
How to reason credulously and skeptically within a
single extension

James P. Delgrande1 and Torsten Schaub2?

1 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6,
jim@cs.sfu.ca

2 Institut für Informatik, Universiẗat Potsdam, Postfach 60 15 53, D–14415 Potsdam, Germany,
torsten@cs.uni-potsdam.de

Abstract. Consistency-based approaches in nonmonotonic reasoning may be ex-
pected to yield multiple sets of default conclusions for a given default theory.
Reasoning about such extensions is carried out at the meta-level. In this paper, we
show how such reasoning may be carried out at the object level for a large class
of default theories. Essentially we show how one can translate a (normal) default
theory∆, obtaining a second∆′, such that∆′ has a single extension that encodes
every extension of∆. Moreover, our translated theory is only a constant factor
larger than the original (with the exception of unique names axioms). We prove
that our translation behaves correctly. In the approach we can now encode the no-
tion of extensionfrom within the framework of standard default logic. Hence one
can encode notions such as skeptical and credulous conclusions, and can reason
about such conclusions within a single extension. This result has some theoretical
interest, in that it shows how multiple extensions of normal default theories are
encodable with manageable overhead in a single extension.

1 Introduction

In nonmonotonic reasoning, in so-calledconsistency-basedapproaches such as default
logic [9] and autoepistemic logic [6], one typically obtains not just a single set of de-
fault conclusions, but rather multiple sets of candidate default conclusions. Consider
the by-now hackneyed example wherein Quakers are normally pacifist, republicans are
normally not, along with adults are normally employed. Assume as well that someone
is a Quaker, republican, and an adult. In default logic (see Section 2) this can be en-
coded by:({Q :P

P , R :¬P
¬P , A :E

E }, {Q,R,A}). This theory has twoextensionsor sets of
default conclusions, one containing{Q,R,A,E, P} and the other{Q,R,A,E,¬P}.
In autoepistemic logic the same example appropriately encoded yields two analogous
expansionsor possible belief sets.

Reasoning about these extensions (resp. expansions) is carried out at the meta-level:
a default conclusion that appears in some extension (such asP) is called acredulous
(or brave) default conclusion, while one that appears in every extension (such asE) is
called askepticalconclusion. Intuitively it might seem that skeptical inference is the
more useful notion. However, this is not necessarily the case. In diagnosis from first
? Affiliated with Simon Fraser University, Burnaby, Canada.

principles [10] for example, in one encoding there is a 1-1 correspondence between
diagnoses and extensions of the (encoding) normal default theory. Hence one may want
to carry out further reasoning to determine which diagnosis to pursue. More generally
there may be reasons to prefer some extensions over others, or to somehow synthesize
the information found in several extensions.

In this paper, we show how such reasoning can be carried out at the object level. For
a default theory∆ = (D,W), we translate∆ to obtain a second theory∆′ = (D′,W ′),
such that∆′ has a single extension that encodes every extension of∆. Given this, one
can express in the theory what it means for something to be a skeptical or credulous
default conclusion. Our result isn’t completely general; however it applies tonormal
default theories. The translation has several desirable properties. The translated theory
∆′ is only a constant factor larger than the original∆, with the exception of introduced
unique names axioms. As well, weprovethat our translation behaves correctly.

We first show for a set of defaultsDm how, using an encoding, we can detect the
case wherein all defaults inDm apply. From this, for a default theory(D ∪ Dm,W)
we show how to obtain a second theory wherein (informally) either all of the defaults
in Dm are applied en masse (if possible) or none of them are. This is done by nam-
ing each of the defaults inDm, and then expressing in default logic the applicabil-
ity conditions for the defaults. We develop this in Section 3. In Section 4 we present
our main result, where we show how a default theory can be translated into a sec-
ond theory whose extension encodes the extensions of the original. Roughly we pro-
vide an axiomatisation that “locates” maximal sets of applicable defaults; for such
a set, the set of default conclusions is “tagged” with the set name, to distinguish it
from other instances. For example, in our original example, letm1,3 be the name of
the set{Q :P

