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Abstract. Through minimal-model semantics, three-valued logics provide an in-
teresting formalism for capturing reasoning from inconsistent information. How-
ever, the resulting paraconsistent logics lack so far a uniform implementation
platform. Here, we address this and specifically provide a translation of two such
paraconsistent logics into the language of quantified Boolean formulas (QBFs).
These formulas can then be evaluated by off-the-shelf QBF solvers. In this way,
we benefit from the following advantages: First, our approach allows us to har-
ness the performance of existing QBF solvers. Second, different paraconsistent
logics can be compared with in a unified setting via the translations used. We
alternatively provide a translation of these two paraconsistent logics into quanti-
fied Boolean formulas representing circumscription, the well-known system for
logical minimization. All this forms a case study inasmuch as the other exist-
ing minimization-based many-valued paraconsistent logics can be dealt with in a
similar fashion.

1 Introduction

The capability of reasoning in the presence of inconsistencies constitutes a major chal-
lenge for any intelligent system because in practical settings it is common to have con-
tradictory information. In fact, despite its many appealing features for knowledge repre-
sentation and reasoning, classical logic falls in a trap: A single contradiction may wreck
an entire reasoning system, since it may allow for deriving any proposition. This com-
portment is due to the fact that a contradiction denies any classical two-valued model,
since a proposition must be either true or false. We thus aim at providing formal reason-
ing systems satisfying theprinciple of paraconsistency: {α,¬α} 6` β for someα, β. In
other words, given a contradictory set of premises, this should not necessarily lead to
concluding all formulas.
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The idea underlying the approaches elaborated upon in this paper is to counter-
balance the effect of contradictions by providing a third truth value that accounts
for contradictory propositions. As already put forth in [27], this provides us with
inconsistency-tolerating three-valued models. However, this approach turns out to be
rather weak in that it invalidates certain classical inferences, even if there is no con-
tradiction. Intuitively, this is because there are too many three-valued models, in par-
ticular those assigning the inconsistency-tolerating truth-value to propositions that are
unaffected by contradictions. For instance, the three-valued logicLP [27] denies infer-
ence by disjunctive syllogism. That is,β is not derivable from the (consistent!) premise
(α ∨ β) ∧ ¬α. As pointed out in [15], this deficiency applies also to the closely related
paraconsistent systemsJ3 [17], L [22], andRP [19]. As a consequence, none of the
aforementioned systems coincides with classical logic when reasoning from consistent
premises.

The pioneering work to overcome this deficiency was done by Priest in [28]. The
key idea is to restrict the set of three-valued models by taking advantage of some pref-
erence criterion that aims at “minimizing inconsistency”. In this way, a “maximum”
of a classically inconsistent knowledge base should be recovered. While minimization
is understood in Priest’s seminal work [28], proposing his logicLPm, as preferring
three-valued models as close as possible to two-valued interpretations, the overall ap-
proach leaves room for different preference criteria. Another criterion is put forth in [9]
by giving more importance to the given knowledge base. In this approach, one prefers
three-valued models that are as similar as possible to two-valued models of the knowl-
edge base in the sense that those models assigntrue to as many items of the knowledge
base as possible. Furthermore, [21] considers cardinality-based versions of the last two
preference criteria. Even more criteria are conceivable by distinguishing symbols hav-
ing different importance.

However, up to know, all these advanced approaches lack effectively implementable
inference methods. While Priest definesLPm in purely semantical terms, a Hilbert cal-
culus comprising 26 axiom schemata is proposed by Besnard and Schaub [9] for ax-
iomatizing their approach. Also, inference is not at issue in [21]. This shortcoming is
addressed in this paper. To wit, we develop translations for the three-valued paracon-
sistent logics defined in [28] and [9]. More precisely, our translations allow for map-
ping the respective entailment problems into the satisfiability problem forquantified
Boolean formulas(QBFs). These formulas can then be evaluated by off-the-shelf QBF
solvers. The motivation of this particular approach to implementing these logics (as
opposed to more direct calculizations) stems from its unique uniformity, even beyond
the framework of three-valued logics. In fact, we have already developed in a compan-
ion paper [11] similar translations for a rather different family of paraconsistent logics,
calledsigned systems[10]; a forthcoming paper deals with approaches to paraconsis-
tency based on the selection of maximally consistent subsets [24, 8].

