COBA 2.0: A Consistency-Based Belief Change System

James P. DelgrandieDaphne H. Lid, Torsten Schaub*, and Sven Thiefe

1 School of Computing Science, Simon Fraser University, BoynB.C., Canada V5A 1S6
2 Institut fur Informatik, Universitat Potsdam, AuguseBel-Str. 89, D-14482 Potsdam,
Germany

Abstract. We describe COBA 2.0, an implementation of a consistensgtha
framework for expressing belief change, focusing here wisi@n and contrac-
tion, with the possible incorporation of integrity congtita. This general frame-
work was first proposed in [1]; following a review of this worlve present
COBA 2.0's high-level algorithm, work through several exdes, and describe
our experiments. A distinguishing feature of COBA 2.0 istih&uilds on SAT-
technology by using a module comprising a state-of-thesafft-solver for con-
sistency checking. As well, it allows for the simultaneopedfication of re-
vision, multiple contractions, along with integrity corahts, with respect to a
given knowledge base.

1 Introduction

Given a knowledge base and a sentence for revision or coiomathe fundamental
problem of belief change is to determine what the resultingledge base contains.
The ability to change one’s knowledge is essential for aglligent agent. Such change
in response to new information is not arbitrary, but ratlsetypically guided by vari-
ous rationality principles. The best known of these setsriviciples was proposed by
Alchourron, Gardenfors, and Makinson [2], and has come ta&rimvn as the AGM
approach.

In this paper, we describe COBA 2.0, an implementation ofresisbency-based ap-
proach to belief revision and contraction. The general odtlogy was first proposed
in [1]. In this approach, the AGM postulates for revision affectively satisfied, with
the exception of one of the “extended” postulates. Sinyildre contraction postulates
are satisfied with the exception of the controversial recppestulate and one of the
extended postulates. Notably the approach is syntax imdlgme, and so independent
of how a knowledge base and sentence for belief change issepted. COBA 2.0
implements this approach, and in a more general form. Thirgéedelief change op-
eration will involve a single knowledge base and (possiblgentence for revision, but
along with (possibly) a set of sentences for contractiomy@lsintegrity constraints are
handled, and in a straightforward fashion.

In Section 2, we give background terminology, notation, enplementation con-
siderations. Section 3 presents COBA 2.0’s high-leveltligm, in addition to work-
ing through two examples. Section 4 discusses COBA 2.0tsiffes, syntax, and input
checks, while Section 5 describes our experiments evaly@OBA 2.0 against a com-
parable solver. Lastly, Section 6 concludes with a summary.

* Affiliated with Computing Science at Simon Fraser Universind 11IS at Griffith University.

2 Preliminaries

To set the stage, we informally motivate our original apptot belief revision; con-
traction is motivated similarly, and is omitted here givease considerations. First, the
syntactic form of a sentence doesn’t give a clear indica®to which sentences should
or should not be retained in a revision. Alternately, oneaarsider interpretations, and
look at the models ofS and«. The interesting case occurs wh&huU {a} is unsat-
isfiable becausé&’ anda share no models. Intuitively, a model &f+« should then
contain models ofy, but incorporating “parts” of models df” that don'’t conflict with
those ofa. That is, we will haveMod (K +a) C Mod(«), and form € Mod (K +«)
we will want to incorporate whatever we can of modelgsaf

We accomplish this by expressirdg and « in different languages, but such that
there is an isomorphism between atomic sentences of theidgeg. In essence, we
replace every occurrence of an atomic sentenge K by a new atomic sentengg,
yielding knowledge bas&” and leavingy unchanged. Clearly, under this relabelling,
the models of<” anda will be independent, anfl” U{«} will be satisfiable (assuming
that each ofK, « are satisfiable). We now assert that the languages agree druth
values of corresponding atoms wherever consistently blessso, for every atomic
sentence, we assert that = p’ whenever this is consistent witki” U {«} along with
the set of equivalences obtained so far. We obtain a maxietalfsuch equivalences,
callit EQ, such thatk’ U{a} U EQ is consistent. A model ok’ U{a} U EQ then will
be a model ok in the original language, wherein the truth values of atogeittences in
K’ anda are linked via the seE Q. A candidate “choice” revision oK by a consists
of K'U{a} U EQ re-expressed in the original language. General revisioresponds
to the intersection of all candidate choice revisions. Tblofing section gives an
example, once we have given a formal summary of the approach.

