
On Probing and Multi-Threading in P LATYPUS

J. Gressmann1 and T. Janhunen2 and R. Mercer3 and T. Schaub1,4 and S. Thiele1 and R. Tichy1

Abstract. The PLATYPUS approach offers a generic platform for
distributed answer set solving, accommodating a variety of differ-
ent architectures for distributing the search for answer sets across
different processes and different search modes for modifying search
behaviour. We describe two major extensions of PLATYPUS. First,
we present itsprobingmode which provides a controlled non-linear
traversal of the search space. Second, we present its newmulti-
threadingarchitecture allowing for intra-process distribution. Both
contributions are underpinned by experimental results illustrating
their computational impact.

1 INTRODUCTION

The success of Answer Set Programming (ASP) has been greatly
enhanced by the availability of highly efficient ASP-solvers [8, 11].
But, more complex applications are requiring computationally more
powerful devices. Distributing parts of the search space among coop-
erating sequential solvers performing independent searches can pro-
vide increased computational power. We have proposed a generic ap-
proach to distributed answer set solving, called PLATYPUS [5].

The PLATYPUS approach differs from other pioneering work in
distributed answer set solving [3, 10], by accommodating in a sin-
gle design a variety of different architectures for distributing the
search for answer sets over different processes. The resulting plat-
form, platypus , allows one to exploit the increased computa-
tional power of clustered and/or multi-processor machines via dif-
ferent types of inter- and intra-process distribution techniques like
MPI [7], Unix’ fork mechanism, and (as discussed in the sequel)
multi-threading. In addition, the generic approach permits a flexible
instantiation of all parts of the design.

More precisely, the PLATYPUS design incorporates two distin-
guishing features: First, it modularises (and is thus independent of)
the propagation engine (currently exemplified bysmodels ’ and
nomore++ ’ expansion procedures). Second, the search space is rep-
resented explicitly. This representation allows a flexible distribution
scheme to be incorporated, thereby accommodating different distri-
bution policies and architectures. The two particular contributions
discussed in this paper take advantage of these two aspects of the
generic design philosophy. The first extension to PLATYPUS, prob-
ing, refines the encapsulated module for propagation. Probing is akin
to restart in the SAT solving framework [4]. The introduction of
probing demonstrates one aspect of the flexibility in our PLATY-
PUS design: by having a modularised generic design, we can easily
specify parts of the generic design to give different computational
properties to theplatypus system. Our second improvement to

1 Universiẗat Potsdam, Postfach 900327, D-14439 Potsdam, Germany.
2 Helsinki University of Technology, P.O. Box 5400, FI-02015 TKK, Finland.
3 University of Western Ontario, London, Ontario, Canada N6A 5B7.
4 Affiliated with Simon Fraser University, Burnaby, Canada.

platypus is the integration of multi-threading into our software
package [9]. Multi-threading expands the implemented architectural
options for delegating the search space and adds several new fea-
tures toplatypus : (1) the single- and multi-threaded versions can
take advantage of new hardware innovations such as multi-core pro-
cessors, as well as primitives to implement lock-free data structures,
(2) a hybrid architecture which allows the mixing of inter- and intra-
process distribution, and (3) the intra-process distribution provides a
lighter parallelisation mechanism than forking.

We highlight our two contributions,probingandmulti-threading,
by focusing on the appropriate aspects of the abstract PLATYPUS

algorithm reproduced from [5] below. As well, their computational
impact is exposed in data provided by a series of experiments.

2 THE PLATYPUS APPROACH

In ASP, a logic programΠ is associated with a set ofanswer sets,
AS(Π), which are distinguished models of the rules inΠ. We do
not elaborate, but refer the reader to [2] for a formal introduction
to ASP. For computing answer sets, we rely onpartial assignments,
mapping atoms in an alphabetA onto true, false, or undefined. We
represent such assignments as pairs(X, Y ) of sets of atoms, in which
X contains all true atoms andY all false ones. In general, a partial
assignment(X, Y ) aims at capturing a subset of the answer sets of
Π, viz. AS (X,Y )(Π) = {Z ∈ AS(Π) | X ⊆ Z, Z ∩ Y 6= ∅}.