Our general methodology offers several benefits: First, we obtain uniform axiom-
atizations of rather different approaches. This allows us to compare different paracon-
sistent logics in a unified setting. Second, once such an axiomatization is available,
existing QBF solvers can be used for implementation in a uniform manner. The avail-
ability of efficient QBF solvers, like the systems described in [12, 20, 6], makes such a



rapid prototyping approach practicably applicable. Third, these axiomatizations provide
a direct access to the complexity of the original approach. Conversely, we can exploit
existing complexity results for ensuring the adequateness of our axiomatizations. Fi-
nally, we remark that this approach allows us, in some sense, to express paraconsistent
reasoning in (higher order) classical propositional logic and so to harness classical rea-
soning mechanisms from (a conservative extension of) propositional logic.

2 Paraconsistent Three-Valued Logics

We deal with a languageL over a setP of propositional variables and use the logical
symbols>,⊥, ¬, ∨, ∧, and→ to construct formulas in the standard way. Formulas are
denoted by Greek lower-case letters (possibly with subscripts).

An interpretation is a functionv : P → {t, f, o} extending tov : L → {t, f, o}
according to the truth tables below.
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We sometimes leave an interpretationv implicit and writep : x instead ofv(p) = x,
for x ∈ {t, f, o}. An interpretationv is said to betwo-valuedwheneverv(p) ∈ {t, f}
for all p ∈ P; otherwise, it isthree-valued. A three-valued modelof a formulaα is
an interpretation that assigns eithert or o to α. Modelhood extends to sets of formulas
in the standard way. As usual, given a setS of formulas and a formulaφ, we define
S |= φ if each model ofS is a model ofφ. Whenever necessary, we write|=3 and|=2

to distinguish three-valued from two-valued entailment.
Note that the truth value ofα → β differs from that of¬α ∨ β only in the case of

v = {α : o, β : f} resulting inv(α → β) = f andv(¬α ∨ β) = o. This difference is
prompted by the fact thatt ando indicate modelhood, which motivates the assignment
of the same truth values toα → β no matter whether we haveα : t or α : o. This has
actually to do with the difference betweenmodus ponensanddisjunctive syllogism: The
latter yieldsβ fromα ∧ ¬α ∧ ¬β becauseα ∨ β follows fromα. The overall inference
seems wrong because in the presence ofα ∧ ¬α, α ∨ β is satisfied (byα : o) with no
need forβ to be t. As pointed out in [21], one may actually view→ as “the ‘right’
generalization of classical implication because→ is the internal implication connec-
tive [5] for the defined inference relation in the sense that a deduction (meta)theorem
holds for it:Σ ∧ α |=3 β iff Σ |=3 α→ β.” On the other hand, a formula composed of
the connectives¬,∨, and∧ can never be inconsistent; that is, each such formula has at
least one three-valued model [13]. Finally, we mention that the entailment problem for
|=3 is coNP-complete, no matter whether→ is included or not [26, 13, 15].

As mentioned in the introductory section, Priest’s logicLPm [28] was conceived
to overcome the failure of disjunctive syllogism inLP [27]. LP amounts to the three-
valued logic obtained by restrictingL to connectives¬,∨ and∧ (and definingα → β
as¬α∨β). InLPm modelhood is then limited to models containing a minimal number



of propositional variablesbeing assignedo. This allows for drawing“all classical in-
ferences except where inconsistency makes them doubtful anyway”[28]. Formally, the
consequence relation ofLPm can be defined as follows. For three-valued interpretations
v, w, define the partial ordering

v ≤m w iff {p ∈ P | v(p) = o} ⊆ {p ∈ P | w(p) = o} .

