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Abstract. Through minimal-model semantics, three-valued logics provide an in-
teresting formalism for capturing reasoning from inconsistent information. How-
ever, the resulting paraconsistent logics lack so far a uniform implementation
platform. Here, we address this and specifically provide a translation of two such
paraconsistent logics into the language of quantified Boolean formulas (QBFs).
These formulas can then be evaluated by off-the-shelf QBF solvers. In this way,
we benefit from the following advantages: First, our approach allows us to har-
ness the performance of existing QBF solvers. Second, different paraconsistent
logics can be compared with in a unified setting via the translations used. We
alternatively provide a translation of these two paraconsistent logics into quanti-
fied Boolean formulas representing circumscription, the well-known system for
logical minimization. All this forms a case study inasmuch as the other exist-
ing minimization-based many-valued paraconsistent logics can be dealt with in a
similar fashion.

1 Introduction

The capability of reasoning in the presence of inconsistencies constitutes a major chal-
lenge for any intelligent system because in practical settings it is common to have con-
tradictory information. In fact, despite its many appealing features for knowledge repre-
sentation and reasoning, classical logic falls in a trap: A single contradiction may wreck
an entire reasoning system, since it may allow for deriving any proposition. This com-
portment is due to the fact that a contradiction denies any classical two-valued model,
since a proposition must be either true or false. We thus aim at providing formal reason-
ing systems satisfying therinciple of paraconsistency «, —a} t# 8 for someq, 8. In

other words, given a contradictory set of premises, this should not necessarily lead to
concluding all formulas.

* This work was partially supported by the Austrian Science Foundation under grant P15068.
** Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.



The idea underlying the approaches elaborated upon in this paper is to counter-
balance the effect of contradictions by providing a third truth value that accounts
for contradictory propositions. As already put forth in [27], this provides us with
inconsistency-tolerating three-valued models. However, this approach turns out to be
rather weak in that it invalidates certain classical inferences, even if there is no con-
tradiction. Intuitively, this is because there are too many three-valued models, in par-
ticular those assigning the inconsistency-tolerating truth-value to propositions that are
unaffected by contradictions. For instance, the three-valued IoBif27] denies infer-
ence by disjunctive syllogism. That i§,is not derivable from the (consistent!) premise
(a vV B) A —a. As pointed out in [15], this deficiency applies also to the closely related
paraconsistent systergg [17], L [22], and RP [19]. As a consequence, none of the
aforementioned systems coincides with classical logic when reasoning from consistent
premises.

The pioneering work to overcome this deficiency was done by Priest in [28]. The
key idea is to restrict the set of three-valued models by taking advantage of some pref-
erence criterion that aims at “minimizing inconsistency”. In this way, a “maximum”
of a classically inconsistent knowledge base should be recovered. While minimization
is understood in Priest's seminal work [28], proposing his ldgw;,, as preferring
three-valued models as close as possible to two-valued interpretations, the overall ap-
proach leaves room for different preference criteria. Another criterion is put forth in [9]
by giving more importance to the given knowledge base. In this approach, one prefers
three-valued models that are as similar as possible to two-valued models of the knowl-
edge base in the sense that those models assigto as many items of the knowledge
base as possible. Furthermore, [21] considers cardinality-based versions of the last two
preference criteria. Even more criteria are conceivable by distinguishing symbols hav-
ing different importance.

However, up to know, all these advanced approaches lack effectively implementable
inference methods. While Priest defind3,, in purely semantical terms, a Hilbert cal-
culus comprising 26 axiom schemata is proposed by Besnard and Schaub [9] for ax-
iomatizing their approach. Also, inference is not at issue in [21]. This shortcoming is
addressed in this paper. To wit, we develop translations for the three-valued paracon-
sistent logics defined in [28] and [9]. More precisely, our translations allow for map-
ping the respective entailment problems into the satisfiability problengdantified
Boolean formulagQBFs). These formulas can then be evaluated by off-the-shelf QBF
solvers. The motivation of this particular approach to implementing these logics (as
opposed to more direct calculizations) stems from its unique uniformity, even beyond
the framework of three-valued logics. In fact, we have already developed in a compan-
ion paper [11] similar translations for a rather different family of paraconsistent logics,
calledsigned systemd 0]; a forthcoming paper deals with approaches to paraconsis-
tency based on the selection of maximally consistent subsets [24, 8].