To begin, we recapitulate the major features of the PLATYPUS ap-
proach [5]. To enable a distributed search for answer sets, the search
space is decomposed by means of partial assignments. This method
works because partial assignments that differ with respect to defined
atoms represent different parts of the search space. To this end, Al-

Algorithm 1 : PLATYPUS

Global : A logic programΠ over alphabetA.
Input : A nonempty setS of partial assignments.
Output : Print a subset of the answer sets ofΠ.

repeat
(X, Y ) ← CHOOSE(S )1

S ← S \ {(X, Y )}2

(X ′, Y ′) ← EXPAND((X, Y ))3

if X ′ ∩ Y ′ = ∅ then4

if X ′ ∪ Y ′ = A then print X ′ else5

A ← CHOOSE(A \ (X ′ ∪ Y ′))6

S ← S ∪ { (X ′ ∪ {A}, Y ′), (X ′, Y ′ ∪ {A}) }7

S ← DELEGATE(S )8

until S = ∅

gorithm 1 is based on an explicit representation of the search space
in terms of a setS of partial assignments, on which it iterates un-
til S becomes empty. The algorithm relies on the omnipresence of a



logic programΠ and its alphabetA as global parameters. Communi-
cation between PLATYPUS instances is limited to delegating partial
assignments as representatives of parts of the search space. The set
of partial assignments provided in the input variableS delineates the
search space given to a specific instance of PLATYPUS. Although
this explicit representation offers an extremely flexible access to the
search space, it must be handled with care since it grows exponen-
tially in the worst case. Without Line 8, Algorithm 1 computes all
answer sets in

S
(X,Y )∈S AS (X,Y )(Π). With Line 8 each PLATY-

PUS instance generates a subset of the answer sets. CHOOSE and
DELEGATE are in principle non-deterministic selection functions:
CHOOSEyields a single element, DELEGATE communicates a sub-
set ofS to a PLATYPUS instance and returns a subset ofS . Clearly,
depending on what these subsets are, this algorithm is subject to in-
complete and redundant search behaviours. The EXPAND function
hosts the deterministic part of Algorithm 1. This function is meant
to be implemented with an off-the-shelf ASP-expander that is used
as a black-box providing both sufficiently strong as well as efficient
propagation operations. See [5] for details.

We now turn to specific design issues beyond the generic descrip-
tion of Algorithm 1. To reduce the size of partial assignments and
thus that of passed messages, we follow [10] in representing partial
assignments only by atoms5 whose truth values were assigned by
choice operations (cf. atomA in Lines 6 and 7). Given assignment
(X, Y ) with its subsetsXc ⊆ X andYc ⊆ Y of atoms assigned by
a choice operation, we have(X, Y ) = EXPAND((Xc, Yc)). Conse-
quently, the expansion of assignment(X, Y ) to (X ′, Y ′) in Line 3
does not affect the representation of the search space inS .6 Further-
more, the design includes the option of using a choice proposed by
the EXPAND component for implementing Line 6. Additionally, the
currently used expanders,smodels andnomore++ , also supply a
polarity, indicating a preference for assigning true or false.

Eachplatypus process has an explicit representation of its (part
of the) search space in its variableS . This set of partial assignments
is implemented as a tree. Whenever more convenient, we describeS
in terms of a set of assignments or a search tree and its branches. In
contrast to stack-based ASP-solvers, likesmodels or nomore++ ,
whose search space contains a single branch at a time, this tree nor-
mally contains several independent branches. Theactivepartial as-
signment (or branch) selected in Line 1, is the one being currently
treated by the expander. The state of the expander is characterised by
the contents of its stack, which corresponds to the active branch in the
search tree. While the stack contains the full assignment(X, Y ), the
search tree’s active branch only contains the pair of subsets(Xc, Yc).

3 PROBING

The explicit representation of the (partial) search space, although
originally devised to enable the use of a variety of strategies for del-
egating parts of the search space in the distributed setting, appears
to be beneficial in some sequential contexts, as well. Of particular
interest, when looking for a single answer set, is limiting fruitless
searches in parts of the search tree that are sparsely populated with
answer sets. In such cases, it seems advantageous to leave a puta-
tively sparsely populated part and continue at another location in the
search space. Inplatypus , this decision is governed by two com-
mand line options,#c and#j. A part of the search is regarded as
fruitless, whenever the number ofconflicts(as encountered in Line 4)

5 Assignments are not restricted to atoms, as used when usingnomore++ .
6 Accordingly, the tests in Lines 4 and 5 must be handled with care; see [5].

