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Abstract. We introduce a variant of default logic,
called constrained default logic. With it, we make
default logic commit to its assumptions without ex-
tending the first order language. In contrast to [1]
wherein “formulas with constraints” were introduced,
we introduce constrained extensions. Then, we em-
ploy constrained default logic in order to clarify the
relationships among the constrained variants of de-
fault logic [4, 1, 3]. Finally, the proof–oriented notion
of a lemma default rule is introduced that accounts for
the practical impact of cumulativity: the capability of
handling nonmonotonic lemmata.

1 Introduction

Default logic was defined by Reiter in [7] as a formal
account of reasoning in the absence of complete in-
formation. On the one hand, default logic has gained
much popularity due to its very natural way to encode
default reasoning. On the other hand, general default
theories lack several desired properties. Hence, de-
fault logic has been reevaluated and modified several
times during the last decade. A first variant was pro-
posed by  Lukaszewicz in [4] which guaranteed semi–
monotonicity and the existence of extensions. Semi–
monotonicity stands for monotonicity wrt the defaults
and allows for reasonable proof procedures (cf. [7]).
Recently, some variants [1, 3] were proposed which
made default logic commit to its assumptions [6] and
restored cumulativity [5]. Intuitively, cumulativity
stipulates that adding a theorem to the set of premises
should not alter the theory under consideration. Com-
mitment demands the consistency of a theory with all
of its underlying assumptions.

Thus, in one respect the evolution of default logic
was successful in that it brought up derivatives that
share many desired properties. However, the process
was diverging since the approaches differ basically in
the way they achieve their results. Therefore, build-
ing on the work of [1] and [4], we introduce a variant
of default logic called constrained default logic1. For
one thing, the approach combines (almost) all advan-
tages of its ancestors in an arguably simpler way. For
another thing, constrained default logic serves as an
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1Originally, described in [9].

instrument for comparing the derivatives of classical
default logic.

In constrained default logic consistency assumptions
are regarded as constraints on a given theory. There-
fore, we provide the notion of a constrained extension.
With it, we distinguish between our set of beliefs,
ie. our extension, and its underlying constraints that
form a context guiding our beliefs. Take the default
theory

({
A :B
C

}
, {A}

)
. Instead of a “flat” extension

Th({A,C}) as in classical default logic, we now obtain
an extension that is embedded in a context, viz. the
constrained extension (Th({A,C}), Th({A,B,C})).

In [1], cumulativity was preserved by means of la-
belled formulas. Since cumulativity allows for non-
monotonic lemmata the question arises now “What is
a nonmonotonic lemma and how should it be repre-
sented?” Therefore, we introduce the proof–oriented
notion of a lemma default rule that applies to con-
strained as well as classical default logic.

The paper is organized as follows. In Section 2 we
develop constrained default logic and use it in Sec-
tion 3 to examine the relations between the derivatives
of default logic. In Section 4 we introduce lemma de-
fault rules for constrained and classical default logic.

2 Towards constrained default logic

As defined by Reiter in [7] a closed default theory
(D,W ) consists of a set of first order sentences W
and a set of default rules D. A default rule is of the
form α : β1,...,βn

γ
where α, β1, . . . , βn and γ are first or-

der sentences. α is called the prerequisite, β1, . . . , βn

the justifications, and γ the consequent. An extension
is defined as all formulas derivable from the facts using
classical inference rules and all specified default rules.
Informally, a classical extension E of a default theory
(D,W ) is the smallest deductively closed set of sen-

tences containing W such that for any α : β1,...,βn
γ

∈ D,

if α ∈ E and ¬β1, . . . ,¬βn ̸∈ E then γ ∈ E. In the
sequel, we shall consider only closed default rules of
the form α : β

γ
. A default theory is said to be normal

whenever the justification and the consequent of each
default rule are logically equivalent.

The definition of a constrained extension relies on
two sets of sentences: E and C. For a default rule α : β

γ

to apply in constrained default logic its prerequisite α



must be in the extension E, whereas the consistency of
the justification β is checked wrt the set of constraints
C. The constraints can be regarded as a context estab-
lished by the premises, the nonmonotonic theorems as
well as all underlying consistency assumptions. For-
mally, a constrained extension is defined as follows.