Then,T |=m φ iff every three-valued model ofT that is minimal with respect to≤m is
a three-valued model ofφ.

Unlike this, the approach of Besnard and Schaub [9] prefers three-valued models
that assigntrue to as many items of the knowledge baseT as possible: For three-valued
interpretationsv, w, define the partial ordering

v ≤n w iff {φ ∈ T | v(φ) = o} ⊆ {φ ∈ T | w(φ) = o} .

Then,T |=n φ iff each three-valued model ofT which is≤n-minimal is a three-valued
model ofφ.

The major difference between the last two approaches is that the restriction of mod-
elhood inLPm focuses on models as close as possible to two-valuedinterpretations,
while the one in the last approach aims at models next to two-valuedmodelsof the
considered premises. According to [9], the effects of making the formula select its pre-
ferred models can be seen by looking atT = {p,¬p, (¬p∨ q)}: WhileLPm yields two
≤m-preferred models,{p : o, q : t} and{p : o, q : f}, from which one obtainsp ∧ ¬p,
the second approach yieldsq as additional conclusion. In fact,{p : o, q : t} is the only
≤n-preferred model of the premises{p,¬p, (¬p∨q)}; it assignst to (¬p∨q), while this
premise is attributedo by the second≤m-preferred model{p : o, q : f}; hence the latter
is not≤n-preferred. So, whileT 6|=m q andT |=n q, we note thatT ∪{(p∨¬q)} 6|=l q
for l = m,n. On the other hand,|=n is clearly more syntax-dependent than|=m since
the items within the knowledge base are used for distinguishing≤n-preferred models.

In fact, both inference relations|=m and|=n amount to their classical (two-valued)
counterpart, whenever the set of premises is classically consistent. Also, it is shown
in [15] that deciding entailment for|=m and|=n isΠp

2 -complete, no matter whether→
is included or not. A logical analysis of both relations can be found in [21] and in the
original literature [28, 9].

3 Axiomatizing Three-Valued Paraconsistent Logics

In what follows, we provide axiomatizations of the three-valued paraconsistent logics
introduced in the last section in terms of QBFs.

Quantified Boolean formulas.As a conservative extension of classical propositional
logic, quantified Boolean formulas(QBFs) generalize ordinary propositional formulas
by the admission of quantifications over propositional variables (QBFs are denoted by
Greek upper-case letters). Informally, a QBF of form∀p∃q Φ means that for all truth
assignments ofp there is a truth assignment ofq such thatΦ is true. Given thatK is
the language of QBFs over a setP of propositional variables, the semantical meaning



of QBFs can be defined as follows: An interpretation is a functionv : P → {t, f}
extending tôv : K → {t, f} according to the truth tables in (1) and the following two
conditions, for everyΦ ∈ K,

v̂(∀pΦ) = v̂(Φ[p/>] ∧ Φ[p/⊥]) and v̂(∃pΦ) = v̂(Φ[p/>] ∨ Φ[p/⊥]) .

We writeΦ[p1/φ1, . . . , pn/φn] to denote the result of uniformly substituting each free
occurrence4 of a variablepi in Φ by a formulaφi, for 1 ≤ i ≤ n. If Φ contains no
free variable occurrences, thenΦ is closed. Closed QBFs are either true under every
interpretation or false under every interpretation. Hence, for closed QBFs there is no
need to refer to particular interpretations.

In the sequel, we use the following abbreviations: The set of all atoms occurring
in a formulaφ is denoted byvar(φ). Similarly, for a setS of formulas,var(S) =⋃

φ∈S var(φ). For a setP = {p1, . . . , pn} of propositional variables and a quantifier
Q ∈ {∀,∃}, we letQP Φ stand for the formulaQp1Qp2 · · ·Qpn Φ. Furthermore, for
indexed setsS = {φ1, . . . , φn} andT = {ψ1, . . . , ψn} of formulas,S ≤ T abbreviates∧n

i=1(φi → ψi), andS < T stands forS ≤ T ∧ ¬(T ≤ S).