P , A :E
E } andm2,3 be the name of{R :¬P

¬P , A :E
E }. These are maximal

applicable sets of defaults, and from our translation we would obtain a single exten-
sion containing{Q(m1,3),Q(m2,3),R(m1,3),R(m2,3),A(m1,3), A(m2,3), E(m1,3),
E(m2,3),P (m1,3),¬P (m2,3)}. As mentioned, we are able to prove that our transla-
tions in fact accomplish what is claimed.

The advantage of this approach is that we can encode the notion of extension within
the framework of standard default logic. Hence one can reason about (skeptical and
credulous) conclusions within the framework of a single extension of a default theory.
Thus for example, in a diagnosis setting one could go on and axiomatise notions of
preference among diagnoses having to do with, perhaps, number of faulty components,
or based on components expected to fail first. This result has some theoretical interest,
in that it shows (for theories that we consider) how multiple extensions are encodable,
with no significant overhead in a single extension. The overall approach is similar to
that of [2].

2 Default Logic

Default logic [9] augments classical logic bydefault rulesof the form α : β
γ . A default

rule isnormal if β is equivalent toγ; it is semi-normalif β impliesγ. We sometimes
denote theprerequisiteα of a defaultδ by PRE(δ), its justificationβ by JUS(δ), and
its consequentγ by CON(δ). Accordingly,PRE(D) is the set of prerequisites of all

defaults inD; JUS(D) andCON(D) are defined analogously. Empty components, such
as no prerequisite or even no justifications, are assumed to be tautological. Semantically,
defaults with unbound variables are taken to stand for all corresponding instances. A
set of default rulesD and a set of formulasW form adefault theory(D,W) that may
induce a single or multipleextensionsin the following way [9].

Definition 1. Let∆ = (D,W) be a default theory. For any set of formulasS, letΓ∆(S)
be the smallest set of formulasS′ such that

1. W ⊆ S′,
2. Th(S′) = S′,
3. For anyα : β

γ ∈ D, if α ∈ S′ and¬β 6∈ S thenγ ∈ S′.

A set of formulasE is an extension of∆ iff Γ∆(E) = E.

Any such extension represents a possible set of beliefs about the world at hand. Further,
define for a set of formulasS and a set of defaultsD, theset of generating default rules
asGD(D,S) = {δ ∈ D | PRE(δ) ∈ S and¬JUS(δ) 6∈ S} .

3 Applying All, or None, of a Set of Defaults

In this section we consider the problem of how to apply all defaults in some set, or none
in the set. We will thus work with default theories(D,W) having some distinguished
finite subsetDm ⊆ D. For making the setDm explicit, we denote such theories by
(D ∪ Dm,W). The idea is that we wish to obtain extensions of(D ∪ Dm,W) sub-
ject to the constraint thatall defaults inDm are applied, ornoneare. For example, in
the theory

({
:A
A

}
∪
{

:B
B , C :D

D

}
, ∅
)

we would want to obtain an extension contain-
ing A, but notB (since both defaults in

{
:B
B , C :D

D

}
cannot be jointly applied). For({

:A
A

}
∪
{

:B
B , C :D

D

}
, {C}

)
we would want to obtain an extension containingA, B,

andD.
We begin by associating a unique name with each default. This is done by extending

the original language by a set of constants1 N such that there is a bijective mapping
n : D → N . We write nδ instead ofn(δ) (and we often abbreviatenδi by ni to
ease notation). Also, for defaultδ along with its namen, we sometimes writen : δ
to render naming explicit. To encode the fact that we deal with a finite set of distinct
default rules, we adopt a unique names assertion (UNAN) and domain closure assertion
(DCAN) with respect toN . So, for a name setN = {n1, . . . , nk}, we add axioms

UNAN : ¬(ni = nj) for all ni, nj ∈ N with i 6= j
DCAN : ∀x. name(x) ≡ (x = n1 ∨ · · · ∨ x = nk) .