Our general methodology offers several benefits: First, we obtain uniform axiom-
atizations of rather different approaches. This allows us to compare different paracon-
sistent logics in a unified setting. Second, once such an axiomatization is available,
existing QBF solvers can be used for implementation in a uniform manner. The avail-
ability of efficient QBF solvers, like the systems described in [12, 20, 6], makes such a



rapid prototyping approach practicably applicable. Third, these axiomatizations provide

a direct access to the complexity of the original approach. Conversely, we can exploit
existing complexity results for ensuring the adequateness of our axiomatizations. Fi-
nally, we remark that this approach allows us, in some sense, to express paraconsistent
reasoning in (higher order) classical propositional logic and so to harness classical rea-
soning mechanisms from (a conservative extension of) propositional logic.

2 Paraconsistent Three-Valued Logics

We deal with a languaggé over a setP of propositional variables and use the logical
symbolsT, L, =, V, A, and— to construct formulas in the standard way. Formulas are
denoted by Greek lower-case letters (possibly with subscripts).

An interpretation is a functiom : P — {t, f,0} extending tov : £ — {t, f, 0}
according to the truth tables below.
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We sometimes leave an interpretatioimplicit and writep : z instead ofv(p) = =,
for z € {t, f, 0}. An interpretatiorv is said to bewo-valuedwheneven(p) € {¢, f}
for all p € P; otherwise, it isthree-valued A three-valued modedf a formulac is
an interpretation that assigns eitfter o to o. Modelhood extends to sets of formulas
in the standard way. As usual, given a $sebf formulas and a formula, we define

S = ¢ if each model ofS is a model ofp. Whenever necessary, we write; and =,

to distinguish three-valued from two-valued entailment.

Note that the truth value af — g differs from that of-« Vv 3 only in the case of
v={a:0,0: f}resultingint(e — B) = f andv(—«a V ) = o. This difference is
prompted by the fact thatando indicate modelhood, which motivates the assignment
of the same truth values t® — (3 no matter whether we have: ¢t or « : o. This has
actually to do with the difference betwerrodus ponenanddisjunctive syllogismiThe
latter yieldss from o A —a A =3 becausey V G follows from «.. The overall inference
seems wrong because in the presence of-«a, o vV 3 is satisfied (by : 0) with no
need forj to bet. As pointed out in [21], one may actually views as“the ‘right’
generalization of classical implication becauseis the internal implication connec-
tive [5] for the defined inference relation in the sense that a deduction (meta)theorem
holds for it: ¥ A a =5 S iff ¥ =3 o — 8 On the other hand, a formula composed of
the connectives:, v, andA can never be inconsistent; that is, each such formula has at
least one three-valued model [13]. Finally, we mention that the entailment problem for
=5 is coNRcomplete, no matter whethes is included or not [26, 13, 15].

As mentioned in the introductory section, Priest’s logk,, [28] was conceived
to overcome the failure of disjunctive syllogism lif® [27]. LP amounts to the three-
valued logic obtained by restricting to connectives-, vV andA (and definingy — 3
as—a V f3). In LP,, modelhood is then limited to models containing a minimal number



of propositional variabledeing assigned. This allows for drawindall classical in-
ferences except where inconsistency makes them doubtful anj@@&yFormally, the
consequence relation bP,,, can be defined as follows. For three-valued interpretations
v, w, define the partial ordering

v<npw iff {peP|v(p)=0} C{peP|w(p) =o}.

Then,T &, ¢ iff every three-valued model &f that is minimal with respect tg,, is
a three-valued model af.