Definition 2.1 Let (D,W ) be a default theory. For
any set of sentences T let Υ(T ) be the pair of smallest
sets of sentences (S′, T ′) such that

1. W ⊆ S′ ⊆ T ′, 2.S′ = Th(S′) and T ′ = Th(T ′),

3. For any α : β
γ

∈ D, if α ∈ S′ and T∪{β}∪{γ} ̸⊢ ⊥
then γ ∈ S′ and β ∧ γ ∈ T ′.

A pair of sets of sentences (E,C ) is a constrained ex-
tension of (D,W ) iff Υ(C) = (E,C ).

When computing an extension, we have to preserve
its consistency with all of the constraints. Thus, the
fixed point condition itself relies merely on the con-
straints. Intuitively, this means that our context of
reasoning has to coincide with our set of accumulated
constraints.

A perhaps more intuitive characterization of con-
strained extensions is the following one.

Theorem 2.1 Let (D,W ) be a default theory and
let E,C be sets of sentences. Define E0 = W and
C0 = W and for i ≥ 0
Ei+1= Th(Ei) ∪ { γ | α : β

γ
∈D,α∈Ei, C∪{β, γ} ̸⊢⊥}

Ci+1= Th(Ci) ∪ {β ∧ γ | α : β
γ

∈D,α∈Ei, C∪{β, γ} ̸⊢⊥}
(E,C ) is a constrained extension of (D,W ) iff
(E,C ) = (

∪∞
i=0

Ei,
∪∞

i=0
Ci).

Observe that it is only referred to the previous partial
extension Ei whereas the consistency is checked wrt
all constraints.

The approach taken by constrained default logic can
be regarded as directly induced by the focused model
semantics [8] which is based on the following order:

Definition 2.2 Let δ = α : β
γ

and Π be a class of

models. The order ⪰δ on 2Π× 2Π is defined as fol-

lows. For all (Π1, Π̆1), (Π2, Π̆2) ∈ 2Π× 2Π we have

(Π1, Π̆1) ⪰δ (Π2, Π̆2) iff

1. Π2 |= α

2. Π̆2 ̸|= β ∧ γ

3. Π1 = {π ∈ Π2 | π |= γ}

4. Π̆1 = {π ∈ Π̆2 | π |= β ∧ γ}

The induced order ⪰D is defined as the transitive clo-
sure of all orders ⪰δ such that δ ∈ D. Thus, given a

⪰D–maximal pair of classes of models (Π, Π̆), an ex-
tension is formed by all formulas that are valid in Π

whereas the focused models Π̆ reflect themselves as
constraints surrounding the extension.

Theorem 2.2 Let (D,W ) be a default theory. Let

(Π, Π̆) be a pair of classes of models and E,C de-
ductively closed sets of sentences such that Π = {π |
π |= E} and Π̆ = {π | π |= C}. Then, (E,C ) is a

constrained extension of (D,W ) iff (Π, Π̆) is a ⪰D–
maximal element above (ΠW ,ΠW ).

Constrained default logic has many desired proper-
ties: the existence of constrained extensions is guaran-
teed, constrained default logic is semi–monotonic, all
constrained extensions of a given default theory are
weakly orthogonal (ie. the constraints are contradic-
tory) to each other, and constrained extensions com-
mit to their assumptions. As an example, consider the
default theory ({

: B

C
,

: ¬B
D

}
, ∅
)
. (1)

In classical default logic we obtain only one exten-
sion: Th({C,D}). Unintuitively, both default rules
have been applied although they have contradicting
justifications. Thus, there has been no commitment
to the assumption B nor ¬B. In contrary, con-
strained extensions commit to their assumptions and
we obtain two of them: (Th({C}), Th({C,B})) and
(Th({D}), Th({D,¬B})). Once a default rule has been
applied the constraints admit only compatible conclu-
sions based on compatible consistency assumptions.

Whenever we have normal default theories, the
constraints coincide with the extension and they are
equivalent to the corresponding classical extension.

Proposition 2.3 Let (D,W ) be a normal default
theory and E a set of sentences. Then, E is an exten-
sion of (D,W ) iff (E,E) is a constrained extension of
(D,W ).

