2542 1358 5533 0.1 748 2987 0.1 2974 0.1 1277 0.1
RLP-150 (42) 728 151 715 288 3002 0.3 286 2992 0.3 2994 0.3 2986 0.3
RLP-200 (42) 1184 201 1165 455 4850 0.9 453 4838 0.9 4835 1.0 4826 0.9
RandomNonTight (42) 839 55 806 287 5286 32.3 283 5267 32.8 5286 31.3 5252 33.4
SchurNumbers (15) 12014 736 4391 1005 4862 2.3 829 3971 1.4 2451 2.6 1602 1.0

15-Puzzle (15) 38250 11385 37498 15694 116321 1213.2 15298 115173 96.3 79624 104.1 79624 112.8
BlockedN-Queens (15) 5024 4699 2726 2472 331 17.1 894 331 9.1 331 9.5 331 13.5
BoundedSpanningTree (15) 206557 2359 203226 68524 201427 3.7 67796 198432 3.7 190486 16.5 190486 16.8

CarSequencing (15) 1582 2303 1263 1189 630 15600.0 695 630 15600.0 630 15600.0 630 13566.3
Factoring (12) 7685 5470 7472 4006 14803 8.6 2473 10525 4.1 4196 2.2 4170 2.1
HamiltonianCycle (15) 10502 7003 4955 3986 12236 0.3 1925 7916 0.2 4676 1.4 4641 1.3
HamiltonianPath (15) 4924 1623 2920 1514 6102 0.1 864 3387 0.1 3364 0.1 1560 0.1

Hashiwokakero (12) 738726 149926 717900 227596 2163406 3125.2 217954 1912400 3125.2 1915809 3125.4 1912400 3125.3
KnightsTour (15) 58062 10968 37996 14866 16518 0.5 11383 10559 0.5 5317 0.7 3402 0.7
RLP-150 (15) 735 151 721 290 3030 0.4 288 3019 0.3 3023 0.4 3014 0.3
RLP-200 (15) 793 199 781 326 3309 1.1 319 3269 1.0 3276 1.0 3244 1.0
RandomNonTight (15) 848 55 816 290 5380 9.0 287 5361 5.8 5380 9.0 5347 5.5

SchurNumbers (15) 85319 1713 43097 7570 11438 2129.3 7307 11438 1164.0 10705 1129.0 10705 197.8

SearchTest-plain (15) 690808 4339 522045 34753 160494 3122.9 31869 148922 2114.1 114633 3124.4 105102 181.5
SearchTest-verbose (15) 802803 4959 606804 40320 165791 12.3 36964 152633 13.8 97379 37.5 88708 34.9

SocialGolfer (15) 31506 11269 31108 12500 119754 3120.6 11857 119754 3121.3 108148 3124.4 108148 3124.2
SolitaireBackward (15) 20508 8381 9305 5473 39345 1.9 2545 18017 1.1 13980 1.7 11740 0.7

SolitaireBackward2 (15) 27435 4397 25517 8713 14323 4260.4 8366 14323 6312.8 10008 4179.1 10009 3177.7

SolitaireForward (15) 19606 8020 8858 5153 29835 3120.3 3602 23819 3120.3 18448 290.3 15253 3120.2
Su-Doku (9) 1003593 17053 502502 173185 12772 7.1 165897 12772 7.9 12772 11.0 12772 11.3
TowersOfHanoi (15) 18340 7215 15028 7294 15903 24.1 5500 13527 24.4 8665 24.7 8664 16.0
TravelingSalesperson (15) 3825 3065 1588 1448 3588 0.4 583 2356 0.2 2356 0.3 2339 1.5
VerifyTest-variableSearchSpace (15) 12914 2296 9134 1061 4285 0.1 608 3088 0.1 1273 0.1 806 0.1

WeightBoundedDominatingSet (15) 3163 2879 798 1187 2048 6245.9 264 910 4165.1 453 3128.2 453 2105.4
WeightedLatinSquare (15) 997 770 446 405 222 0.0 146 222 0.0 222 0.0 222 0.0
WeightedSpanningTree (15) 112034 2185 108934 36998 81210 2.3 36294 78426 2.2 78052 4.5 78052 4.4

Total time/timeouts 44116.9/58 40774.2/53 38641.0/52 37139.0/47
variables/constraints 10954406/46339719 10172081/39117132 -/35997972 -/35438242

Table 2. Experiments with clasp (1.0.5) on a 2.2GHz PC under Linux; each run restricted to 600s time and 1GB RAM.

eliminate body variables. However, up to now clasp is the only ASP
solver integrating advanced preprocessing techniques. Neither ASP-
specific (external) nor SatELite-like (internal) preprocessing have yet
been implemented elsewhere in the context of ASP. Our experiments
show that investments in preprocessing are well spent. In fact, the best
results are obtained when combining ASP-specific with SatELite-
like preprocessing. Instead of integrating preprocessing into clasp, it
could be performed by a dedicated front-end, beneficial also to other
solvers. The development of such a tool is left as a future issue.
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