Unlike this, the approach of Besnard and Schaub [9] prefers three-valued models
that assigrrue to as many items of the knowledge bdsas possible: For three-valued
interpretations, w, define the partial ordering

v<aw it {$eT|B(¢) =0} C {6 €T | (o) =0}

Then,T |, ¢ iff each three-valued model @f which is <,,-minimal is a three-valued
model of¢.

The major difference between the last two approaches is that the restriction of mod-
elhood inLP,, focuses on models as close as possible to two-valtedpretations
while the one in the last approach aims at models next to two-vahmdklsof the
considered premises. According to [9], the effects of making the formula select its pre-
ferred models can be seen by lookingat {p, —p, (—p V ¢) }: While LP,, yields two
<m-preferred modelsfp : 0,q : t} and{p : o,q : f}, from which one obtaing A —p,
the second approach yieldss additional conclusion. In faclp : o,q : t} is the only
<,-preferred model of the premisés, —p, (—pVq)}; it assigng to (—pVq), while this
premise is attributed by the secong’,,,-preferred mode{p : o, g : f}; hence the latter
is not<,,-preferred. So, whil§" }~,,, ¢ andT |=,, ¢, we note thal' U {(pV —¢)} 41 ¢
for I = m,n. On the other hands,, is clearly more syntax-dependent thian), since
the items within the knowledge base are used for distinguisipgreferred models.

In fact, both inference relations,,, and=,, amount to their classical (two-valued)
counterpart, whenever the set of premises is classically consistent. Also, it is shown
in [15] that deciding entailment fd«,,, and|=,, is IIY-complete, no matter whethes
is included or not. A logical analysis of both relations can be found in [21] and in the
original literature [28, 9].

3 Axiomatizing Three-Valued Paraconsistent Logics

In what follows, we provide axiomatizations of the three-valued paraconsistent logics
introduced in the last section in terms of QBFs.

Quantified Boolean formulasAs a conservative extension of classical propositional
logic, quantified Boolean formula®BFs) generalize ordinary propositional formulas

by the admission of quantifications over propositional variables (QBFs are denoted by
Greek upper-case letters). Informally, a QBF of fovimdq ¢ means that for all truth
assignments gp there is a truth assignment gfsuch that® is true. Given thaiC is

the language of QBFs over a getof propositional variables, the semantical meaning



of QBFs can be defined as follows: An interpretation is a function? — {t, f}
extending tos : K — {¢, f} according to the truth tables in (1) and the following two
conditions, for everyp € IC,

0(Vp®@) = 0(@[p/TIA@p/L]) and o(Fp®) = o(S[p/T]V P[p/L]).

We write ®[p1 /1, - . ., pn/dn] to denote the result of uniformly substituting each free
occurrencé of a variablep; in @ by a formulag;, for 1 < i < n. If & contains no

free variable occurrences, thénis closed Closed QBFs are either true under every
interpretation or false under every interpretation. Hence, for closed QBFs there is no
need to refer to particular interpretations.

In the sequel, we use the following abbreviations: The set of all atoms occurring
in a formula¢ is denoted byvar(¢). Similarly, for a setS of formulas, var(S) =
Uges var(). For a setP? = {pi,...,p,} of propositional variables and a quantifier
Q € {V,3}, we letQP & stand for the formul&p;Qps - - - Qp,, . Furthermore, for
indexed set$ = {¢1,...,¢,} andT = {1, ..., 1, } of formulas,S < T abbreviates
N1 (¢; — i), andS < T stands forS <T' A —=(T < S).

Encoding three-valued logicWe start with encoding the truth evaluation of the three-
valued logic given in Section 2 by means of classical propositional logic.

To this end, we introduce for each atgna globally new atomy’ and defineP’ =
{p’ | p € P} for a given alphabep.