exceeds the value of#c. The corresponding conflict counter7 c is in-
cremented each time a conflict is detected in Line 4. The counterc is
resetto zero whenever an answer set is found in Line 5 or the active
branch inS is switched (and thus the expander is reinitialised; see
Algorithm 2). The number ofjumpsin the search space is limited by
#j; each jump changes the active branch in the search space. We use
a binary exponential back-off(cf. [12]) scheme to heed unsuccess-
ful jumps. The idea is as follows. At first, probing initiates a jump
in the search space whenever the initial conflict limit#c is reached.
If no solution is found after#j jumps, then the problem appears to
be harder than expected. In this case, the permissible number of con-
flicts #c is doubled and the allowed number of jumps#j is halved.
The former is done to prolong systematic search, the latter to reduce
gradually to zero the number of jumps in the search space. We refer
to this treatment of the search space asprobing. Probing is made pre-
cise in Algorithm 2, which is a refinement of the CHOOSEoperation
in Line 1 of Algorithm 1. Note that probing continues until the pa-

Algorithm 2 : CHOOSE(in Line 1 of Algo. 1) inprobingmode.

Global : Positive integers#c, #j, supplied via command line.
Integersc, j, initially c = 0 andj = #j.
Selection policyP, supplied via command line.

Input : A setS of assignments with active assignmentb ∈ S .
Output : A partial assignment.

// Counterc is incremented by one in Line 4 of Algorithm 1.
if (c ≤ #c) or (#j = 0) then return b ; // no jumping
else // jumping

c← 0
j ← j − 1
if (j = 0) then

#c← (#c× 2)
#j ← (#j div 2)
j ← #j

let b′ ← SELECT(P,S ) in
〈makeb′ the active partial assignment inS〉
return b′

rameter#j becomes zero. When probing stops, search proceeds in
the usual depth-first manner by considering only one branch at a time
by means of the expander’s stack. Clearly, this is also the case during
the phases when the conflict limit has not been reached (c ≤ #c).

At the level of implementation, the expander must be reinitialised
whenever the active branch of the search space changes. Reinitialisa-
tion is unnecessary when extending the active branch by the choice
(obtained in Line 6) in Line 7 of Algorithm 1 or when backtracking is
possible in case a conflict occurs or an answer set is obtained. In the
first case, the expander’s choice (that is, an atom with a truth value)
is simply pushed on top of the expander’s stack (and marked as a
possible backtracking point). At the same time, the active branch in
S is extended by the choice and a copy of the active branch, extended
by the complementary choice, is added toS . See [6] for details.

In the case that a conflict occurs or an answer set is obtained, the
active branch inS is replaced by the branch corresponding to the ex-
pander’s stack after backtracking. If it exists, this is the largest branch
in S that equals a subbranch of the active branch after switching the
truth value of its leaf element. If backtracking is impossible, the ac-
tive branch is chosen by means of the given policyP (at present, a
largest, a smallest, or a random assignment). If this, too, is impossi-

7 Each thread has its own conflict and jump counters.



ble,S must be empty and the PLATYPUS instance terminates.
The policy-driven selection of a branch, expressed in Algorithm 2

by SELECT(P,S ), is governed by another command line option8

#n and works in two steps. First, among all branches inS , the
#n best ones,b1, . . . , b#n, are identified according to policyP. To
be precise, letp be a mapping of branches to ordinal values, used
by P for evaluating branches. For everyb ∈ {b1, . . . , b#n} and
b′ ∈ S \ {b1, . . . , b#n}, we then have thatp(b) ≤ p(b′). Then, a
branchb is randomly selected from{b1, . . . , b#n}. This random se-
lection from the best#n branches counteracts the effect of a rigid
policy by arbitrarily choosing some close alternatives.

To see that probing guarantees completeness, it is sufficient to see
that no partial assignment is ever eliminated from the search space.
Also, when probing, the number of different branches in the search
spaceS cannot exceed twice the number of initially permitted jumps,
viz. 2×#j. For instance, if the command line option sets#j to 13,
we may develop at most13+6+3+1 different branches inS , which
is bound by2× 13. Thereby, a branch is considered as different if it
is not obtainable from another’s subbranch by switching the assigned
truth value of a single atom (i.e. if it is not a backtracking point).

4 THREAD ARCHITECTURE

This section details the multi-threaded architecture extension to the
platypus platform which adds the capacity to do intra-process dis-
tribution delegation to the existing inter-process capabilities, which
are optionally realised via Unix’ forking mechanism or MPI [7] (de-
scribed in [5]). This richer architecture now permits hybrid delega-
tion methods, for instance, delegatingplatypus via MPI on a clus-
ter of multi-processor machines, with delegation among the multi-
processors of each machine accomplished with multi-threading.