2.1 Formal Preliminaries

We deal with propositional languages and use the logicabsysi, 1, -, Vv, A, D, and

= to construct formulas in the standard way. We w(te to denote a language over an
alphabefP of propositional letters or atomic propositions. Formwes denoted by the
Greek lettersy, 3, a1, Knowledge bases, identified with belief sets or dedealgt-
closed sets of formulas, are denoted Ky K7, SOK = Cn(K), whereCn(-) is
the deductive closure in classical propositional logichaf formula or set of formulas
given as argument. Given an alphaligtwe define a disjoint alphab&’ as P’ =
{p' | p € P}.Fora € Lp, o is the result of replacing in each propositiop € P by
the corresponding propositign € P’ (and hence an isomorphism betwgeandP’).
This definition applies analogously to sets of formulas.

A belief change scenarim Lp is a tripleB = (K, R, C') whereK, R, andC are
sets of formulas iCp. Informally, K is a belief set that is to be modified so that the
formulas inR are contained in the result, and the formulag’imre not. An extension
determined by a belief change scenario is defined as follows.

Definition 1 (Belief Change Extension)Let B = (K, R, C) be a belief change sce-
nario in L, and a maximal set of equivalencBg) C {p = p’ | p € P} be such that
Cn(K'URUEQ)N(CU{L})=0.

ThenCn(K'URUEQ)N Lp is abelief change extensiasf B. If there is no such
set EQ, then B is inconsistentand L5 is defined to be the solgnconsistent) belief
change extensioof B.

In Definition 1, “maximal” is with respect to set containmgad the exclusive use of
“{1}"is to take care of consistency @ = (). Definition 1 provides a very general
framework for specifying belief change. Next, we can restiie definition to obtain
specific functions for belief revision and contraction.

Revision and Contractioni-or a given belief change scenario, there may be more than
one consistent belief change extension. We can thus askeetion functiom that, for
any setl # (), has as value some element/of

Definition 2 (Revision).Let K be a knowledge base;, a formula, and(FE;);c; the
family of all belief change extensions(df, {«}, (). Then, we define

1. K+.a = E; as achoice revisiorof K by o with respect to some selection function
cwithe(I) = 1.

2. K+a =(),¢; E; as the(skeptical) revisiorof K by a.

Definition 3 (Contraction). Let K be a knowledge base,a formula, and E;);c; the

family of all belief change extensions(df,), {a}). Then, we define

1. K-.a = E; as achoice contractiornf K by o with respect to some selection
functionc with ¢(1) = .
2. K-a= N;c; i as the(skeptical) contractioof K by a.

A choicechange represents a feasible way in which a knowledge baskeceevised
or contracted to incorporate new information. On the otlasrdh the intersection of all
choice changes represents a “saékgpticalmeans of taking into account all choice
changes.

Table 1 gives examples of skeptical revision. The knowldaige is in the first col-
umn, but with atoms already renamed. The second column tieaeevision formula,
while the next lists the maximal consistdrif) set(s); the last column gives the results
of the revision, as a finite representation(éf(K +a). For{p A q}+(—p V —q), there

| K’ |) | EQ |K-i—o¢|
pP’AG | g {p=r"} pA—g
[! — / . !
»'=q¢| —q |{p=v.¢=d} |pA—q
pP'vd |mpV-g {p=pq=4q} p=q
/ ’ — / — / —
P’ Aqg |mpVq{p=p},{e=d}p=—q
Table 1. Skeptical Revision Examples

are two maximal consistetQ sets{p = p'} and{q = ¢’} and thus two corresponding
choice extension§'n(p A —q) andCn(—p A q), respectively. Table 2 lists four skeptical
contraction examples.

K | a] EQ |[K—qa

A | q {p=p} P
P ANg AT p Vg {r=1"} r

pP’Vvd pAg {p=p.a=4d} |pVy

P Ad pAgfp=p}{a=d}pVy

Table 2. Skeptical Contraction Examples

The general approach, witl| > 1, can be employed to expresslltiple con-
traction [3], in which contraction is with respect to a set of (not resaily mutually
consistent) sentences. Therefore, we can use the beliefelsgenari¢X,), {a, ~a})
to represent aymmetric contractiofd] of o from K. Refer to [1] for a discussion of
the formal properties of these belief revision and conibaabperators.