3 Relationships among default logics

Default logic has evolved during the last decade. Two
prevailing approaches were  Lukaszewicz’ justified de-
fault logic [4] and Brewka’s cumulative default logic
[1].  Lukaszewicz attached sets of sentences to exten-
sions whereas Brewka labelled formulas with sets of
sentences. Thus, both employed constraints but differ
basically in the location they put them. Constrained
default logic turns out to be an amalgamation of both
approaches. Hence, it is perfectly suited as an in-
strument for comparing the descendents of classical
default logic. Moreover, extensions of J–default logic
[3] turn out to be equivalent to constrained extensions
in the case of semi–normal default theories.2Thus, all
results given below carry over to their approach.

At first, we describe the relationship between classi-
cal and constrained default logic by taking advantage
of the justifications of the generating default rules, ie.
CE = {β | α : β

γ
∈ D,α ∈ E,¬β ̸∈ E}.

2To see this, compare Theorem 2.1 and [3, Def. 4.1].



Theorem 3.1 Let E be a classical exten-
sion of (D,W ). If E ∪ CE is consistent, then
(E, Th(E ∪ CE)) is a constrained extension of (D,W ).

Observe, that the converse of the above theorem does
not hold since default logic does not guarantee the
existence of extension.

Theorem 3.2 Let (D,W ) be a default theory and let
E and C be sets of sentences. If (E,C ) is a constrained
extension of (D,W ) and E is a classical extension of
(D,W ), then C ⊆ Th(E ∪ CE) .

 Lukaszewicz also attaches constraints to extensions
in order to strengthen the applicability condition of
default rules. Informally, a justified extension of
(D,W ) is a pair (E, J) of smallest sets of sentences
such that E is deductively closed and contains W ,
and for any α : β

γ
∈ D, if α ∈ E and ∀η ∈ J ∪ {β}. E ∪

{γ, η} ̸⊢ ⊥ then γ ∈ E and β ∈ J.

We observe that the set of constraints J merely
consists of the justifications of applied default rules.
It has neither to be deductively closed nor consis-
tent and, consequently prevents  Lukaszewicz’ variant
from committing to its assumptions. The default the-
ory (1) has only one justified extension: Th({C,D})
wrt {B,¬B}. Both default rules apply although they
have contradicting justifications. Thus, the exten-
sion is justified by an inconsistent set of constraints.
Since  Lukaszewicz is primarily interested in avoiding
inconsistencies between justifications and consequents
of individual default rules he neglects inconsistencies
among the constraints.

Nevertheless, we have the following relationships be-
tween the two globally constrained approaches.

Theorem 3.3 Let (E, J) be a justified extension of
(D,W ). If E ∪ J is consistent, then (E, Th(E ∪ J)) is
a constrained extension of (D,W ).

Theorem 3.4 Let (E,C ) be a constrained extension
of (D,W ). Then, there is a justified extension (E′, J ′)
of (D,W ) such that E ⊆ E′ and C ⊆ Th(E′ ∪ J ′).

Theorem 3.5 Let (D,W ) be a default theory and
let E,C, and J be sets of sentences. If (E,C ) is a
constrained extension of (D,W ) and E is a justified
extension of (D,W ) wrt J then C ⊆ Th(E ∪ J).

Brewka [1] restored commitment and cumulativity
to default logic also by strengthening the applicabil-
ity condition for default rules and making the reasons
for believing something explicit. But in order to keep
track of assumptions, he introduced assertions, ie. for-
mulas labelled with the set of justifications and conse-
quents of applied default rules (eg. ⟨α, {α1, . . . , αn}⟩).
An assertional default theory is a pair (D,W), where
D is a set of default rules and W is a set of assertions.
Informally, an assertional extension of (D,W) is the
smallest set of assertions E being deductively closed

under an extended3 theory operator T̂h and contain-
ing W such that for any α : β

γ
∈ D, if ⟨α, s(α)⟩ ∈ E and

f(E) ∪ s(E) ∪ {β, γ} ̸⊢ ⊥ then ⟨γ, s(α) ∪ {β, γ}⟩ ∈ E .
Assertional extensions commit to their assump-

tions and we obtain two from the default theory (1):

T̂h({⟨C, {B,C}⟩}) and T̂h({⟨D, {¬B,D}⟩}). Once we
have derived a proposition, we are aware of its un-
derlying assumptions. Therefore, cumulative default
logic prevents the derivation of conclusions that con-
tradict previously derived conclusions or their under-
lying consistency assumption.

