
COBA 2.0: A Consistency-Based Belief Change System

James P. Delgrande1, Daphne H. Liu1, Torsten Schaub2 ⋆, and Sven Thiele2

1 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
2 Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, D-14482 Potsdam,

Germany

Abstract. We describe COBA 2.0, an implementation of a consistency-based
framework for expressing belief change, focusing here on revision and contrac-
tion, with the possible incorporation of integrity constraints. This general frame-
work was first proposed in [1]; following a review of this work, we present
COBA 2.0’s high-level algorithm, work through several examples, and describe
our experiments. A distinguishing feature of COBA 2.0 is that it builds on SAT-
technology by using a module comprising a state-of-the-artSAT-solver for con-
sistency checking. As well, it allows for the simultaneous specification of re-
vision, multiple contractions, along with integrity constraints, with respect to a
given knowledge base.

1 Introduction

Given a knowledge base and a sentence for revision or contraction, the fundamental
problem of belief change is to determine what the resulting knowledge base contains.
The ability to change one’s knowledge is essential for an intelligent agent. Such change
in response to new information is not arbitrary, but rather is typically guided by vari-
ous rationality principles. The best known of these sets of principles was proposed by
Alchourron, Gardenfors, and Makinson [2], and has come to beknown as the AGM
approach.

In this paper, we describe COBA 2.0, an implementation of a consistency-based ap-
proach to belief revision and contraction. The general methodology was first proposed
in [1]. In this approach, the AGM postulates for revision areeffectively satisfied, with
the exception of one of the “extended” postulates. Similarly the contraction postulates
are satisfied with the exception of the controversial recovery postulate and one of the
extended postulates. Notably the approach is syntax independent, and so independent
of how a knowledge base and sentence for belief change is represented. COBA 2.0
implements this approach, and in a more general form. Thus a single belief change op-
eration will involve a single knowledge base and (possibly)a sentence for revision, but
along with (possibly) a set of sentences for contraction; aswell integrity constraints are
handled, and in a straightforward fashion.

In Section 2, we give background terminology, notation, andimplementation con-
siderations. Section 3 presents COBA 2.0’s high-level algorithm, in addition to work-
ing through two examples. Section 4 discusses COBA 2.0’s features, syntax, and input
checks, while Section 5 describes our experiments evaluating COBA 2.0 against a com-
parable solver. Lastly, Section 6 concludes with a summary.
⋆ Affiliated with Computing Science at Simon Fraser University and IIIS at Griffith University.

2 Preliminaries

To set the stage, we informally motivate our original approach to belief revision; con-
traction is motivated similarly, and is omitted here given space considerations. First, the
syntactic form of a sentence doesn’t give a clear indicationas to which sentences should
or should not be retained in a revision. Alternately, one canconsider interpretations, and
look at the models ofK andα. The interesting case occurs whenK ∪ {α} is unsat-
isfiable becauseK andα share no models. Intuitively, a model ofK+̇α should then
contain models ofα, but incorporating “parts” of models ofK that don’t conflict with
those ofα. That is, we will haveMod(K+̇α) ⊆ Mod(α), and form ∈ Mod(K+̇α)
we will want to incorporate whatever we can of models ofK.

We accomplish this by expressingK andα in different languages, but such that
there is an isomorphism between atomic sentences of the languages. In essence, we
replace every occurrence of an atomic sentencep in K by a new atomic sentencep′,
yielding knowledge baseK ′ and leavingα unchanged. Clearly, under this relabelling,
the models ofK ′ andα will be independent, andK ′∪{α} will be satisfiable (assuming
that each ofK, α are satisfiable). We now assert that the languages agree on the truth
values of corresponding atoms wherever consistently possible. So, for every atomic
sentencep, we assert thatp ≡ p′ whenever this is consistent withK ′ ∪ {α} along with
the set of equivalences obtained so far. We obtain a maximal set of such equivalences,
call it EQ, such thatK ′∪{α}∪EQ is consistent. A model ofK ′∪{α}∪EQ then will
be a model ofα in the original language, wherein the truth values of atomicsentences in
K ′ andα are linked via the setEQ. A candidate “choice” revision ofK by α consists
ofK ′ ∪ {α} ∪EQ re-expressed in the original language. General revision corresponds
to the intersection of all candidate choice revisions. The following section gives an
example, once we have given a formal summary of the approach.