Let v be a three-valued interpretation over alphaBetWe define theassociated
two-valued interpretation, by setting

va(p) = va(p') =1t t
va(p) = v2(p) = f  ifo(p) = f;
va(p) = fandug(p’) =t i 0

foranyp € P and anyp’ € P’. Conversely, for a given two-valued interpretation
over alphabeP U P’ such thaw(p — p’) = t, we define theassociated three-valued
interpretationus by setting

v3(p) =

{v(p) if v(p) = v(p)
0 if v(p) = fandv(p’) =t

foranyp € P.
Moreover, we need the following parameterized translation:

Definition 1. Forp € P and¢,y € L, we define

(p,t) =p;

(b) 7(p, f) =0

(C) T(p70 :ﬁp/\p,
2. (@) (=9, t) =7(o, f);

4 An occurrence of a propositional variablén a QBF® is freeif it does not appear in the scope
of a quantifierQp (Q € {V¥, 3}).



(b) 7(=¢, f) =7(¢,1);

(© 7(—¢,0) =7(,0);
3. (a) T(¢ A 1/}; ) - T((bv ) A T(’l[},t),

(b) T(¢/\wa ) _T(¢7 )\/T(T/),f),

© 7(¢ AP, 0) ==T(d AU, f) AT (P A, 1);
4. (a) T(¢ \ 1/}; ) - T((bv ) \ 7‘(1)/}’ )

(b) T(¢\/wa ) _T(¢7 f)/\T(l/%f),

(© ng\/iﬂa ) = ﬁT(QSVl/J, ) ﬁT(¢\/wa f),

(¢ —

5.(a) 7 V,t) =7(¢, f) VT (9, 1);
(b) 7 ¥, f)=7(o, [y AT(¥, f);
(© T(¢ ¥, )_ _'T(d)a f) /\T(wa )

For computing the three-valued models of a set of formtllas {¢1, ..., ¢, }, we
use/\,cr —7(¢, f) and abbreviate the latter byr (7', )3
For example, considér = {p, —p, (—p V q)}. We get:

-7(T, f) = =7(p, f) A =7(=p, f) A=7((=p V q), f)
= 2p' A=7(p, t) A=(T(=p, f) AT(g, f))

p'A=p A=(T(p,t) A—q')

=p' A-pA(—pV--q)

=p A-p

The resulting formula possesses four two-valued models, all of which gssigrand
p’ : t while varying ong andgq’. In order to establish a correspondence among the four
two-models of-7 (T, f) and the three three-valued modelsIgfassigning to p and
varying ong, the relation between the two alphab@&sand P’ must be fixed. In fact,
this is accomplished by adding— ' for everyr € P.

In this way, we obtain the following result.

Theorem 1. Let ¢ be a formula withP = var(¢), let P’ = {p’ | p € P}, and let
x e {ta fv O}'

Then, the following conditions hold:

1. For any three-valued interpretation over P, if 5(¢) = z, thenwa((P < P’) A
7(¢,x)) = t, wherev, is the associated two-valued interpretatiorwof

2. For any two-valued interpretation over? U P/, if 5((P < P') A7(¢,2)) =,
thenus(¢) = z, wherevs is the associated three-valued interpretatiorof

Since the formular(¢,t) V 7(¢, f) V 7(¢, 0) is clearly a tautology of classical logic,
we immediately get the following relation between the three-valued models of a theory
and the two-valued models of the corresponding encoding:

Corollary 1. LetT be a finite set of formulas with = var(T) and letP’ = {p’ | p €
P}.

Then, there is a one-to-one correspondence between the three-valued mddels of
and the two-valued models of the formula

(P < P'YAN-7(T, f). (2)

® Note that generall\ ;- 7(¢, z) # T(Ayer ¢, ).



In particular, the three-valued model @f corresponding to a two-valued model
of (2) is given by the associated three-valued interpretatigof v.

For illustration, conside¥’ = {p, —p, (—p V ¢)} along with

Up.a} <, dH) AT, f) = (@—=0)ANg—=d)NE ANp).