Integrity Constraints. Definition 1 allows for simultaneous revision and contracti
by sets of formulas. This in turn leads to a natural and géneratment of integrity
constraints. To specify a belief change incorporating afsebnsistency-baseadtegrity
constraints [5, 6]/C., and a set of formulas as entailment-based constraintg (7],
one can specify a belief change scenariq Ry R U IC.,C U IC.), whereK, R, and
C are as in Definition 1, andC,. = {—¢ | ¢ € IC.}. See [1] for details.

2.2 Implementation Considerations

Finite RepresentationDefinitions 1-3 provide an abstract characterization oisiext
and contraction, yielding in each case a deductively-clbstief set. It is proven in [1]
that the same (with respect to logical equivalence) opesatn be defined so that they
yield a knowledge base consisting of a finite formula. Comisid-«. Via Definitions
1 and 2, we determine maximal sdf§) where{K’'} U {a} U EQ is consistent. For
each suchr (@ set, we carry out the substitutions:

— forp =9’ € EQ, replacey’ with pin K,

— forp=9p' ¢ EQ, replace’ with —pin K.

It is shown that following this substitution, the resultikgowledge base and input for-
mula is logically equivalent to some choice revision; thegwiction of all such resulting
knowledge bases and input formula is equivalent to the gta@pevision.

For contraction (wheré' # (), we need to substitute into the resultiigall possi-
ble combinations of truth value assignments for all elemium. Again, see [1] for
details.

Limiting Range o). The range of2() can be limited to “relevant” atoms. Intuitively,
if an atomic sentence appears in a knowledge bBabet not in the sentence for revision
«, Or vice versa, then that atomic sentence plays no part imetvision process. The
same intuition extends to contraction. It was proven in fHttfor computing a belief
change extension of a belief change extendioa (K, R, C), we need consider only
those atoms common t& and to(R U C). That s, if Atoms(X) is the set of atoms
in set of formulasX, then in Definition 1 for formingx’ and the seZ@Q we can limit
ourselves to considering atomsditoms(K) N (Atoms(R) U Atoms(C)).

3 Algorithm

The results at the end of the last section lead to an algoritimomputing a belief
change extension for an arbitrary belief change scenaffier Aresenting our algo-
rithm, we will work through two example belief change scéosr

Given a setK of formulas inLp, and setskev, IC,, Con, andIC.. of formulas
in Lp for revision, entailment-based integrity constraints)tcaction, and consistency-
based integrity constraints, respectively, algoritblampute BC'E returns a formula
whose deductive closure is a belief change extension ofdheflthange scenariB =
(K,RevU IC.,ConUIC,.),wherelC. = {-¢ | ¢ € IC,}.

Algorithm Compute BC'E invokes the following auxiliary functions:

Atoms(S) Returns the set of atoms appearing in any formula in set ofiditassS.

Prime(K,CA) For set of formulask’ and set of atom&’A, returnsK but where
every atonp € A is replaced by'.

Initialize(K', R, Con, IC..) Given a formulaK’ and setsR, Con, IC, of formulas,
returns a set of formulas of for(d’ A (A R) A—¢p A1), foreachp € (ConU{L})
andy € (IC. U{T}).

Replace(K',p',p) ReturnsK’ with every occurrence of atopi replaced by.

ForgetOut Equiv(K',Out) Input: formula K’ and a setOut of equivalences of
atoms
Output: K’ with every atonp such thaip’ = p) € Out is “forgotten”:

1. If Out = 0, then returnk’.
2. OutAtoms :=={p | (p' = p) € Out}.
3.T A := PowerSet(Out Atoms).
/IT A'is the set of all truth assignments@ut Atoms.
4. KDisj := L.
5. For each truth assignmente T'A {
TempK = K’'.
K Disj := KDisj Vv Substitute(TempK,). }
[ISubstitute returnst applied toT'empK.
6. ReturnK Disj.

Algorithm Compute BCE (K, Rev, IC.,Con, IC.)
Let R = Rev U IC, andC = Con U IC..
1.IfRF LorKF L, thenreturnl.
2. If (foranyy € IC., RU{¢} F 1), then returnL.
3. If (forany ¢ € Con, RU{—¢} F L), then returnL.
4. 1f (forany¢ € Con and anyy € IC,.