The architecture is split into more or less two parts: thecore
and thedistribution components. A core encapsulates the search
for answer sets, and the DELEGATE function is encapsulated in a
distribution component. The core and distribution components have
well-defined interfaces that localise the communication between the
components. This design allows us to incorporate, for instance,
single- and multi-threaded cores, as well as inter-process distribution
schemes, like MPI and forking, with ease.

Eachplatypus process hosts an instance of the core, the core
object, which cooperates with one instance of the distribution com-
ponent, the distribution object. Communication is directed from core
to distribution objects and is initiated by the core object. During ex-
ecution the major flow of control lies with the core objects.

The multi-threaded core works according to the master/slave prin-
ciple. The master coordinates a number of slave threads. Each slave
thread executes the PLATYPUS algorithm on its thread-local search
space. The master thread handles communication (through the dis-
tribution object) with otherplatypus processes on behalf of the
slave threads. Communication between the master thread and its
slave threads is based on counters and queues: Events of interest (e.g.
statistics, answer sets, etc.) are communicated by the slaves to the
master by incrementing the appropriate counter or adding to the re-
spective queue. The master thread periodically polls the counters and
queues for any change. The search ends (followed by termination of
the platypus program) if there is agreement among the distribu-
tion objects that either all participating processes are in need of work
(indicating all the work is done) or the requested number of answer
sets is computed. In the core, theidle thread counterof the mas-
ter thread serves two purposes: It indicates the number of idle slave

8 Option#n can be zero, indicating the use of all branches.

threads in the core object, and it shows the number of partial as-
signments in thethread delegation queueof the master thread. Slave
threads share their search space automatically among themselves as
long as one thread has some work left. A slave thread running out of
work (reaching an empty search spaceS ) checks the availability of
work via the idle thread counter and if possible removes a partial as-
signment from the thread delegation queue. Otherwise, it waits until
new work is assigned to it. Another slave thread can become aware of
the existence of an idle thread by noting that the idle thread counter
exceeds zero during one of its periodic checks. If this is the case, it
splits off a part of its local search space according to a distribution
policy, puts the partial assignment that represents the subspace into
the thread delegation queue, and decrements the idle thread counter.
As this may happen simultaneously in several working slave threads,
more partial assignments can end up in the thread delegation queue
than there exist idle slaves. These extras are used subsequently by
idle threads.

When all slave threads are idle (i.e. the idle thread counter equals
the number of slave threads) the master thread initiates communi-
cation via the distribution object to acquire more work from other
PLATYPUS processes. To this end, the master thread periodically
queries the associated distribution object for work until it either gets
some work or is requested to terminate. Once work is available, the
master thread adds it to the thread delegation queue, decrements the
idle thread counter,9 and wakes up a slave thread. The awoken slave
thread will find the branch there, take it out, and start working again.
From there on, the core enters its normal thread-to-thread mode of
work sharing. Conversely, when aplatypus process receives no-
tification that another process has run out of work, it attempts to
delegate a piece of its search space. To this end, it sets theother-
process-needs-workflag of the master thread in its core object. All
slave threads noticing this flag clear the flag and delegate a piece
of their search space according to the delegation policy by adding it
to theremote delegation queue. The master thread takes one branch
out of the queue and forwards it to the requestingplatypus pro-
cess (via the distribution object). Because of the multi-threaded na-
ture any number of threads can end up delegating. Items left in the
remote delegation queue are used by the master thread to fulfil sub-
sequent requests for work by otherplatypus processes or work
requests by its slave threads. The conceptual difference between the
thread delegation and the remote delegation queues is that the former
handle intra-core delegations, while the latter deal with extra-core
delegation, although non-delegated work can return to the core. This
is reflected by the fact that master and slave threads are allowed to
insert partial assignments into the thread delegation queue, whereas
only slave threads remove items from this queue. In contrast, only
the master thread is allowed to eliminate items from the remote del-
egation queue, while insertions are performed only by slave threads.

An important aspect of the multi-threaded core implementation is
the use oflock-free data structuresfor synchronising communication
among master and slave threads. This is detailed in [6].