Unlike above, we obtain now three two-valued modéjs,: f,p' : t,q : t, ¢’ : t},
{p: f,p:tq: f,d :t},and{p : f,p' : t,q : f,¢ : f}, being in a one-to-one
correspondence with the three three-valued models,o,q : t}, {p : 0,q : 0o}, and
{p:o0,q: f}, of T, respectively.

The role of the implicationgp, ¢} < {p’, ¢’} can be further illustrated by looking
at the following translation:

T(T,t) = 7(p,t) AT(=p, t) AT((=p V q), 1)

=p AT, ) N (T(=p,t) V 7(g, 1))

=pA=p' A(r(p.f)Va)

=pA-p' A(=p' Va)

=pA-p
While the last formula admits four two-valued models, the fornffilaq} < {p’,¢'})A
7(T,t) has no two-valued model, which corresponds to the factZhhas no three-
valued model assigningto all members of".

Consequently, since there are no three-valued models assigttiolg 7", the for-
mulas—7(T, f) andr (T, o) must be equivalent; this can be verified as follows:

7(T,0) = —7(T, f) N —7(T\,t)
=(r. H)VT(p, VTPV, ) A=(p A )
==(=p'VpV(r(=p, f) A7(g, ) A (=pV D)
==(=p'VpV (A=) A(=p VD)
=p' A=pA(=pVq)A(=pVD)
=p' A-p
Encoding three-valued paraconsistent logid® begin with, it is instructive to see that

the previous elaboration already allows for a straightforward encoding of three-valued
entailment, and, in particular, inference in the logi[27]:

Definition 2. LetT be a set formulas and a formula.
For P = var(T U {¢}), we define

T(T,¢) = VP, P'(((P < P) A~r(T. 1)) = ~7(0. ) -

Then, we have the following result.

Theorem 2. T |=3 ¢ iff T5(T, ¢) is true.



To be precise, we obtain (original) inferenceliR [27] when restrictingl” and ¢ to
formulas whose connectives are ameng\, andv only.

Let us now turn to Priest’s logitP,, [28]. For this, we must, roughly speaking,
enhance the encoding bP in order to account for the principle of “minimizing incon-
sistency” used ihP,,,. This is accomplished in the next definition by means of the QBF
namedMin,,, (T).

Definition 3. LetT be a set formulas wit® = var(T"), V an indexed set of globally
new atoms corresponding 0, and¢ a formula. Moreover, le©Op = {7(p,0) | p € P}
andOy = {7(v,0) |v e V}.

We define

Ming (T) = (P < P')) A=V, V' ((Ov < Op) A (V < V') A=r(TIP/V], f))
and, forR = P U var(¢),

Ton(T,¢) = VR, R’ ((Mmm(T) A—r(T, f)) = ~7(6, f)).

For illustration, let us return t&@ = {p, —p, (—p V q)}. We haveP = {p,q} and
correspondingly/ = {u, v}. We start our analysis on the subformula

(Oy < Op) AN (V < V')A=T(T[P/V], ), 3
having

Oy <Op=(7(u,0) = 7(p,0)) A (7(v,0) = 7(gq,0)) A
=((7(p, 0) = 7(u,0)) A (1(g,0) = 7(v,0))).

From the definition oK and<, one can see th&Oy < Op) A (V < V') is true under
a two-valued interpretation iff

— for any variable froml/ assigned under the associated interpretatigy; the cor-
responding variable fron® is also assigned undervs; and

— there exists at least one variable fréfriwhich is not assigned undervs, although
the corresponding variable froi is assigned underuvs.