2.1 Formal Preliminaries

We deal with propositional languages and use the logical symbols⊤,⊥,¬,∨,∧,⊃, and
≡ to construct formulas in the standard way. We writeLP to denote a language over an
alphabetP of propositional letters or atomic propositions. Formulasare denoted by the
Greek lettersα, β, α1, Knowledge bases, identified with belief sets or deductively-
closed sets of formulas, are denoted byK, K1, SoK = Cn(K), whereCn(·) is
the deductive closure in classical propositional logic of the formula or set of formulas
given as argument. Given an alphabetP , we define a disjoint alphabetP ′ asP ′ =
{p′ | p ∈ P}. Forα ∈ LP , α′ is the result of replacing inα each propositionp ∈ P by
the corresponding propositionp′ ∈ P ′ (and hence an isomorphism betweenP andP ′).
This definition applies analogously to sets of formulas.

A belief change scenarioin LP is a tripleB = (K,R,C) whereK, R, andC are
sets of formulas inLP . Informally,K is a belief set that is to be modified so that the
formulas inR are contained in the result, and the formulas inC are not. An extension
determined by a belief change scenario is defined as follows.

Definition 1 (Belief Change Extension).LetB = (K,R,C) be a belief change sce-
nario in LP , and a maximal set of equivalencesEQ ⊆ {p ≡ p′ | p ∈ P} be such that
Cn(K ′ ∪R ∪EQ) ∩ (C ∪ {⊥}) = ∅.

ThenCn(K ′ ∪R∪EQ)∩LP is abelief change extensionofB. If there is no such
setEQ, thenB is inconsistentandLP is defined to be the sole(inconsistent) belief
change extensionofB.

In Definition 1, “maximal” is with respect to set containment, and the exclusive use of
“{⊥}” is to take care of consistency ifC = ∅. Definition 1 provides a very general
framework for specifying belief change. Next, we can restrict the definition to obtain
specific functions for belief revision and contraction.

Revision and Contraction.For a given belief change scenario, there may be more than
one consistent belief change extension. We can thus use aselection functionc that, for
any setI 6= ∅, has as value some element ofI.

Definition 2 (Revision). Let K be a knowledge base,α a formula, and(Ei)i∈I the
family of all belief change extensions of(K, {α}, ∅). Then, we define

1. K+̇cα = Ei as achoice revisionofK byα with respect to some selection function
c with c(I) = i.

2. K+̇α =
⋂

i∈I Ei as the(skeptical) revisionofK byα.

Definition 3 (Contraction). LetK be a knowledge base,α a formula, and(Ei)i∈I the
family of all belief change extensions of(K, ∅, {α}). Then, we define

1. K−̇cα = Ei as a choice contractionof K by α with respect to some selection
functionc with c(I) = i.

2. K−̇α =
⋂

i∈I Ei as the(skeptical) contractionofK byα.

A choicechange represents a feasible way in which a knowledge base can be revised
or contracted to incorporate new information. On the other hand, the intersection of all
choice changes represents a “safe,”skepticalmeans of taking into account all choice
changes.

Table 1 gives examples of skeptical revision. The knowledgebase is in the first col-
umn, but with atoms already renamed. The second column givesthe revision formula,
while the next lists the maximal consistentEQ set(s); the last column gives the results
of the revision, as a finite representation ofCn(K+̇α). For{p ∧ q}+̇(¬p ∨ ¬q), there

K′ α EQ K+̇α

p′ ∧ q′ ¬q {p ≡ p′} p ∧ ¬q

¬p′ ≡ q′ ¬q {p ≡ p′, q ≡ q′} p ∧ ¬q

p′ ∨ q′ ¬p ∨ ¬q {p ≡ p′, q ≡ q′} p ≡ ¬q

p′ ∧ q′ ¬p ∨ ¬q {p ≡ p′}, {q ≡ q′} p ≡ ¬q

Table 1.Skeptical Revision Examples

are two maximal consistentEQ sets{p ≡ p′} and{q ≡ q′} and thus two corresponding
choice extensionsCn(p∧¬q) andCn(¬p∧q), respectively. Table 2 lists four skeptical
contraction examples.