Encoding three-valued logic.We start with encoding the truth evaluation of the three-
valued logic given in Section 2 by means of classical propositional logic.

To this end, we introduce for each atomp a globally new atomp′ and defineP ′ =
{p′ | p ∈ P} for a given alphabetP.

Let v be a three-valued interpretation over alphabetP. We define theassociated
two-valued interpretationv2 by setting

v2(p) = v2(p′) = t if v(p) = t;
v2(p) = v2(p′) = f if v(p) = f ;

v2(p) = f andv2(p′) = t if v(p) = o,

for any p ∈ P and anyp′ ∈ P ′. Conversely, for a given two-valued interpretationv
over alphabetP ∪ P ′ such thatv(p → p′) = t, we define theassociated three-valued
interpretationv3 by setting

v3(p) =
{
v(p) if v(p) = v(p′)
o if v(p) = f andv(p′) = t

for anyp ∈ P.
Moreover, we need the following parameterized translation:

Definition 1. For p ∈ P andφ, ψ ∈ L, we define

1. (a) τ(p, t) = p;
(b) τ(p, f) = ¬p′;
(c) τ(p, o) = ¬p ∧ p′;

2. (a) τ(¬φ, t) = τ(φ, f);

4 An occurrence of a propositional variablep in a QBFΦ is freeif it does not appear in the scope
of a quantifierQp (Q ∈ {∀,∃}).



(b) τ(¬φ, f) = τ(φ, t);
(c) τ(¬φ, o) = τ(φ, o);

3. (a) τ(φ ∧ ψ, t) = τ(φ, t) ∧ τ(ψ, t);
(b) τ(φ ∧ ψ, f) = τ(φ, f) ∨ τ(ψ, f);
(c) τ(φ ∧ ψ, o) = ¬τ(φ ∧ ψ, f) ∧ ¬τ(φ ∧ ψ, t);

4. (a) τ(φ ∨ ψ, t) = τ(φ, t) ∨ τ(ψ, t);
(b) τ(φ ∨ ψ, f) = τ(φ, f) ∧ τ(ψ, f);
(c) τ(φ ∨ ψ, o) = ¬τ(φ ∨ ψ, t) ∧ ¬τ(φ ∨ ψ, f);

5. (a) τ(φ→ ψ, t) = τ(φ, f) ∨ τ(ψ, t);
(b) τ(φ→ ψ, f) = ¬τ(φ, f) ∧ τ(ψ, f);
(c) τ(φ→ ψ, o) = ¬τ(φ, f) ∧ τ(ψ, o).

For computing the three-valued models of a set of formulasT = {φ1, . . . , φn}, we
use

∧
φ∈T ¬τ(φ, f) and abbreviate the latter by¬τ(T, f).5

For example, considerT = {p,¬p, (¬p ∨ q)}. We get:

¬τ(T, f) = ¬τ(p, f) ∧ ¬τ(¬p, f) ∧ ¬τ((¬p ∨ q), f)
= ¬¬p′ ∧ ¬τ(p, t) ∧ ¬(τ(¬p, f) ∧ τ(q, f))
= p′ ∧ ¬p ∧ ¬(τ(p, t) ∧ ¬q′)
= p′ ∧ ¬p ∧ (¬p ∨ ¬¬q′)
= p′ ∧ ¬p

The resulting formula possesses four two-valued models, all of which assignp : f and
p′ : t while varying onq andq′. In order to establish a correspondence among the four
two-models of¬τ(T, f) and the three three-valued models ofT , assigningo to p and
varying onq, the relation between the two alphabetsP andP ′ must be fixed. In fact,
this is accomplished by addingr → r′ for everyr ∈ P.