Additionally, v has to be a two-valued model ofr(f,T[P/V]). By Corollary 1,v;
then has to be a three-valued modell§#/V]. From our previous discussion and by
renaming, we know thaf'[P/V] possesses three three-valued models,{viz. o, v :
t}, {u:o,v:0},and{u: o,v : f}.Inthe case of moddlu : o,v : o}, we cannot find
an assignment tp, ¢ which has more variables being assigrmedhe other two cases
extend to two two-valued models, andv”, of (3) with their associated three-valued
interpretationsy; andvy given by{p : 0,q : o,u : o,v : t} and{p : 0,q : 0,u : 0,v :
f}, respectively. Now, one can check that the only three-valued interpretatsuch
that Min,,, (T) is false undetws is {p : 0, q : o}. Recalling the three-valued models of
T, we have that the two-valued modelsiMdin,,, (1) A =7 (T, f) yield two three-valued
models,{p: o0,q:t}and{p:0,q: f}.

In general, we have the following result.



Theorem 3. T |=,, ¢ iff 7,,,(T, ¢) is true.

To be precise, we obtain (original) inferenceliR,,, [28] when restrictindgl” and¢ to
formulas whose connectives are ameng\, andv only.

Analogously, we can now give an axiomatization of Besnard and Schaub’s ap-
proach [9].

Definition 4. LetT be a set formulas wittl? = var(T), @ an indexed set of globally
new atoms corresponding 8, and¢ a formula. Moreover, leOr = {7(¢,0) | ¢ € T}

andOr(pq = {7(,0) | & € T[P/Q]}.
We define
Ming(T) = (P < P') A -3Q,Q ((Oripjq) < Or) A (Q £ Q)

and, forR = P U var(¢),

T.(T, ) = VR, R' ((an(T) A=r(T, f)) — ~7(6, f)).

The salient difference between the previous definition and the one given in Defini-
tion 3 manifests itself in the se@@p, Oy and Or, Or(p/q), respectively. Note that

the latter take into account the original set of premiBes® that the translation formula
-7(T[P/V], f) can be dropped.

Theorem 4. T |=,, ¢ iff 7,,(T, ¢) is true.

Alternative Encodings.In view of the discussion given below, we may alternatively
capture both approaches as follows.

To begin with, concerningtP,,,, we introduce additional new variablés= {s,, |
p € var(T)} andS’ = {s,, | p € var(T)}, and define

Min, (T)=(P<P)AN(S<O0p)A
39,Q,Q' (8 < ) A Q= Q) A (S < 0g) A7 (TIP/Q). f)

and
T (T, ) = VS, P, P’((Mmm/ (T) A (T, f)) = —(o, f)).

For Besnard and Schaub’s approach [9], on the other hand, we similarly introduce ad-
ditional new variables according to the elementslofviz. S = {s, | ¢ € T} and
S"={s, | ¢ € T}, and define

Min, (T)=(P < P)AN(S<O0p)A
ﬂas’,Q,Q’((S’ <SHNQ<Q)N(S < OQ))

and
T (T, $) = VS, P, P’((an/ (T) A (T, f)) = —(o, f)).

In analogy to Theorems 3 and 4, we then obtain the following result:

Theorem 5. T =, ¢ iff 7,/ (T, ¢) is true, for bothw € {m, n}.



Employing Circumscriptionin order to shed some more light on the two paraconsistent
logics discussed above, let us slightly reformulate their minimization axiom in terms
of circumscription [25]: LetT" be a propositional theory and®, @, Z) a partition of
var(T). Assume two (two-valued) models v’ of T', and definev <p.; o' iff the
following conditions are satisfied:

1 {geQ|v(g) =t} ={qeQ|v(q) =t}
2. {pePlv(p)=t}C{pecP|v(p) =t}

A modelv of T is called(P; Z)-minimalif no modelv’ of T with v # v satisfies
v <p,z v.

Informally, the partition( P, @, Z) can be interpreted as follows: The g&tontains
the variables to be minimized; are those variables that can vary in minimiziRgand
the remaining variable® are fixed in minimizingP.