{=¢} U {¥} F 1), then returnL.
5.CA := Atoms(K) N (Atoms(R) U Atoms(C)).
6. K' := Prime(K,CA).
7. KRC := Initialize(K', R, Con, IC.,).
8.In := Out := 0.
9.Foreacte e {p=p|pec CA}{

If (forany® € KRC wehave eU{f}F L)

ThenOut := Out U {e}.

ElseIn := InU{e}. }
10. For each € In: K’ := Replace(K',p', p).
11. For eachke € Out: K' := Replace(K',p’, —p).
12.1f (Con # () ThenK' := ForgetOut Equiv(K', Out).
13. ReturnK’ A (A Rev).

Algorithm Compute BC'E generates a belief change extension in non-deterministic
polynomial (NP) time; i.e., an extension can be computeddsterministic polynomial
Turing machine using the answers given by an NP oracle. Fopthipose, we currently
use the SAT-solver called Berkmin in the SAT4J library [8heTsolver performs the
consistency checks in lines 1 through 4 and within the foplimd_ine 9. Before passing
any formula to the solver, we convert it first to conjunctiv@mal form (CNF). The
CNF formula, once created, is saved with its correspondingdla so that conversions
are not done repetitively.

The selection function (for the “preferre®’@ set) is left implicit in Line 9 of Al-
gorithmCompute BC'E; it is realized by the particular order chosen when treatireg
atoms inC A. In COBA 2.0, however, we create an ordered (in ascendirgjreality)
list L of all 2/l possible subsets ¢ = p | p € C A}. To help streamline the search
for EQ sets and minimize memory usage, we represent each equiedgra single bit
so that it is included in aiv@ sete iff its corresponding bit is 1 ir’s bit-string. Fur-
thermore, the ordered ligt can accommodate our subsequent search for maxiifal
sets, whether the search be breadth-first or depth-first.v@rage, the running time
and memory usage of breadth-first search is comparable tottkepth-first search,
although in our experience neither is consistently superio

3.1 Examples

We illustrate how COBA 2.0 computes belief change extersslmnworking through
two examples. The examples include belief revision andreation.

Revision.Consider revising a knowledge bake= {p, ¢} by a formulaoc = —p v —q.
We show how COBA 2.0 computéé+o:

1. Find the common atoms between the knowledge base andvik®negformula.
CA={p,q}

2. Create a new formul&™ from K by priming the common atoms appearingin
K'= (' Aq)

3. Find all maximal equivalence sef&) = {b’ = b | b € C'A} such tha{ K'} U
{a} U EQ is satisfiable.

EQy = {p' = p}
EQ2={q =q}

4. For eachEQ);, create a belief change extension by (a) unprimingsinevery
primed atony’ if (p’ = p) € EQ;, (b) replacing every primed atopt with —p if
(p) =p) ¢ EQ;, and finally (c) conjoiningk’ with the revision formula.
Kte{a} = (@A-q) A(=pV —=q) = (pA—q)
K+e{a}=(pAg)A(-pV—q) = (-pAg)

5. The resulting knowledge base is the deductive closuréludrethe disjunction of
all belief change extensions fgkepticalchange, or one belief change extension
for choicechange.

K+{a} = Cn((p A=q) V (=p A q))

Contraction. Consider contracting a knowledge bdse= {p V ¢} by a formulaa =
pV q. We show how COBA 2.0 computds—a:

1. Find the common atoms between the knowledge base andrtraction formula.
CA={p,qa}

2. Create a new formul&” from K by priming the common atoms appearingin
K'=(@'V{)

3. Find all maximal equivalence sef&) = {/ = b | b € C A} such that{ K'} U
{—a} U EQ is satisfiable.

EQy ={}

4. For eachEQ);, create a belief change extension by (a) unprimings<inevery
primed atony’ if (p’ = p) € EQ;, (b) replacing every primed atopt with —p if
(' =p) ¢ EQ;, and finally (c) taking the disjunction of all possible stitgions
of T or L into those atoms ik’ that are inC' A but whose corresponding equiva-
lences are not i @Q);.

K-, {a} =(T)

5. The resulting knowledge base is the deductive closuréludrethe disjunction of
all belief change extensions fekeptical change, or one belief change extension
for choice change.