K′ α EQ K−̇α

p′ ∧ q′ q {p ≡ p′} p

p′ ∧ q′ ∧ r′ p ∨ q {r ≡ r′} r

p′ ∨ q′ p ∧ q {p ≡ p′, q ≡ q′} p ∨ q

p′ ∧ q′ p ∧ q {p ≡ p′}, {q ≡ q′} p ∨ q

Table 2.Skeptical Contraction Examples

The general approach, with|C| > 1, can be employed to expressmultiple con-
traction [3], in which contraction is with respect to a set of (not necessarily mutually
consistent) sentences. Therefore, we can use the belief change scenario(K, ∅, {α,¬α})
to represent asymmetric contraction[4] of α fromK. Refer to [1] for a discussion of
the formal properties of these belief revision and contraction operators.

Integrity Constraints.Definition 1 allows for simultaneous revision and contraction
by sets of formulas. This in turn leads to a natural and general treatment of integrity
constraints. To specify a belief change incorporating a setof consistency-basedintegrity
constraints [5, 6],ICc, and a set of formulas as entailment-based constraints [7],ICe,
one can specify a belief change scenario by(K,R ∪ ICe, C ∪ ICc), whereK, R, and
C are as in Definition 1, andICc = {¬φ | φ ∈ ICc}. See [1] for details.

2.2 Implementation Considerations

Finite Representation.Definitions 1–3 provide an abstract characterization of revision
and contraction, yielding in each case a deductively-closed belief set. It is proven in [1]
that the same (with respect to logical equivalence) operators can be defined so that they
yield a knowledge base consisting of a finite formula. ConsiderK+̇α. Via Definitions
1 and 2, we determine maximal setsEQ where{K ′} ∪ {α} ∪ EQ is consistent. For
each suchEQ set, we carry out the substitutions:

– for p ≡ p′ ∈ EQ, replacep′ with p in K ′,
– for p ≡ p′ /∈ EQ, replacep′ with ¬p in K ′.

It is shown that following this substitution, the resultingknowledge base and input for-
mula is logically equivalent to some choice revision; the disjunction of all such resulting
knowledge bases and input formula is equivalent to the skeptical revision.

For contraction (whereC 6= ∅), we need to substitute into the resultingK all possi-
ble combinations of truth value assignments for all elements inPEQ. Again, see [1] for
details.

Limiting Range ofEQ. The range ofEQ can be limited to “relevant” atoms. Intuitively,
if an atomic sentence appears in a knowledge baseK but not in the sentence for revision
α, or vice versa, then that atomic sentence plays no part in therevision process. The
same intuition extends to contraction. It was proven in [1] that for computing a belief
change extension of a belief change extensionB = (K,R,C), we need consider only
those atoms common toK and to(R ∪ C). That is, ifAtoms(X) is the set of atoms
in set of formulasX , then in Definition 1 for formingK ′ and the setEQ we can limit
ourselves to considering atoms inAtoms(K) ∩ (Atoms(R) ∪Atoms(C)).

3 Algorithm

The results at the end of the last section lead to an algorithmfor computing a belief
change extension for an arbitrary belief change scenario. After presenting our algo-
rithm, we will work through two example belief change scenarios.

Given a setK of formulas inLP , and setsRev, ICe, Con, andICc of formulas
in LP for revision, entailment-based integrity constraints, contraction, and consistency-
based integrity constraints, respectively, algorithmComputeBCE returns a formula
whose deductive closure is a belief change extension of the belief change scenarioB =
(K,Rev ∪ ICe, Con ∪ ICc), whereICc = {¬φ | φ ∈ ICc}.

AlgorithmComputeBCE invokes the following auxiliary functions:

Atoms(S) Returns the set of atoms appearing in any formula in set of formulasS.
Prime(K,CA) For set of formulasK and set of atomsCA, returnsK but where

every atomp ∈ A is replaced byp′.
Initialize(K ′, R, Con, ICc) Given a formulaK ′ and setsR, Con, ICc of formulas,

returns a set of formulas of form(K ′∧(
∧
R)∧¬φ∧ψ), for eachφ ∈ (Con∪{⊥})

andψ ∈ (ICc ∪ {⊤}).
Replace(K ′, p′, p) ReturnsK ′ with every occurrence of atomp′ replaced byp.
ForgetOutEquiv(K ′, Out) Input: formulaK ′ and a setOut of equivalences of

atoms
Output:K ′ with every atomp such that(p′ ≡ p) ∈ Out is “forgotten”:

1. If Out = ∅, then returnK ′.
2.OutAtoms := {p | (p′ ≡ p) ∈ Out}.
3.TA := PowerSet(OutAtoms).

//TA is the set of all truth assignments toOutAtoms.
4.KDisj := ⊥.
5. For each truth assignmentπ ∈ TA {

TempK := K ′.
KDisj := KDisj ∨ Substitute(TempK, π). }
//Substitute returnsπ applied toTempK.