Let T be a theory andP, Q, Z) a partition ofvar(T), whereP = {p1,...,pn}
andZ = {z,...,zmn}. The set of(P; Z)-minimal models ofl" is given by the truth
assignments to the QBF

Cire(T; P; Z) = T A 3P, Z((}S < P)AT[P/P, Z/Z]),

whereP = {p1,...,p,} andZ = {z,,...,%,} are sets of new variables correspond-
ing to P andZ, respectively.
Then, forP = var(T'), we have thaMin,,,,(T') A —7(T, f) can be written as

Conl(T) = Cire((P < P') A (S < {7(p,0) | p € P}) A—r(T, [); ;P U P'),
whereS = {s, | p € var(T)}, and, analogoushfin,, (T") can be written as
Con(T) = Circ((P < P'YN (S < {r(¢,0) | p € T});S; PUP’)

whereS = {s, | ¢ € T}.
Summarizing, we hae

L T by G (Coa(T) A (T, ) — ~7(6, f) s true;
2. T =, ¢ iff (Co(T)A-T(T, f)) — —7(0, f) is true.

This demonstrates how the principle of circumscription can be exploited for character-
izing the minimization process in the two considered paraconsistent logics.

4 Related work

A whole variety of approaches uses lattices for dealing with inconsistency, e.g., [1,
7,29]. For instance, [1, 2] describes a system based on four-valued logic that allows
for constraining “the most consistent” models in the meta-level by a user-given set of
propositions taking classical truth-values only. In fact, in [3] the preference relation
<,» is generalized to four-valued logics, giving rise to two distinct orderings: Given
two four-valued interpretations over truth valugsf, o, o'}’, define

Infact, (Co (T) A —7(T, f)) — —7(¢, f) is true iff Con (T) — —=7(9, f) is true.
7 In a four-valued setting, o’ are usually denoted by, T.



—v<ywiff {peP|ovlp) =0} C{peP|wlp) =o}; and
—v<pwiff {peP|ov(p) €{o,0}} C{peP|wp)e{o0d}}

As with |=,,,, the models minimal with respect to these orderings are then used to define
two distinct four-valued consequence relations. Although we do not detail it here, we
mention that an appropriate encoding of the underlying four-valued logic (similar to the
one given in Definition 1), along with a slightly generalized QBF encoding (similar to
the one given in Definition 3), allows for a straightforward encoding of the two four-
valued consequence relations by means of QBFs. Interestingly, both four-valued para-
consistent logics have recently been implemented in [4] by appeal to special-purpose
circumscription solvers [16]. [14] proposes a translation-based approach to reasoning
in the presence of contradictions that translates a logic into a family of other logics, e.qg.,
classical logic into three-valued logics.

Among the existing inference methods for three-valued paraconsistent logics, we
mention the following ones. A resolution-based system closdtget with a stronger
disjunction is described in [23]. In fact, there is an indirect way of implemeritig
because its consequence relation has recently been shown in [15] to be equivalent to a
particular relation within the family of signed systems [10], whose inference can also
be mapped onto QBFs, as shown in [11]. The resulting encoding is, however, of little
interest since it lacks the spirit of “minimizing inconsistency” and thus fails to provide
insight intoLP,,,; also, it is not extendible with the genuine implicatienor even to
alternative approaches such as [9]. We recall from the introductory section that the latter
approach was originally axiomatized in [9] by means of a Hilbert system comprising
26 axiom schemata.

5 Conclusion

Considering two paraconsistent logics based on a minimization principle applied to a
three-valued logic, we have shown how a translation into the language of quantified
Boolean formulas is possible. The translations obtained clearly fall under the same
umbrella, giving rise to a uniform setting for the axiomatization of such logics. (In
particular, we have provided translations explicitly displaying the connection with cir-
cumscription, the classical proof theory for logical minimization.) Moreover, once such
an axiomatization is available, existing QBF solvers can be used for implementation
without further ado. Having efficient QBF solvers, like the systems described in [12,
20, 6], makes such a rapid prototyping approach practicably applicable. Finally, we re-
mark that what we did allows us, in some sense, to express this kind of paraconsistent
reasoning in (higher order) classical propositional logic and so to harness classical rea-
soning mechanisms from (a conservative extension of) propositional logic.
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