We write∀x ∈ N. P (x) for ∀x. name(x) ⊃ P (x).
We introduce a new constantm as the name of the designated rule setDm. We relate

the name of the rule set denoted bym with the names of its members by introducing a
binary predicatein wherein(x, y) is true just if the default named byx is a member

1 [5] first suggested naming defaults using a set ofaspectfunctions. See also [8, 1].

of the set named byy. In this section, instances ofin will be of the form in(·,m).
While we could get away with not usingin (andm) here, this additional machinery is
required in Section 4, and it is most straightforward to introduce it here. Note that we
do not need a full axiomatization ofin, representing set membership, since we use it in
a very restricted fashion.

For applying all, or none, of the defaults inDm, we need to be able to, first, detect
when a rule has been applied or is blocked and, second, control the application of a rule
based on other prerequisite conditions. There are two cases for a defaultα : β

γ to not be
applied: the prerequisite is not known to be true (and so its negation¬α is consistent),
or the justification is not consistent (and so its negation¬β is derivable). For detecting
this case, we introduce a new, special-purpose predicatebl/1. Similarly we introduce a
special-purpose predicateap/1 to detect when a rule has been applied. For controlling
application of a rule we introduce predicatesok/1 andko/1.

We are given a default theory(D∪Dm,W) over languageL and its set of associated
default namesN ∪̇{m}. 2 Let

Dm =
{
nj : αj : βj

γj

∣∣ j = 1..k
}
.

(For simplicity, we reuse the symbolsj, k,m, nj , αj , etc. below.) We defineSm((D ∪
Dm,W)) = (D′,W ′) overL∗, obtained by extendingL to L∗ with new predicates
symbolsok/1, ko/1, bl/1, ap/1, and namesN ∪̇{m}, as follows

D′ = D ∪DN ∪DM

W ′ = W ∪WM ∪ {DCAN ,UNAN}

where

DN =
{
αj∧ok(nj) : βj
γj∧ap(nj)

∣∣∣ j = 1..k
}

(1)

DM =
{

:¬ko(m)
ok(n1)∧···∧ok(nk)

}
(2)

∪
{

:¬αj
bl(m) ,

(γ1∧···∧γk)⊃¬βj :
bl(m)

∣∣∣ j = 1..k
}

(3)

WM = {∀x ∈ N.in(x,m) ≡ (x = n1 ∨...∨ x = nk)} (4)

∪ {bl(m) ⊃ ko(m)} (5)

∪
{(
∀x ∈ N. in(x,m) ⊃ ap(x)

)
⊃ ap(m)

}
(6)

Clearly,DN contains the images of the original rules inDm. Each ruleδj ∈ DN is
applicable, ifok(nj) is derivable. In fact, we assertok(nj) for everyδj ∈ Dm, unless
we cannot jointly apply all rules ofDm. That is, before activating the constituent rules,
we have to make sure that none of them will be blocked. This is accomplished through
the justification¬ko(m) in (2) together with Axiom (5). We block Rule (2) (and with it
the derivability of allok(nj)) when we detect that one ofδ1, . . . , δk is blocked. That is,
ko(m) will be an immediate consequence ofbl(m).

Now, we have thatDm is blocked (bl(m)) just if some rule inDm is blocked.
However, since we must control a whole set of defaults, we must check for the blockage

2 We let∪̇ stand for disjoint union.

of one of the constituent default rules in the context of all other rules in the set applying.
For detecting the failure of consistency, we verify forDm and some set of formulasS
(cf. Definition 1), whetherS∪{γ1, . . . , γk} ` ¬βj rather thanS ` ¬βj . This motivates
the prerequisite of the second rule in (3). This context,(γ1 ∧ · · · ∧ γk), is not needed
for detecting the failure of derivability by means of the first rule in (3), since this test is
effectuated with respect to the final extensionE via¬αj 6∈ E.