Complementary to constrained default logic that
constrains extensions in a global fashion, the justifica-
tions and consequents of the applied default rules are
recorded locally to the conclusions. Thus, assertional
extensions share the notion of “joint consistency” with
constrained extensions — but in a distributed way. In
this sense, constrained default logic has moved from
“formulas with constraints” towards constrained ex-
tensions. Since cumulative as well as constrained de-
fault logic are captured by the focused models seman-
tics [8], they are very close to each other.

Theorem 3.6 Let (D,W ) be a default theory and
(D,W) the assertional default theory, where W =
{⟨α, ∅⟩ | α ∈ W}. Then, if (E,C ) is a constrained
extension of (D,W ) then there is an assertional ex-
tension E of (D,W) such that E = f(E) and C =
Th(f(E) ∪ s(E)); and, conversely if E is an assertional
extension of (D,W) then (f(E), Th(f(E) ∪ s(E))) is a
constrained extension of (D,W ).

Observe, that we get a one–to–one correspondence be-
tween the “real” extensions, ie. E = f(E), whereas the
constraints of a constrained extension correspond to
the deductive closure of the supports and the asserted
formulas. Thus, we can map assertional extensions
onto constrained extensions only modulo equivalent
sets of supports.

However, since constrained default logic sticks
to first order formulas it does not run into the
“floating conclusions” problem [2] that arises when-
ever we reason skeptically by intersecting sev-
eral extensions. Take the assertional default the-
ory

({
:¬B
A

, :¬A
B

}
, {⟨A → C, ∅⟩, ⟨B → C, ∅⟩}

)
that

has two extensions: T̂h({⟨A, {¬B,A}⟩, ⟨C, {¬B,A}⟩})

and T̂h({⟨B, {¬A,B}⟩, ⟨C, {¬A,B}⟩}). Reasoning
skeptically, we cannot draw any conclusion about
C. Although the asserted formula C is in
both extensions the corresponding supports differ
and the assertions themselves do not belong to
the intersection. The constrained extensions of
the above default rules and the axioms A →

3Let f(ξ) be the (asserted) formula and s(ξ) the label

(support) of an assertion ξ: if ξ1, . . . , ξn ∈ T̂h(S) and

f(ξ1), . . . , f(ξn) ⊢ α then ⟨α,∪n
i=1s(ξi)⟩ ∈ T̂h(S).



C,B → C are: (Th({A,C}), Th({A,C,¬B})) and
(Th({B,C}), Th({B,C,¬A})). Intersect-
ing both yields (Th({A ∨B,C}), Th({C,¬(A ↔ B)}))
that provides us with the skeptical theorem C.

Using assertions we cannot apply any deduction to
the supports apart from considering them when check-
ing consistency. But encoding the underlying consis-
tency assumptions as a context guiding our beliefs, we
have the whole deductive machinery at hand.

In view of the above results, we can make use of
the central role of constrained default logic and ob-
tain as corollaries the corresponding relationships be-
tween cumulative and J–default logic on one side and
classical and justified default logic on the other.

To conclude, let us observe that constrained de-
fault logic is closer to cumulative default logic than to
 Lukaszewicz’ variant. Although  Lukaszewicz also at-
taches constraints to extension, he employs a weaker
consistency check. Similar to classical default logic,
justifications need only to be separately consistent
with an extension at hand. In particular, this is mir-
rored by the notion of commitment since assertional
and constrained extensions commit to their assump-
tions, whereas classical and justified extensions do not.
Since additionally every classical extension is also a
justified extension (cf. [4]),  Lukaszewicz’ variant seems
to be closer to classical default logic than to its con-
strained descendents. However, constrained default
logic differs from its constrained relatives in employing
a deductively closed set of constraints. With it, it does
neither discard inconsistencies among the constraints
nor run into the “floating conclusions” problem.