In this way, we obtain the following result.

Theorem 1. Let φ be a formula withP = var(φ), let P ′ = {p′ | p ∈ P}, and let
x ∈ {t, f, o}.

Then, the following conditions hold:

1. For any three-valued interpretationv overP, if v(φ) = x, thenv2((P ≤ P ′) ∧
τ(φ, x)) = t, wherev2 is the associated two-valued interpretation ofv.

2. For any two-valued interpretationv overP ∪ P ′, if v((P ≤ P ′) ∧ τ(φ, x)) = t,
thenv3(φ) = x, wherev3 is the associated three-valued interpretation ofv.

Since the formulaτ(φ, t) ∨ τ(φ, f) ∨ τ(φ, o) is clearly a tautology of classical logic,
we immediately get the following relation between the three-valued models of a theory
and the two-valued models of the corresponding encoding:

Corollary 1. LetT be a finite set of formulas withP = var(T ) and letP ′ = {p′ | p ∈
P}.

Then, there is a one-to-one correspondence between the three-valued models ofT
and the two-valued models of the formula

(P ≤ P ′) ∧ ¬τ(T, f). (2)

5 Note that generally
∧

φ∈T τ(φ, x) 6= τ(
∧

φ∈T φ, x).



In particular, the three-valued model ofT corresponding to a two-valued modelv
of (2) is given by the associated three-valued interpretationv3 of v.

For illustration, considerT = {p,¬p, (¬p ∨ q)} along with

({p, q} ≤ {p′, q′}) ∧ ¬τ(T, f) = (p→ p′) ∧ (q → q′) ∧ (p′ ∧ ¬p) .

Unlike above, we obtain now three two-valued models,{p : f, p′ : t, q : t, q′ : t},
{p : f, p′ : t, q : f, q′ : t}, and{p : f, p′ : t, q : f, q′ : f}, being in a one-to-one
correspondence with the three three-valued models,{p : o, q : t}, {p : o, q : o}, and
{p : o, q : f}, of T , respectively.

The role of the implications{p, q} ≤ {p′, q′} can be further illustrated by looking
at the following translation:

τ(T, t) = τ(p, t) ∧ τ(¬p, t) ∧ τ((¬p ∨ q), t)
= p ∧ τ(p, f) ∧ (τ(¬p, t) ∨ τ(q, t))
= p ∧ ¬p′ ∧ (τ(p, f) ∨ q)
= p ∧ ¬p′ ∧ (¬p′ ∨ q)
= p ∧ ¬p′

While the last formula admits four two-valued models, the formula({p, q} ≤ {p′, q′})∧
τ(T, t) has no two-valued model, which corresponds to the fact thatT has no three-
valued model assigningt to all members ofT .

Consequently, since there are no three-valued models assigningt “to” T , the for-
mulas¬τ(T, f) andτ(T, o) must be equivalent; this can be verified as follows:

τ(T, o) = ¬τ(T, f) ∧ ¬τ(T, t)
= ¬

(
τ(p, f) ∨ τ(¬p, f) ∨ τ(¬p ∨ q, f)

)
∧ ¬(p ∧ ¬p′)

= ¬
(
¬p′ ∨ p ∨ (τ(¬p, f) ∧ τ(q, f))

)
∧ (¬p ∨ p′)

= ¬
(
¬p′ ∨ p ∨ (p ∧ ¬q′)

)
∧ (¬p ∨ p′)

= p′ ∧ ¬p ∧ (¬p ∨ q′) ∧ (¬p ∨ p′)
= p′ ∧ ¬p

Encoding three-valued paraconsistent logics.To begin with, it is instructive to see that
the previous elaboration already allows for a straightforward encoding of three-valued
entailment, and, in particular, inference in the logicLP [27]:

Definition 2. LetT be a set formulas andφ a formula.
For P = var(T ∪ {φ}), we define

T3(T, φ) = ∀P, P ′
((

(P ≤ P ′) ∧ ¬τ(T, f)
)
→ ¬τ(φ, f)

)
.