6. ReturnKDisj.

Algorithm ComputeBCE(K,Rev, ICe, Con, ICc)
LetR = Rev ∪ ICe andC = Con ∪ ICc.
1. If R ⊢ ⊥ orK ⊢ ⊥, then return⊥.
2. If (for anyψ ∈ ICc, R ∪ {ψ} ⊢ ⊥), then return⊥.
3. If (for anyφ ∈ Con, R ∪ {¬φ} ⊢ ⊥), then return⊥.
4. If (for anyφ ∈ Con and anyψ ∈ ICc

{¬φ} ∪ {ψ} ⊢ ⊥), then return⊥.
5.CA := Atoms(K) ∩ (Atoms(R) ∪Atoms(C)).
6.K ′ := Prime(K,CA).
7.KRC := Initialize(K ′, R, Con, ICc).
8. In := Out := ∅.
9. For eache ∈ {p′ ≡ p | p ∈ CA} {

If (for any θ ∈ KRC we have e ∪ {θ} ⊢ ⊥)

ThenOut := Out ∪ {e}.
ElseIn := In ∪ {e}. }

10. For eache ∈ In: K ′ := Replace(K ′, p′, p).
11. For eache ∈ Out: K ′ := Replace(K ′, p′,¬p).
12. If (Con 6= ∅) ThenK ′ := ForgetOutEquiv(K ′, Out).
13. ReturnK ′ ∧ (

∧
Rev).

AlgorithmComputeBCE generates a belief change extension in non-deterministic
polynomial (NP) time; i.e., an extension can be computed by adeterministic polynomial
Turing machine using the answers given by an NP oracle. For this purpose, we currently
use the SAT-solver called Berkmin in the SAT4J library [8]. The solver performs the
consistency checks in lines 1 through 4 and within the for loop in Line 9. Before passing
any formula to the solver, we convert it first to conjunctive normal form (CNF). The
CNF formula, once created, is saved with its corresponding formula so that conversions
are not done repetitively.

The selection function (for the “preferred”EQ set) is left implicit in Line 9 of Al-
gorithmComputeBCE; it is realized by the particular order chosen when treatingthe
atoms inCA. In COBA 2.0, however, we create an ordered (in ascending cardinality)
list L of all 2|CA| possible subsets of{p′ ≡ p | p ∈ CA}. To help streamline the search
forEQ sets and minimize memory usage, we represent each equivalence by a single bit
so that it is included in anEQ sete iff its corresponding bit is 1 ine’s bit-string. Fur-
thermore, the ordered listL can accommodate our subsequent search for maximalEQ
sets, whether the search be breadth-first or depth-first. On average, the running time
and memory usage of breadth-first search is comparable to that of depth-first search,
although in our experience neither is consistently superior.

3.1 Examples

We illustrate how COBA 2.0 computes belief change extensions by working through
two examples. The examples include belief revision and contraction.

Revision.Consider revising a knowledge baseK = {p, q} by a formulaα = ¬p ∨ ¬q.
We show how COBA 2.0 computesK+̇α:

1. Find the common atoms between the knowledge base and the revision formula.
CA = {p, q}

2. Create a new formulaK ′ fromK by priming the common atoms appearing inK.
K ′ = (p′ ∧ q′)

3. Find all maximal equivalence setsEQ = {b′ ≡ b | b ∈ CA} such that{K ′} ∪
{α} ∪ EQ is satisfiable.
EQ1 = {p′ ≡ p}
EQ2 = {q′ ≡ q}

4. For eachEQi, create a belief change extension by (a) unpriming inK ′ every
primed atomp′ if (p′ ≡ p) ∈ EQi, (b) replacing every primed atomp′ with ¬p if
(p′ ≡ p) /∈ EQi, and finally (c) conjoiningK ′ with the revision formula.
K+̇c1