Here, there is only one resulting knowledge base for skajatltange and for choice
changeK —{a} = Cn((—=LV=L)V(~LV-T)V(=TV=L)V(~TV~T)) =
Cn(T)

4 Implementation

In this section, we describe the COBA 2.0 implementationcWgeuss features, syntax,
and syntactic and consistency checks on input formulas.

4.1 Features

COBA 2.0 is available as an interactive Java applet, corapigh a menu, text boxes,
buttons, and separate panels for belief change, integntgtcaints, and snapshots. Via
the menu, users can import belief change scenarios fromdpesify the type (skeptical
or choice) of belief change desired, and obtain a resultimy#edge base.

Users may also

=

. enter belief change scenarios in text boxes,

2. view logs of the changes made to the knowledge base (KB)tlie entailment-
based integrity constraints (EB IC) list, and the consisyelmased integrity con-
straints (CB IC) list,

3. revertto an older KB, EB IC, or CB IC snapshot,

File Settings Screen Help

Enter 2 sentence: 1

Newv|

Knowledge Base(s) Sentences for Revision New Knowledge Base Preview

KE 0: -0 &~
(-p=0)

® default C'enf Chdnf %

Sentences for Contraction

() default O ot ® dnf

| -]
J " Reject Commit
® default Crenf Odnf | h ® default Coenf Crdnf % ‘ L 7‘ ‘ ‘

Please reject or commit 2 new KB before you modify @dd to or remove from) any lists.

Current Settings: 6

@ Skeptical Change @AIIDetEQZ Algorithm @Default Merge @Cunsistency Check On

Fig. 1. COBA 2.0's Main Screen

Get Parallel Change

. save any list to an output file,

. view formulas in CNF or DNF,

. turn off the various consistency checks,

. preview, and then reject or commit, a resulting knowleolgse, and

. view the user manual and JavaDocs in external browseromiadif the applet is
running in an html document).

oo~NO O~

COBA 2.0 automatically simplifies formulas where applieglibr example, elimi-
nating occurrences of and_L in subformulas. COBA 2.0 also automatically informs
users of any syntactically ill-formed input formulas. Thmmesistency checks in 6. above
and the syntax checks are elaborated on in Subsection 2 pgtet, user manual, Java
code, and Javadocs of COBA 2.0 are accessible from [9].

4.2 Syntax

COBA 2.0 accepts almost all alphanumerical strings for at@mes. The exceptions
are the symbols in the following list; +, &, =, 7, =, > , (and). Note thaT
andF stand forT and_L, respectively.

File Settings Screen | Help |

This page logs the hig About COBA. to three lists:
(1) KB: the removals, | COBA Manual.. 8 1anges committed; (2) EB IC and (3) CB IC: the removals and replacements made.
Each snapshot k reco COBA JavaDOCs... mediately before change k is applied.

KB Snapshots KE Change History EB IC Snapshots ER IC Change History

(0) Before Changes ===={ () Chahges to KB =====
KB 0: Revisions:
(-p=0) ~q

Contractions: none

EB ICs: none

CE ICs: none

2

Go to EB: IE @ Go to EB Change: B

CB IC Snapshots CE IC Change History

[[

] D

Go to KB Change: M 3 Go to CB: B @ Go to CB Change: IE

Go 1o KE:

]
iefo

Fig. 2. COBA 2.0’s History Screen

More complex formulas can be built from formulas A and B usingnectives.

— A for the negation of A

— (A&B) for the conjunction of A and B
— (A+B) for the disjunction of A and B
— (A>B) for Aimplies B

— (A=B) for Ais equivalentto B

A top-level formula with a binary connectiv&(+, >, or =) must be enclosed
in parentheses. Parentheses within a formula, howeveopi@nal and are used only
to enforce precedence. For examé&b+c) is a valid input sentence and is different
from (a&(b+c)) , whereas a top-level sentence l&&b is syntactically ill formed.