Then, we have the following result.

Theorem 2. T |=3 φ iff T3(T, φ) is true.



To be precise, we obtain (original) inference inLP [27] when restrictingT andφ to
formulas whose connectives are among¬, ∧, and∨ only.

Let us now turn to Priest’s logicLPm [28]. For this, we must, roughly speaking,
enhance the encoding ofLP in order to account for the principle of “minimizing incon-
sistency” used inLPm. This is accomplished in the next definition by means of the QBF
namedMinm(T ).

Definition 3. LetT be a set formulas withP = var(T ), V an indexed set of globally
new atoms corresponding toP , andφ a formula. Moreover, letOP = {τ(p, o) | p ∈ P}
andOV = {τ(v, o) | v ∈ V }.

We define

Minm(T ) = (P ≤ P ′) ∧ ¬∃V, V ′
(
(OV < OP ) ∧ (V ≤ V ′) ∧ ¬τ(T [P/V ], f)

)
and, forR = P ∪ var(φ),

Tm(T, φ) = ∀R,R′
((

Minm(T ) ∧ ¬τ(T, f)
)
→ ¬τ(φ, f)

)
.

For illustration, let us return toT = {p,¬p, (¬p ∨ q)}. We haveP = {p, q} and
correspondinglyV = {u, v}. We start our analysis on the subformula

(OV < OP ) ∧ (V ≤ V ′) ∧ ¬τ(T [P/V ], f), (3)

having

OV < OP = (τ(u, o) → τ(p, o)) ∧ (τ(v, o) → τ(q, o)) ∧
¬

(
(τ(p, o) → τ(u, o)) ∧ (τ(q, o) → τ(v, o))

)
.

From the definition of≤ and<, one can see that(OV < OP )∧ (V ≤ V ′) is true under
a two-valued interpretationv iff

– for any variable fromV assignedo under the associated interpretationv3, the cor-
responding variable fromP is also assignedo underv3; and

– there exists at least one variable fromV which is not assignedo underv3, although
the corresponding variable fromP is assignedo underv3.

Additionally, v has to be a two-valued model of¬τ(f, T [P/V ]). By Corollary 1,v3
then has to be a three-valued model ofT [P/V ]. From our previous discussion and by
renaming, we know thatT [P/V ] possesses three three-valued models, viz.{u : o, v :
t}, {u : o, v : o}, and{u : o, v : f}. In the case of model{u : o, v : o}, we cannot find
an assignment top, q which has more variables being assignedo. The other two cases
extend to two two-valued models,v′ andv′′, of (3) with their associated three-valued
interpretationsv′3 andv′′3 given by{p : o, q : o, u : o, v : t} and{p : o, q : o, u : o, v :
f}, respectively. Now, one can check that the only three-valued interpretationw such
thatMinm(T ) is false underw2 is {p : o, q : o}. Recalling the three-valued models of
T , we have that the two-valued models ofMinm(T )∧¬τ(T, f) yield two three-valued
models,{p : o, q : t} and{p : o, q : f}.

In general, we have the following result.



Theorem 3. T |=m φ iff Tm(T, φ) is true.

To be precise, we obtain (original) inference inLPm [28] when restrictingT andφ to
formulas whose connectives are among¬, ∧, and∨ only.

Analogously, we can now give an axiomatization of Besnard and Schaub’s ap-
proach [9].

Definition 4. LetT be a set formulas withP = var(T ), Q an indexed set of globally
new atoms corresponding toP , andφ a formula. Moreover, letOT = {τ(φ, o) | φ ∈ T}
andOT [P/Q] = {τ(φ, o) | φ ∈ T [P/Q]}.