5 EXPERIMENTAL RESULTS

The following experiments aim to provide some indication of the
computational value of probing and multi-threading. All experiments
were conducted with some fixed parameters: (i)smodels (2.28)
was used as propagation engine and for delivering the (signed) choice
in Line 6 of Algorithm 1, (ii) the choice in Line 1 of Algorithm 1 was

9 The inserting thread is responsible for decrementing the idle thread counter.



clumpy sm st 10,3210,6410,12810,25610,51250,3250,6450,12850,25650,512100,32100,64100,128100,256100,512200,32200,64200,128200,256200,512

06,06,02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
06,06,03 0.10 0.10 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.11 0.11 0.11 0.11 0.11 0.17 0.16 0.16 0.16 0.16
06,06,04 0.61 0.63 0.08 0.08 0.08 0.08 0.08 0.14 0.14 0.14 0.14 0.14 0.24 0.24 0.24 0.24 0.24 0.34 0.34 0.34 0.34 0.34
06,06,05 6.30 6.61 1.24 1.79 0.95 0.84 0.84 0.78 0.66 0.66 0.66 0.66 0.96 0.96 0.96 0.96 0.96 2.29 2.14 2.14 2.14 2.14
06,06,06 0.38 0.39 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.10 0.10 0.10 0.10 0.10
06,06,07 0.04 0.03 0.14 0.14 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
06,06,08 0.08 0.08 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03
06,06,09 11.3 11.8 0.47 0.52 0.62 0.62 0.62 1.07 1.01 1.01 1.01 1.01 2.23 2.06 2.06 2.06 2.06 3.06 3.46 3.46 3.46 3.46
06,06,10 0.06 0.05 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.05
07,07,01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
07,07,02 0.05 0.04 0.61 0.74 0.71 0.71 0.71 1.76 1.45 1.45 1.45 1.45 2.01 2.92 2.91 2.91 2.90 0.04 0.04 0.04 0.04 0.04
07,07,03 8.98 9.60 18.7 9.56 14.5 3.75 3.26 4.79 4.72 16.9 6.11 6.05 5.02 33.8 18.4 9.71 10.3 23.3 9.75 22.1 14.5 14.5
07,07,04 1.37 1.38 0.98 2.05 2.01 3.49 3.38 1.57 1.79 1.54 1.54 1.53 2.87 2.19 2.19 2.20 2.19 2.76 3.30 3.30 3.30 3.28
07,07,05 0.03 0.02 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
07,07,06 0.38 0.38 0.41 0.38 0.38 0.38 0.38 0.61 0.61 0.61 0.61 0.61 0.69 0.69 0.69 0.69 0.69 0.86 0.86 0.86 0.86 0.86
07,07,07 0.04 0.03 0.08 0.08 0.08 0.08 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
07,07,08 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.14 0.14 0.14 0.14 0.14
07,07,09 0.40 0.40 0.08 0.08 0.08 0.08 0.08 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.55 0.55 0.55 0.55 0.55
07,07,10 124.5126.4 15.8 6.32 2.17 1.96 1.97 31.7 13.4 6.01 5.27 5.27 59.3 72.0 9.49 8.74 8.74 18.8 21.5 20.4 14.1 14.1
08,08,01 5.07 1.64 2.44 4.68 5.23 22.5 2.84 3.21 3.22 3.20 10.9 4.81 4.76 4.72 4.68 45.1 15.4 10.3 10.2 10.0
08,08,02 7.04 11.1 2.42 2.44 2.43 8.01 6.22 5.61 6.64 6.61 23.0 12.0 9.74 9.05 8.98 44.0 15.5 13.7 13.8 13.7
08,08,03 14.8 9.39 13.1 5.31 5.52 61.9 84.9 7.57 14.0 13.1 105.8 51.8 9.17 8.71 8.66 32.8 205.8 15.9 15.3 15.3
08,08,05 36.7 37.0 231.2 16.1 33.6 43.6 176.6 24.1 36.1 53.5 96.5 48.3 29.2 47.7 84.1 129.2 70.0 39.4 87.3 189 240
08,08,06 8.15 8.22 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.10 0.16 0.17 0.17 0.17 0.16 0.26 0.26 0.26 0.26 0.26
08,08,07 4.17 4.10 0.44 0.44 0.44 0.44 0.43 1.23 1.24 1.23 1.23 1.23 0.48 0.48 0.48 0.48 0.47 0.89 0.90 0.90 0.90 0.89
08,08,08 0.85 71.6 14.5 6.33 13.5 2.16 1.73 1.73 1.72 1.72 3.69 2.77 2.77 2.77 2.76 6.40 4.76 4.76 4.77 4.75
08,08,09 1.29 0.87 0.88 0.88 0.87 1.07 1.08 1.08 1.08 1.07 2.03 2.03 2.03 2.03 2.02 3.02 3.04 3.03 3.03 3.02
08,08,10 1.66 1.67 17.3 11.5 4.24 4.37 4.02 1.87 2.24 2.24 2.24 2.23 4.93 2.72 2.72 2.72 2.72 5.97 7.41 7.41 7.40 7.37
09,09,01 24.9 25.0 0.34 0.34 0.34 0.34 0.34 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12
09,09,02 1.66 1.82 2.84 2.64 2.63 0.85 0.85 0.85 0.85 0.84 1.48 1.49 1.49 1.49 1.48 2.31 2.32 2.33 2.32 2.31
09,09,03 13.3 4.24 7.33 74.3 0.82 0.82 0.82 0.82 0.82 1.67 1.68 1.68 1.68 1.68 2.51 2.52 2.52 2.52 2.51
09,09,04 143.8 50.9 81.6 95.7
09,09,05 2.60 2.08 2.66 2.66 2.66 4.03 3.98 4.68 4.68 4.67 3.96 4.80 4.81 4.80 4.79 6.49 6.32 6.31 6.33 6.31
09,09,06 4.00 2.59 159.6 6.40 5.89 11.5 8.62 5.51 5.51 5.50 7.35 21.5 6.45 6.46 6.44 12.8 20.1 17.4 17.4 17.4
09,09,07 0.75 28.4 3.23 3.01 3.01 2.16 2.03 2.04 2.03 2.03 3.05 3.07 3.07 3.06 3.05 6.70 5.95 5.95 5.95 5.90
09,09,09 0.73 0.71 0.71 0.71 0.71 1.95 2.40 2.40 2.40 2.39 3.91 3.50 3.51 3.50 3.48 12.5 9.68 9.67 9.69 9.63