{α} = (p ∧ ¬q) ∧ (¬p ∨ ¬q) ≡ (p ∧ ¬q)
K+̇c2

{α} = (¬p ∧ q) ∧ (¬p ∨ ¬q) ≡ (¬p ∧ q)

5. The resulting knowledge base is the deductive closure of either the disjunction of
all belief change extensions forskepticalchange, or one belief change extension
for choicechange.
K+̇{α} = Cn((p ∧ ¬q) ∨ (¬p ∧ q))

Contraction. Consider contracting a knowledge baseK = {p ∨ q} by a formulaα =
p ∨ q. We show how COBA 2.0 computesK−̇α:

1. Find the common atoms between the knowledge base and the contraction formula.
CA = {p, q}

2. Create a new formulaK ′ fromK by priming the common atoms appearing inK.
K ′ = (p′ ∨ q′)

3. Find all maximal equivalence setsEQ = {b′ ≡ b | b ∈ CA} such that{K ′} ∪
{¬α} ∪ EQ is satisfiable.
EQ1 = {}

4. For eachEQi, create a belief change extension by (a) unpriming inK ′ every
primed atomp′ if (p′ ≡ p) ∈ EQi, (b) replacing every primed atomp′ with ¬p if
(p′ ≡ p) /∈ EQi, and finally (c) taking the disjunction of all possible substitutions
of ⊤ or ⊥ into those atoms inK ′ that are inCA but whose corresponding equiva-
lences are not inEQi.
K−̇c1

{α} = (⊤)
5. The resulting knowledge base is the deductive closure of either the disjunction of

all belief change extensions forskeptical change, or one belief change extension
for choice change.
Here, there is only one resulting knowledge base for skeptical change and for choice
change:K−̇{α} = Cn((¬⊥∨¬⊥)∨ (¬⊥∨¬⊤)∨ (¬⊤∨¬⊥)∨ (¬⊤∨¬⊤)) =
Cn(⊤)

4 Implementation

In this section, we describe the COBA 2.0 implementation. Wediscuss features, syntax,
and syntactic and consistency checks on input formulas.

4.1 Features

COBA 2.0 is available as an interactive Java applet, complete with a menu, text boxes,
buttons, and separate panels for belief change, integrity constraints, and snapshots. Via
the menu, users can import belief change scenarios from files, specify the type (skeptical
or choice) of belief change desired, and obtain a resulting knowledge base.

Users may also

1. enter belief change scenarios in text boxes,
2. view logs of the changes made to the knowledge base (KB) list, the entailment-

based integrity constraints (EB IC) list, and the consistency-based integrity con-
straints (CB IC) list,

3. revert to an older KB, EB IC, or CB IC snapshot,

Fig. 1. COBA 2.0’s Main Screen

4. save any list to an output file,
5. view formulas in CNF or DNF,
6. turn off the various consistency checks,
7. preview, and then reject or commit, a resulting knowledgebase, and
8. view the user manual and JavaDocs in external browser windows (if the applet is

running in an html document).

COBA 2.0 automatically simplifies formulas where applicable, for example, elimi-
nating occurrences of⊤ and⊥ in subformulas. COBA 2.0 also automatically informs
users of any syntactically ill-formed input formulas. The consistency checks in 6. above
and the syntax checks are elaborated on in Subsection 4.3. The applet, user manual, Java
code, and Javadocs of COBA 2.0 are accessible from [9].

4.2 Syntax

COBA 2.0 accepts almost all alphanumerical strings for atomnames. The exceptions
are the symbols in the following list:’, +, &, ˆ, ˜, =, > , (and). Note thatT
andF stand for⊤ and⊥, respectively.

Fig. 2.COBA 2.0’s History Screen

More complex formulas can be built from formulas A and B usingconnectives.

– ˜A for the negation of A
– (A&B) for the conjunction of A and B
– (A+B) for the disjunction of A and B
– (A>B) for A implies B
– (A=B) for A is equivalent to B

A top-level formula with a binary connective (&, +, >, or =) must be enclosed
in parentheses. Parentheses within a formula, however, areoptional and are used only
to enforce precedence. For example,(a&b+c) is a valid input sentence and is different
from (a&(b+c)) , whereas a top-level sentence likea&b is syntactically ill formed.