4 Nonmonotonic Lemmata

Aside its theoretical quality, cumulativity is of great
practical importance. This is, because a cumulative
consequence operator allows for the use of lemmata
needed for reducing computational efforts.

In [5], the failure of default logic for cumulativity
was revealed by the default theory({

: A

A
,
A ∨B : ¬A

¬A

}
, ∅
)

that has one classical extension: Th({A}). Adding the
conclusion A∨B to the facts yields the default theory({

:A
A

, A∨B :¬A
¬A

}
, {A ∨B}

)
which has now two classi-

cal extensions: Th({A}) and Th({¬A,B}). Regardless
of whether or not we employ a skeptical or a credu-
lous notion of theory formation — in both cases we
change the theory under consideration. In contrary,
cumulative default logic allows to derive the asser-
tions ⟨A, {A}⟩ and ⟨A ∨B, {A}⟩. Adding the assertion
⟨A ∨B, {A}⟩ to the premises yields the assertional

default theory
({

:A
A

, A∨B :¬A
¬A

}
, {⟨A ∨B, {A}⟩}

)
that

has still the same assertional extension.

As shown in [1, 8], it is necessary to be aware of a
conclusion’s underlying assumptions if we want to pre-
serve cumulativity. But since constrained default logic
sticks to first order formulas the question arises how
to represent those assumptions. Inspired by default
logic’s natural distinction between facts and defaults,
we view nonmonotonic lemmata as abbreviations for
the corresponding default inferences. Thus, it is nat-
ural to add them as default rules. We take a non-
monotonic theorem, one of its minimal default proofs
and construct the corresponding lemma default rule.4

Definition 4.1 Let (E,C ) be a constrained extension
of (D,W ). A default proof Dℓ of ℓ in (E,C ) is a
sequence ⟨D1, . . . , Dk⟩ of sets of default rules where

Di ⊆ GD
(E,C)
D (1 ≤ i ≤ k) and ∪k

i=1Di is a minimal

set of default rules such that 5

1. W ⊢ p(D1) 2.W ∪ c(Di) ⊢ p(Di+1)

3. W ∪ c(Dk) ⊢ ℓ

Then, a conclusion’s lemma default rule is defined as
follows.6

Definition 4.2 Let (E,C ) be a constrained extension
of (D,W ). Let ℓ ∈ E and Dℓ be a default proof of ℓ
in (E,C ). We define a lemma default rule δℓ for ℓ as

δℓ :=
:
∧

δ∈Dℓ
j(δ) ∧

∧
δ∈Dℓ

c(δ)

ℓ

With it, we guarantee that adding a conclusion’s
lemma default rule does neither alter any extension
nor produce any new ones.

Theorem 4.1 Let (E′, C′) be a constrained exten-
sion of (D,W ) and let δℓ be a lemma default rule
for ℓ ∈ E′. Then, (E,C ) is a constrained exten-
sion of (D,W ) iff (E,C ) is a constrained extension
of (D ∪ {δℓ},W ).

Thus, the approach provides a simple solution for
generating and using nonmonotonic lemmata. Also,
it clarifies the notion of nonmonotonic lemmata by
distinguishing between theirselves and their original
theorems. Let us look again at the canonical cumu-
lativity example. Adding the sentence A ∨ B as a
nonmonotonic lemma amounts to the addition of the
lemma default rule :A

A∨B
. We obtain the default the-

ory
({

:A
A

, A∨B :¬A
¬A

, :A
A∨B

}
, ∅
)

that has still the same

constrained extension: (Th(A), Th(A)).
The major difference between the addition of as-

sertions to the premises and the addition of lemma
default rules to the default rules is that once
we have added an assertion to the premises it is
not retractable any more whenever an inconsistency

4GD
(E ,C )
D = {α : β

γ
| α ∈ E, C ∪ {β} ∪ {γ} ̸⊢ ⊥})

5j(δ) is the justification and c(δ) the consequent of δ.
6We define, δ ∈ ⟨D1, . . . , Dk⟩ iff δ ∈ ∪k

i=1Di.



arises. Just take the above assertional default the-
ory

({
:A
A

, A∨B :¬A
¬A

}
, {⟨A ∨B, {A}⟩}

)
obtained af-

ter lemmatizing the assertion ⟨A ∨B, {A}⟩. Now,
adding ⟨¬A, ∅⟩ yields a hard contradiction since
s(⟨A ∨B, {A}⟩) ∪ f(⟨¬A, ∅⟩) ⊢ ⊥. Thus, the smooth
default properties of the original default conclusion
have been lost. However, adding ¬A in the presence
of the lemma default rule :A

A∨B
just blocks the default

rule and does not harm the reasoning process itself.