We define

Minn(T ) = (P ≤ P ′) ∧ ¬∃Q,Q′
(
(OT [P/Q] < OT ) ∧ (Q ≤ Q′)

)
and, forR = P ∪ var(φ),

Tn(T, φ) = ∀R,R′
((

Minn(T ) ∧ ¬τ(T, f)
)
→ ¬τ(φ, f)

)
.

The salient difference between the previous definition and the one given in Defini-
tion 3 manifests itself in the setsOP , OV andOT , OT [P/Q], respectively. Note that
the latter take into account the original set of premisesT so that the translation formula
¬τ(T [P/V ], f) can be dropped.

Theorem 4. T |=n φ iff Tn(T, φ) is true.

Alternative Encodings.In view of the discussion given below, we may alternatively
capture both approaches as follows.

To begin with, concerningLPm, we introduce additional new variablesS = {sp |
p ∈ var(T )} andS′ = {s′p | p ∈ var(T )}, and define

Minm′(T ) = (P ≤ P ′) ∧ (S ≤ OP ) ∧

¬∃S′, Q,Q′
(
(S′ < S) ∧ (Q ≤ Q′) ∧ (S′ ≤ OQ) ∧ ¬τ(T [P/Q], f)

)
and

Tm′(T, φ) = ∀S, P, P ′
((

Minm′(T ) ∧ ¬τ(T, f)
)
→ ¬τ(φ, f)

)
.

For Besnard and Schaub’s approach [9], on the other hand, we similarly introduce ad-
ditional new variables according to the elements ofT , viz. S = {sφ | φ ∈ T} and
S′ = {s′φ | φ ∈ T}, and define

Minn′(T ) = (P ≤ P ′) ∧ (S ≤ OP ) ∧

¬∃S′, Q,Q′
(
(S′ < S) ∧ (Q ≤ Q′) ∧ (S′ ≤ OQ)

)
and

Tn′(T, φ) = ∀S, P, P ′
((

Minn′(T ) ∧ ¬τ(T, f)
)
→ ¬τ(φ, f)

)
.

In analogy to Theorems 3 and 4, we then obtain the following result:

Theorem 5. T |=ν φ iff Tν′(T, φ) is true, for bothν ∈ {m,n}.



Employing Circumscription.In order to shed some more light on the two paraconsistent
logics discussed above, let us slightly reformulate their minimization axiom in terms
of circumscription [25]: LetT be a propositional theory and(P,Q,Z) a partition of
var(T ). Assume two (two-valued) modelsv, v′ of T , and definev ≤P ;Z v′ iff the
following conditions are satisfied:

1. {q ∈ Q | v(q) = t} = {q ∈ Q | v′(q) = t};
2. {p ∈ P | v(p) = t} ⊆ {p ∈ P | v′(p) = t}.

A model v of T is called(P ;Z)-minimal if no modelv′ of T with v′ 6= v satisfies
v′ ≤P ;Z v.

Informally, the partition(P,Q,Z) can be interpreted as follows: The setP contains
the variables to be minimized,Z are those variables that can vary in minimizingP , and
the remaining variablesQ are fixed in minimizingP .

Let T be a theory and(P,Q,Z) a partition ofvar(T ), whereP = {p1, . . . , pn}
andZ = {z1, . . . , zm}. The set of(P ;Z)-minimal models ofT is given by the truth
assignments to the QBF

Circ(T ;P ;Z) = T ∧ ¬∃P̃ , Z̃
(
(P̃ < P ) ∧ T [P/P̃ , Z/Z̃]

)
,

whereP̃ = {p̃1, . . . , p̃n} andZ̃ = {z̃1, . . . , z̃m} are sets of new variables correspond-
ing toP andZ, respectively.