Encoding Input Files.Input file formats (for belief change scenarios) vary according
to the list (KB, Revision, Contraction, EB IC, or CB IC) to which formulas are to be
added. Any KB file to be loaded should precede each knowledge base by a line “KB :”
(without the double quotes) and list each formula on a separate line. Each formula is
listed on a separate line in any Revision and EB IC input files.For any contraction and

CB IC input files, each line is interpreted as an independent formula for contraction and
as a CB IC, respectively.

Consider an example contraction file. While the formula(p&˜q) means that

(p&¬q) is to be removed from the consequences of the resulting knowledge base,
p
˜q

listed on two separate lines means that bothp and¬q are to be dropped from the con-
sequences of the resulting knowledge base.

As an example, the next table shows some valid input files.

KB Rev Cont EB IC CB IC
KB : q p (a&b+c) d
(p&q&r) ˜p ˜q (x&(y+z)) ˜d
(˜q+˜s)

4.3 Input Checks

COBA 2.0 performs syntax and consistency checks on all inputformulas. The former
checks are always enforced, while the latter checks are optional but carried out by de-
fault. See below for details.

Syntax Checks.With regard to the syntax detailed earlier in Subsection 4.2, COBA 2.0
informs users of ill-formed input formulas. Thus, for example, the following ill-formed
input strings would be flagged with an appropriate message:q) , q+, pˆ , p’ , (p ,
(p&(q) , (p+q&) , and(+q) .

Consistency Checks.To preempt inconsistent belief change scenarios, COBA 2.0 pro-
hibits certain kinds of input formulas that result in inconsistent belief change scenarios.
This preemptive measure accords well with the consistency checks in lines 1 through
4 of AlgorithmComputeBCE in Section 3. Automatic consistency checks on input
formulas, although carried out by default, can be optionally disabled by users wishing
to speed up computations. One caveat is that, if these checksare disabled,F might be
obtained as the resulting knowledge base.

Let (
∧
Rev) denote the conjunction of all formulas inRev for revision,(

∧
EBIC)

the conjunction of all entailment-based integrity constraints. The following inconsistent
belief change scenarios should be avoided; sample error messages, where applicable,
are italicised.

1. a contradiction inRev: The conjunction of revisions is inconsistent!
2. a contradiction inEBIC: The conjunction of EB ICs is a contradiction!
3. a contradiction as a KB, revision, or EB IC formula: No error message; sentence

not added.
4. a tautology as a contraction formula: No error message; sentence not added.
5. a contradiction as a CB IC formula: No error message; sentence not added.
6. conflict between(

∧
Rev) and(

∧
EBIC): The conjunction of revisions is incon-

sistent with the conjunction of EB ICs!
7. conflict between(

∧
Rev) and contraction formulas:The contraction indexed 0 is

inconsistent with the conjunction of revisions (indexing starts at 0)!

8. conflict between(
∧
Rev) and CB IC formulas:The CB IC indexed 1 is inconsistent

with the conjunction of revisions (indexing starts at 0)!
9. conflict between(

∧
EBIC) and contraction formulas:The contraction indexed 6

is inconsistent with the conjunction of EB ICs (indexing starts at 0)!
10. conflict between(

∧
EBIC) and CB IC formulas:The CB IC indexed 3 is incon-

sistent with the conjunction of EB ICs (indexing starts at 0)!
11. conflicting pairs of CB IC formulas and contraction formulas:The contraction in-

dexed 2 is inconsistent with the CB IC indexed 0 (indexing starts at 0)!

The aforementioned consistency checks correspond to the consistency checks on input
in AlgorithmComputeBCE from Section 3. Specifically, 1, 2, 3, and 6 correspond to
the checks(R ⊢ ⊥) and(K ⊢ ⊥) in Line 1 ofComputeBCE; 5, 8, and 10 to the
check (R ∪ {ψ} ⊢ ⊥, for anyψ ∈ ICc) in Line 2 ofComputeBCE; 4, 7, and 9 to
the check (R ∪ {¬φ} ⊢ ⊥, for anyφ ∈ Con) in Line 3 ofComputeBCE; lastly, 11
to the check ({¬φ} ∪ {ψ} ⊢ ⊥, for anyφ ∈ Con and anyψ ∈ ICc) in Line 4 of
ComputeBCE.

5 Experiments

It has been shown that skeptical revision and contraction inour approach areΠP
2

-hard
problems [1]. In [10] is was shown how the approach could be encoded using quantified
Boolean formulas (QBF). This allows us to compare COBA 2.0 with an implemented
version of the approach using the quantified Boolean formulasolver QUIP [11].