Encoding Input Files.Input file formats (for belief change scenarios) vary acoayd
to the list (KB, Revision, Contraction, EB IC, or CB IC) to vehi formulas are to be
added. Any KB file to be loaded should precede each knowledge by a line “KB :”

(without the double quotes) and list each formula on a sépdiree. Each formula is
listed on a separate line in any Revision and EB IC input fi@s.any contraction and

CB ICinputfiles, each line is interpreted as an independ®nidla for contraction and
as a CB IC, respectively.
Consider an example contraction file. While the formiis&"q) | means that

(p&—q) is to be removed from the consequences of the resulting lauyel base

listed on two separate lines means that pnd—q are to be dropped from the con-
sequences of the resulting knowledge base.
As an example, the next table shows some valid input files.

KB Rev|Cont |[EB IC CB IC
KB : aqa |p (a&b+c) d
(p&q&r) [p 9 |(x&(y+z)) |d
(g9+’s)

4.3 Input Checks

COBA 2.0 performs syntax and consistency checks on all ifgputulas. The former
checks are always enforced, while the latter checks aremgdtbut carried out by de-
fault. See below for details.

Syntax ChecksWith regard to the syntax detailed earlier in Subsection@Q@BA 2.0
informs users of ill-formed input formulas. Thus, for exdmphe following ill-formed
input strings would be flagged with an appropriate messgye:g+, p~, p’ , (p,
(P&(a) . (p+a&) ,and(+q) .

Consistency Checkslo preempt inconsistent belief change scenarios, COBA 29 p
hibits certain kinds of input formulas that result in incstent belief change scenarios.
This preemptive measure accords well with the consistehegls in lines 1 through
4 of Algorithm Compute BC'E in Section 3. Automatic consistency checks on input
formulas, although carried out by default, can be optigndiabled by users wishing
to speed up computations. One caveat is that, if these claeekdisabledi- might be
obtained as the resulting knowledge base.

Let (/A Rev) denote the conjunction of all formulas RRev for revision,(A\ EBIC')
the conjunction of all entailment-based integrity constisa The following inconsistent
belief change scenarios should be avoided; sample errcsages, where applicable,
are italicised.

1. a contradiction imRev: The conjunction of revisions is inconsistent!

2. acontradiction inE BIC": The conjunction of EB ICs is a contradiction!

3. a contradiction as a KB, revision, or EB IC formula: No emwessage; sentence
not added.

4. atautology as a contraction formula: No error messageeree not added.

. acontradiction as a CB IC formula: No error message; sertaot added.

6. conflict betweerf A\ Rev) and(/\ EBIC'): The conjunction of revisions is incon-
sistent with the conjunction of EB ICs!

7. conflict betweer{ A\ Rev) and contraction formulaghe contraction indexed O is
inconsistent with the conjunction of revisions (indexitegts at 0)!

ol

8. conflict betweeti/\ Rev) and CB IC formulasThe CB IC indexed 1 is inconsistent
with the conjunction of revisions (indexing starts at 0)!
9. conflict betweeri/\ EBIC) and contraction formulaghe contraction indexed 6
is inconsistent with the conjunction of EB ICs (indexingtstat 0)!
10. conflict betweeri/\ EBIC') and CB IC formulasThe CB IC indexed 3 is incon-
sistent with the conjunction of EB ICs (indexing starts at 0)
11. conflicting pairs of CB IC formulas and contraction fotasiThe contraction in-
dexed 2 is inconsistent with the CB IC indexed 0 (indexingsstd 0)!

The aforementioned consistency checks correspond to tiestency checks on input
in Algorithm Compute BC'E from Section 3. Specifically, 1, 2, 3, and 6 correspond to
the checkR + 1) and(K + 1) in Line 1 of ComputeBCE; 5, 8, and 10 to the
check RU {¢} + L, foranyt € IC.) in Line 2 of Compute BCFE; 4, 7, and 9 to
the check R U {—¢} - L, for any$ € Con) in Line 3 of Compute BCE; lastly, 11

to the check {—¢} U {} + L, forany¢ € Con and anyy) € IC,) in Line 4 of
Compute BCE.

5 Experiments

It has been shown that skeptical revision and contracti@muimapproach arér’-hard
problems [1]. In [10] is was shown how the approach could w®dad using quantified
Boolean formulas (QBF). This allows us to compare COBA 2.thwahn implemented
version of the approach using the quantified Boolean forrsaileer QUIP [11].