Table 1. Experimental results forprobing(with the single-threaded core).

fixed to the policy selecting assignments with the largest number of
unassigned atoms, (iii) all such selections were done in a determinis-
tic way by setting command-line option#n to 1 (cf. Section 2). All
tests were done withplatypus version 0.2.2 [9]. They reflect aver-
age times of 5 runs for finding the first or all answer sets, resp., of the
considered instance. Timing excludes parsing and printing. The data
was obtained on a quad processor (4 Opteron 2.2GHz processors, 8
GB shared RAM) under Linux.

For illustrating the advantage of probing, we have chosen the
search for one Hamiltonian cycle inclumpy graphs, proposed in [13]
as a problem set being problematic for systematic backtracking.
These benchmarks are available at [9]. Table 1 contrasts different set-
tings for numbers of conflicts#c (10, 50, 100, 200) and jumps#j
(32, 64, 128, 256, 512), resp., running the single-threaded core. For
comparison, we also provide the correspondingsmodels times10

and the ones for single-threadedplatypus without probing in the
columns labelledsmandst. The remaining columns are labelled with
the command line options used, viz.#c, #j. A blank entry repre-
sents a timeout after 240 seconds. First of all, we notice that the
systems using standard depth first-search are unable to solve 12 in-
stances within the given time limit, whereas when using probing,
apart for a few exceptions, all instances are solved. We see that
platypus without probing does best 8 times, as indicated in bold-
face, and worst 24 times, whereassmodels does best 2 times11

and worst 24 times. Compared to each specific probing configura-
tion, platypus without probing performs better among 9 to 15
(smodels , 6 to 8) times out of 38. In fact, there seems to be no
clear pattern indicating a best probing configuration. However, look-
ing at the lower part of Table 1, we observe thatplatypus without
probing (smodels ) times out 12 times, while probing still gives a

10 These times are only indicative since they include printing one answer set.
11 The six cases differ by only 0.01sec which is due to slightly different

timing methods (see Footnote 10).

solution under all but three configurations. In all, we see that probing
allows for a significant speed-up for finding the first answer set. This
is particularly valuable whenever answer sets are hard to find with
a systematic backtracking procedure, as witnessed by the entries in
the lower part of Table 1. However, probing has generally no posi-
tive effect when computing all answer sets. Also, on more common
benchmarks (cf. [1]) probing rarely kicks in since the conflict counter
is earlier reset to zero whenever an answer set is found.