Then, forP = var(T ), we have thatMinm′(T ) ∧ ¬τ(T, f) can be written as

Cm(T ) = Circ((P ≤ P ′) ∧ (S ≤ {τ(p, o) | p ∈ P}) ∧ ¬τ(T, f);S;P ∪ P ′),

whereS = {sp | p ∈ var(T )}, and, analogously,Minn′(T ) can be written as

Cn(T ) = Circ((P ≤ P ′) ∧ (S ≤ {τ(φ, o) | φ ∈ T});S;P ∪ P ′)

whereS = {sφ | φ ∈ T}.
Summarizing, we have6

1. T |=m φ iff
(
Cm(T ) ∧ ¬τ(T, f)

)
→ ¬τ(φ, f) is true;

2. T |=n φ iff
(
Cn(T ) ∧ ¬τ(T, f)

)
→ ¬τ(φ, f) is true.

This demonstrates how the principle of circumscription can be exploited for character-
izing the minimization process in the two considered paraconsistent logics.

4 Related work

A whole variety of approaches uses lattices for dealing with inconsistency, e.g., [1,
7, 29]. For instance, [1, 2] describes a system based on four-valued logic that allows
for constraining “the most consistent” models in the meta-level by a user-given set of
propositions taking classical truth-values only. In fact, in [3] the preference relation
≤m is generalized to four-valued logics, giving rise to two distinct orderings: Given
two four-valued interpretations over truth values{t, f, o, o′}7, define

6 In fact,(Cm(T ) ∧ ¬τ(T, f)) → ¬τ(φ, f) is true iff Cm(T ) → ¬τ(φ, f) is true.
7 In a four-valued setting,o, o′ are usually denoted by⊥,>.



– v ≤1 w iff {p ∈ P | v(p) = o} ⊆ {p ∈ P | w(p) = o}; and
– v ≤2 w iff {p ∈ P | v(p) ∈ {o, o′}} ⊆ {p ∈ P | w(p) ∈ {o, o′}}.

As with |=m, the models minimal with respect to these orderings are then used to define
two distinct four-valued consequence relations. Although we do not detail it here, we
mention that an appropriate encoding of the underlying four-valued logic (similar to the
one given in Definition 1), along with a slightly generalized QBF encoding (similar to
the one given in Definition 3), allows for a straightforward encoding of the two four-
valued consequence relations by means of QBFs. Interestingly, both four-valued para-
consistent logics have recently been implemented in [4] by appeal to special-purpose
circumscription solvers [16]. [14] proposes a translation-based approach to reasoning
in the presence of contradictions that translates a logic into a family of other logics, e.g.,
classical logic into three-valued logics.

Among the existing inference methods for three-valued paraconsistent logics, we
mention the following ones. A resolution-based system close toLP yet with a stronger
disjunction is described in [23]. In fact, there is an indirect way of implementingLPm

because its consequence relation has recently been shown in [15] to be equivalent to a
particular relation within the family of signed systems [10], whose inference can also
be mapped onto QBFs, as shown in [11]. The resulting encoding is, however, of little
interest since it lacks the spirit of “minimizing inconsistency” and thus fails to provide
insight intoLPm; also, it is not extendible with the genuine implication→ or even to
alternative approaches such as [9]. We recall from the introductory section that the latter
approach was originally axiomatized in [9] by means of a Hilbert system comprising
26 axiom schemata.

5 Conclusion

Considering two paraconsistent logics based on a minimization principle applied to a
three-valued logic, we have shown how a translation into the language of quantified
Boolean formulas is possible. The translations obtained clearly fall under the same
umbrella, giving rise to a uniform setting for the axiomatization of such logics. (In
particular, we have provided translations explicitly displaying the connection with cir-
cumscription, the classical proof theory for logical minimization.) Moreover, once such
an axiomatization is available, existing QBF solvers can be used for implementation
without further ado. Having efficient QBF solvers, like the systems described in [12,
20, 6], makes such a rapid prototyping approach practicably applicable. Finally, we re-
mark that what we did allows us, in some sense, to express this kind of paraconsistent
reasoning in (higher order) classical propositional logic and so to harness classical rea-
soning mechanisms from (a conservative extension of) propositional logic.
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