Hence, the addition of assertions [1] is stronger than
that of lemma default rules. All extensions inconsis-
tent with the asserted formula or even its support are
eliminated after its addition. On the contrary, lemma
default rules preserve all extensions and therefore their
purpose is more an abbreviation of default proofs in
order to improve the computational efforts. Also, they
admit credulous as well as skeptical lemmata.

What has been achieved? One of the original pos-
tulates of nonmonotonic formalisms was to “jump to
conclusions” in the absence of information. But since
the computation of nonmonotonic conclusions does
not only involve deduction but also expensive consis-
tency checks, the need to incorporate lemmata is even
greater in nonmonotonic theorem proving than in clas-
sical theorem proving. Hence, nonmonotonic lemmata
can be seen as a step in this direction. This becomes
obvious by means of Theorem 2.1: it is possible to
jump to a conclusion ℓ normally derived in layer Ek

by skipping all previous layers E0 to Ek−1 and solely
applying the (prerequisite–free) lemma default rule.

Let us look at a simplified default proof of a non-
monotonic theorem ℓ consisting of a chain of de-
fault rules ⟨{α0 : β0

γ0
}, . . . , {αi : βi

γi
}, . . . , {αn : βn

ℓ
}⟩ such

that W ⊢ α0, W ∪ {γi} ⊢ αi+1 (0 ≤ i < n) and
W ∪ {γn−1} ⊢ ℓ. Normally, proving ℓ from scratch
requires n proofs and n consistency checks. Each con-
sistency check involves the justification as well as the
consequent of each default rule. On the contrary, ap-
plying the corresponding lemma default rule requires
no proofs since lemma default rules are prerequisite–
free. The effort of checking consistency reduces to
one consistency check. But although the justification
of the lemma default rule contains all justifications
and consequents of previously applied default rules we
have the advantage that their joint consistency has al-
ready been proven.

Notably, the approach taken by lemma default rules
carries over to classical default logic. We only have
to eliminate the requirement of joint consistency in
Definition 4.2. Thus, given a default theory (D,W )
and one of its classical extensions E we construct the
lemma default rule ζℓ for a ℓ ∈ E as follows: Given
one of its default proofs Dℓ = ⟨D1, . . . , Dk⟩, where
∪k

i=1Di = {δ1, . . . , δn}, but now in (E,E) wrt (D,W )
we define

ζℓ :=
: j(δ1), . . . , j(δn)

ℓ
.

Unfortunately, we obtain a non–
singular (prerequisite–free) default rule. This is due
to the fact that we have to preserve the consistency
of each justification separately. Observe also that in
the above definition no reference is made to the conse-
quents of any default rules. However, it is now possible
to enrich default logic such that it admits the gener-
ation of nonmonotonic lemmata without altering the
logical formalism as such.

5 Conclusion

We have presented a constrained variant of default lo-
gic that commits to its assumptions and allows for
nonmonotonic lemmata. Constrained default logic
possesses a clear correspondence to the focused model
semantics [8]. Since the approach sticks to first or-
der formulas, we can use conventional theorem provers
and do not run into the “floating conclusions” prob-
lem. We have exploited constrained default logic’s
central role in order to establish the relationships be-
tween classical [7], justified [4], assertional [1], con-
strained and extensions of J–default logic [3].

The approach taken by lemma default rules enables
us to separate the notions of commitment and “prac-
tical cumulativity”, so that it became adaptable to
classical default logic. By using lemma default rules
we have escaped from assertions and the propagation
of their supports. We merely look at the default proofs
and hence regard the assumptions underlying a con-
clusion only by need. Moreover, lemma default rules
are retractable and later inconsistencies are avoided.
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