The computational impact of probing is even more significant
when using multi-threading,12 where further speed-ups are observed
on 20 benchmarks, most of which are among the more substan-
tial ones in the lower part of Table 1. The most substantial one is
observed on clumpy graph 09,09,04 which is solved in 4.66 and
4.26 seconds, resp., when setting#c, #j to 10,512 and using 3
and 4 slave threads, resp. Interestingly, even the multi-threaded vari-
ant without probing cannot solve the last seven benchmarks within
the time limit, except for clumpy 09,09,07, whichplatypus with
4 slave threads is able to solve in 13.8 seconds. This illustrates
that probing and multi-threading are two complementary techniques
that can be used for accelerating the performance of standard ASP-
solvers. A way to tackle benchmarks that are even beyond the
reach of probing with multi-threading is to use randomisation via
command-line option#n.

Table 2 displays the effect of multi-threading, when computing all
answer sets. For consistency, we have taken a subset of the asparagus
benchmarks [1] in [5], used when evaluating the speed-ups obtained
with the (initial) forking and MPI variant ofplatypus . Compar-
ing the sum of the average times, the currentplatypus variant
running multi-threading is 2.64 times faster than its predecessor us-
ing forking, as reported in [5].13 In more detail, the columns reflect
the times ofplatypus run with the multi-threaded core restricted

12 All tests on multi-threading with and without probing are provided at [9].
13 The forking tests in [5] were also run on the same machine.



problem mt #1 mt #2 mt #3 mt #4

color-5-10 1.53 0.84 0.62 0.53
color-5-15 60.9 31.1 20.5 15.7
hamcomp8 3.66 1.99 1.38 1.10
hamcomp9 85.2 43.6 29.0 22.5
pigeon-7-8 1.38 0.73 0.57 0.48
pigeon-7-9 4.22 2.19 1.46 1.17
pigeon-7-10 13.2 6.31 4.12 3.08
pigeon-7-11 36.5 16.3 10.6 7.94
pigeon-7-12 88.2 39.9 25.8 19.0
pigeon-8-9 11.6 5.77 3.80 2.84
pigeon-8-10 48.3 22.3 14.2 10.4
pigeon-9-10 128.4 61.8 39.5 29.4
schur-14-4 1.00 0.63 0.47 0.42
schur-15-4 2.38 1.30 0.91 0.73
schur-16-4 4.04 2.14 1.41 1.11
schur-17-4 9.13 4.58 3.04 2.28
schur-18-4 16.7 8.34 5.31 3.92
schur-19-4 39.3 18.1 11.5 8.28
schur-20-4 44.1 21.9 13.8 10.1
schur-11-5 0.56 0.37 0.32 0.32
schur-12-5 1.49 0.83 0.63 0.54
schur-13-5 5.69 2.90 1.97 1.51
schur-14-5 18.6 9.05 6.00 4.42

Table 2. Experimental results onmulti-threading.

to 1, 2, 3, and 4 slave threads (probing disabled). When looking at
each benchmark, the experiments show a qualitatively consistent 2-,
3-, and 4-times speed-up when doubling, tripling, and quadrupling
the number of processors, with only minor exceptions. For instance,
the smallest speed-up is observed onschur-11-5(1.52, 1.73, 1.75);
among the highest speed-ups, we findschur-19-4(2.17, 3.43, 4.75)
andpigeon-7-11(2.24, 3.43, 4.6). The average speed-ups observed
on this set of benchmarks is 1.96, 2.89, and 3.75. If we weight the av-
erage speed-ups with the respective average running times, we obtain
even a slightly super-linear speed-up: 2.07, 3.18, 4.24. Such super-
linear speed-ups are observed primarily on time-demanding bench-
marks and, although less significant, have also been observed in [5]
when forking (which makes us ascribe them to caching effects and/or
shared memory). In all, we observe that the more substantial the
benchmark, the more clear-cut the speed-up.

Given that the experiments were run on a quad processor, it is
worth noting that we observe no drop in performance when increas-
ing the number of slave threads from 3 to 4, despite having a fifth
(master) thread. Finally, we note that the multi-threaded core, when
restricted to a single slave thread, loses on average only 2% perfor-
mance compared to the single-threaded version.

6 DISCUSSION

At the heart of the PLATYPUS design is its generality and modularity.
These two features allow a great deal of flexibility in any instantia-
tion of the algorithm, making it unique among related approaches.
Up to now, this flexibility was witnessed by the possibility to use
different off-the-shelf solvers, different process-oriented distribution
mechanisms, and a variety of choice policies. In this paper we have
presented two significant configurable enhancements toplatypus .