For comparing the implementations, we created knowledgesand revision sen-
tences made up of randomly generated 3-DNF formulas, ancecea each to a QBF.
We also devised an experimental prototype of COBA 2.0 whietfggms structural
transformation (by replacing sub-formulas with new atoms)ead of the CNF conver-
sion of formulas (for consistency checks). Experimentsateen conducted on QUIP,
and on both the stable version (the applet) and the expetaif@ototype of COBA 2.0.

Preliminary experimental results reveal that most of COBA'2run-time is at-
tributed to its structural or CNF conversion of formulas @andts consistency checks.
The run-time of all three implementations shows an expadakgtowth rate. QUIP,
however, is relatively faster than both versions of COBA Z10e experimental proto-
type seems to be more than two orders of magnitude fastertieastable version of
COBA 2.0, and this observation suggests that structurastoemation be done in lieu
of CNF conversion in our future implementation.

6 Conclusion

We have presented COBA 2.0, an implementation of a consigteased approach for
belief change incorporating integrity constraints. Opansfor belief revision and con-
traction incorporating integrity constraints are readibfined in a general framework
that satisfies the majority of the AGM postulates, notablyejpendence of syntactic
representation As demonstrated by COBA 2.0, the frameveoeksily implementable,
for the results of our operators are finite and vocabulasyricted belief change can be

performed instead. Examples of how COBA 2.0 computes beliahge are detailed in
Section 3.

Our preliminary experiments show that our stable versioa &pplet) still has much
potential for improvement. To this end, we devised an expenital prototype (with
structural transformation in lieu of CNF conversion) thaéms to be more than two
orders of magnitude faster than the stable version (with Cbiversion). Hence, we
are optimistic that COBA 2.0 can be improved to achieve alamniin-time behaviour
as the monolithic QUIP system.

To our knowledge, COBA 2.0 is the most general belief chalygéees currently
available, capable of computing arbitrary combinationbeifef revision and contrac-
tion that (possibly) incorporate consistency-based anailerent-based integrity con-
straints. Moreover, COBA 2.0’s general framework is easi{ensible to consistency-
based merging operators as detailed in [12], and currerglare refining our imple-
mentation so as to accommodate the merging of knowledgs bHse only comparable
system is described in [13]. However, it is based on anotperaach to belief change,
relying on stratified knowledge bases.

The applet, user manual, Java code, and Javadocs of COBA&dl accessible
at [9].

References

1. Delgrande, J., Schaub, T.: A consistency-based appfoadtielief change. Artificial Intel-
ligencel51(2003) 1-41
2. Alchourrén, C., Gardenfors, P., Makinson, D.: On thgidoof theory change: Partial meet
functions for contraction and revision. Journal of Symbdalogic 50 (1985) 510-530
3. Fuhrmann, A.: Relevant Logics, Modal Logics, and Thedmai@e. PhD thesis, Australian
National University, Australia (1988)
4. Katsuno, H., Mendelzon, A.: On the difference betweenatipd a knowledge base and
revising it. In Gardenfors, P., ed.: Belief Revision, Caidge University (1992) 183-203
5. Kowalski, R.: Logic for data description. In Gallaire,, iinker, J., eds.: Logic and Data
Bases. Plenum (1978) 77-103
6. Sadri, F., Kowalski, R.: A theorem-proving approach ttabase integrity. In Minker, J., ed.:
Foundations of Deductive Databases and Logic Programmihgrgan Kaufmann (1987)
313-362
7. Reiter, R.: Towards a logical reconstruction of relatlodatabase theory. In Brodie, M.,
Mylopoulos, J., Schmidt, J., eds.: On Conceptual ModellfBgringer (1984) 191-233
8. A satisfiability library for java. Ifttp://www.sat4j.org)
9. COBA 2.0. bttp://www.cs.sfu.ca/"cl/software/COBA/coba2.html)
10. Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: @npmuting belief change operations
using quantified boolean formulas. Journal of Logic and Qatanjion14 (2004) 801-826
11. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solvingvaticed reasoning tasks using quan-
tified Boolean formulas. In: Proceedings of the AAAI Natib@onference on Artificial
Intelligence (2000) 417-422
12. Delgrande, J., Schaub, T.: Consistency-based apmeacimerging knowledge bases. Jour-
nal of Applied Logics. To appear.
13. Benferhat, S., Kaci, S., Berre, D., Williams, M.A.: Wealng conflicting information for
iterated revision and knowledge integration. Artificiaidiigence.153(2004) 339-371