For comparing the implementations, we created knowledge bases and revision sen-
tences made up of randomly generated 3-DNF formulas, and converted each to a QBF.
We also devised an experimental prototype of COBA 2.0 which performs structural
transformation (by replacing sub-formulas with new atoms)instead of the CNF conver-
sion of formulas (for consistency checks). Experiments were then conducted on QUIP,
and on both the stable version (the applet) and the experimental prototype of COBA 2.0.

Preliminary experimental results reveal that most of COBA 2.0’s run-time is at-
tributed to its structural or CNF conversion of formulas andto its consistency checks.
The run-time of all three implementations shows an exponential growth rate. QUIP,
however, is relatively faster than both versions of COBA 2.0. The experimental proto-
type seems to be more than two orders of magnitude faster thanthe stable version of
COBA 2.0, and this observation suggests that structural transformation be done in lieu
of CNF conversion in our future implementation.

6 Conclusion

We have presented COBA 2.0, an implementation of a consistency-based approach for
belief change incorporating integrity constraints. Operators for belief revision and con-
traction incorporating integrity constraints are readilydefined in a general framework
that satisfies the majority of the AGM postulates, notably independence of syntactic
representation As demonstrated by COBA 2.0, the framework is easily implementable,
for the results of our operators are finite and vocabulary-restricted belief change can be

performed instead. Examples of how COBA 2.0 computes beliefchange are detailed in
Section 3.

Our preliminary experiments show that our stable version (the applet) still has much
potential for improvement. To this end, we devised an experimental prototype (with
structural transformation in lieu of CNF conversion) that seems to be more than two
orders of magnitude faster than the stable version (with CNFconversion). Hence, we
are optimistic that COBA 2.0 can be improved to achieve a similar run-time behaviour
as the monolithic QUIP system.

To our knowledge, COBA 2.0 is the most general belief change system currently
available, capable of computing arbitrary combinations ofbelief revision and contrac-
tion that (possibly) incorporate consistency-based and entailment-based integrity con-
straints. Moreover, COBA 2.0’s general framework is easilyextensible to consistency-
based merging operators as detailed in [12], and currently we are refining our imple-
mentation so as to accommodate the merging of knowledge bases. The only comparable
system is described in [13]. However, it is based on another approach to belief change,
relying on stratified knowledge bases.

The applet, user manual, Java code, and Javadocs of COBA 2.0 are all accessible
at [9].

References

1. Delgrande, J., Schaub, T.: A consistency-based approachfor belief change. Artificial Intel-
ligence151(2003) 1–41

2. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
functions for contraction and revision. Journal of Symbolic Logic50 (1985) 510–530

3. Fuhrmann, A.: Relevant Logics, Modal Logics, and Theory Change. PhD thesis, Australian
National University, Australia (1988)

4. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and
revising it. In Gärdenfors, P., ed.: Belief Revision, Cambridge University (1992) 183–203

5. Kowalski, R.: Logic for data description. In Gallaire, H., Minker, J., eds.: Logic and Data
Bases. Plenum (1978) 77–103

6. Sadri, F., Kowalski, R.: A theorem-proving approach to database integrity. In Minker, J., ed.:
Foundations of Deductive Databases and Logic Programming.Morgan Kaufmann (1987)
313–362

7. Reiter, R.: Towards a logical reconstruction of relational database theory. In Brodie, M.,
Mylopoulos, J., Schmidt, J., eds.: On Conceptual Modelling. Springer (1984) 191–233

8. A satisfiability library for java. (http://www.sat4j.org)
9. COBA 2.0. (http://www.cs.sfu.ca/˜cl/software/COBA/coba2.html)

10. Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: On computing belief change operations
using quantified boolean formulas. Journal of Logic and Computation14 (2004) 801–826

11. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quan-
tified Boolean formulas. In: Proceedings of the AAAI National Conference on Artificial
Intelligence (2000) 417–422

12. Delgrande, J., Schaub, T.: Consistency-based approaches to merging knowledge bases. Jour-
nal of Applied Logics. To appear.

13. Benferhat, S., Kaci, S., Berre, D., Williams, M.A.: Weakening conflicting information for
iterated revision and knowledge integration. Artificial Intelligence.153(2004) 339–371