First, we have described its probing mode, relying on an explicit
yet restricted representation of the search space. This provides us
with a global view of the search space and allows us to have different
threads working on different subspaces. Although probing does not
primarily aim at a sequential setting, we have experimentally demon-

strated its computational value on a specific class of benchmarks,
which is problematic for standard ASP-solvers. Unlike restart strate-
gies in SAT, which usually draw on learnt information [4], probing
keeps previously abandoned parts of the search space, so that they
can be revisited subsequently. Probing offers a non-linear14 explo-
ration of the search space that can be randomised while remaining
complete, a search strategy that no other native ASP-solver offers.

Second, we have presentedplatypus ’ multi-threaded archi-
tecture. Multi-threading complements the previous process-oriented
distribution schemes ofplatypus by providing further intra-
process distribution capacities. This is of great practical value since it
allows us to take advantage of recent hardware developments, offer-
ing multi-core processors. In a hybrid setting, consisting of clusters
of such machines, we may use multi-threading for distribution on the
multi-core processors, while distribution among different worksta-
tions is done with previously established distribution techniques in
platypus , like MPI. Furthermore, the modular implementation of
thecoreanddistributioncomponent allow for easy modifications in
view of new distribution concepts, like grid computing, for instance.
Theplatypus platform is freely available on the web [9].

For more details and related work, we refer the reader to [6].

ACKNOWLEDGMENTS. Research at Potsdam was supported by
DFG (SCHA 550/6-4), and at U.W.O. by NSERC (Canada) and
SHARCNET. We are grateful to C. Anger, M. Brain, M. Gebser, B.
Kaufmann, and the referees for many helpful suggestions.

REFERENCES
[1] http://asparagus.cs.uni-potsdam.de .
[2] C. Baral,Knowledge Representation, Reasoning and Declarative Prob-

lem Solving, Cambridge University Press, 2003.
[3] R. Finkel, V. Marek, N. Moore, and M. Truszczynski, ‘Computing sta-

ble models in parallel’, inProc. of AAAI Spring Symposium on Answer
Set Programming (ASP’01), eds., A. Provetti and T. Son, pp. 72–75.
AAAI/MIT Press, (2001).

[4] C. Gomes, B. Selman, and H. Kautz, ‘Boosting combinatorial search
through randomization’, inProc. of the Fifteenth National Conference
on Artificial Intelligence (AAAI’98), pp. 431–437. AAAI Press, (1998).

[5] J. Gressmann, T. Janhunen, R. Mercer, T. Schaub, S. Thiele, and
R. Tichy, ‘Platypus: A platform for distributed answer set solving’, in
Proc. of the Eighth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’05), eds., C. Baral, G. Greco,
N. Leone, and G. Terracina, pp. 227–239. Springer-Verlag, (2005).

[6] J. Gressmann, T. Janhunen, R. Mercer, T. Schaub, S. Thiele, and
R. Tichy, ‘On probing and multi-threading in platypus’, inProc. of the
Eleventh International Workshop on Nonmonotonic Reasoning, eds.,
J. Dix and A. Hunter, (2006). To appear.

[7] W. Gropp, E. Lusk, and R. Thakur,Using MPI-2: Advanced Features
of the Message-Passing Interface, The MIT Press, 1999.

[8] N. Leone, W. Faber, G. Pfeifer, T. Eiter, G. Gottlob, C. Koch, C. Mateis,
S. Perri, and F. Scarcello, ‘The DLV system for knowledge representa-
tion and reasoning’,ACM TOCL, (2006). To appear.

[9] http://www.cs.uni-potsdam.de/platypus .
[10] E. Pontelli, M. Balduccini, and F. Bermudez, ‘Non-monotonic reason-

ing on beowulf platforms’, inProc. of the Fifth International Sympo-
sium on Practical Aspects of Declarative Languages (PADL’03), eds.,
V. Dahl and P. Wadler, pp. 37–57. Springer-Verlag, (2003).

[11] P. Simons, I. Niemelä, and T. Soininen, ‘Extending and implementing
the stable model semantics’,Art. Intell., 138(1-2), 181–234, (2002).

[12] A. S. Tanenbaum,Modern Operating Systems, Prentice Hall, 2001.
[13] J. Ward and J. Schlipf, ‘Answer set programming with clause learning’,

in Proc. of the Seventh International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’04), eds., V. Lifschitz and
I. Niemel̈a, pp. 302–313. Springer-Verlag, (2004).

14 That is, the traversal of the search space does not follow a given strategy
like depth-first search.