Finally, as given in (6),Dm is applied (ap(m)) just if every rule inDm is applied; it
is only in this last case that the consequents of the constituent rules inDm are asserted.

Consider theory(D ∪Dm,W), where

D =
{

:E
E

}
, Dm =

{
n1 : :P

P , n2 : :S
S

}
. (7)

ForDN andDM , we obtain (after simplifying and removing redundant defaults):

ok(n1) :P
P∧ap(n1) ,

ok(n2) :S
S∧ap(n2) ,

:¬ko(m)
ok(n1)∧ok(n2) ,

(¬P∨¬S) :
bl(m) .

The in predicate has instances:in(n1,m) and in(n2,m). From (6) we can deduce
[ap(n1) ∧ ap(n2)] ⊃ ap(m).

Let W = {¬(P ∧ E ∧ S)}. We obtain two extensions, one containingP, S,¬E
and the other containingE,¬(P ∧ S). For the first case, we obtainok(n1) andok(n2).
If both δ1 andδ2 are applicable (which they are) then we concludeP ∧ ap(n1) and
S ∧ ap(n1) as well asap(m). From this we getP andS and so¬E. For the other ex-
tensions, if the default:EE is applied, then¬P ∨ ¬S is derivable, and so(¬P∨¬S) :

bl(m)

is applicable, from which we obtainbl(m), and soko(m), blocking application of
:¬ko(m)

ok(n1)∧ok(n2) . Consequently neitherok(n1) :P
P∧ap(n1) nor ok(n2) :S

S∧ap(n2) can be applied.
In the next example, defaults inside a set depend upon each other. Consider(∅ ∪

Dm, ∅) with

Dm =
{
n1 : :Q

Q , n2 : Q :R
R

}
.

We get forDN andDM the following rules.

ok(n1) :Q
Q∧ap(n1) ,

Q∧ok(n2) :R
R∧ap(n2) , :¬ko(m)

ok(n1)∧ok(n2) ,
(¬Q∨¬R) :

bl(m) , :¬Q
bl(m) .

We obtainok(n1), and ok(n2), which allow us to apply defaultδ1, yielding in turn
Q ∧ ap(n1). GivenQ, we can now apply defaultδ2, yieldingR ∧ ap(n2). This allows
us to deduceap(m). We thus get an extension containingQ andR.

The last example also shows why we cannot avoid the translation by replacingDm

by
∧
δ∈Dm PRE(δ) :

∧
δ∈Dm JUS(δ)∧

δ∈Dm CON(δ) . As well, in Section 4, this replacement would result in

an exponential blowup in the encoding.
The next theorem summarizes properties of our approach, and shows that rules are

applied either en masse, or not at all.

Theorem 1. LetE be a consistent extension ofSm((D ∪Dm,W)) for default theory
(D ∪Dm,W). We have that:

1. ap(m) ∈ E iff {ap(nδ) | δ ∈ Dm} ∪ CON(Dm) ⊆ E

2. bl(m) ∈ E iff {ap(nδ) | δ ∈ Dm} 6⊆ E
3. ok(nδ) ∈ E iff ap(nδ) ∈ E
4. ok(nδ) ∈ E for all δ ∈ Dm iff ko(m) 6∈ E
5. ap(nδ) ∈ E implies(ap(m) ∧ in(nδ,m)) ∈ E for someδ ∈ Dm

6. ap(nδ) ∈ E for δ ∈ Dm iff {ap(nδ) | δ ∈ Dm} ⊆ E.

Theorem 2. For default theory(∅∪D,W), we have thatSm((∅∪D,W)) has extension
E where eitherE ∩ L = Th(W ∪ CON(D)) or elseE ∩ L = Th(W).

The default theory
(
∅ ∪

{
:B
¬B
}
, ∅
)

has an extensionE whereE ∩ L = Th(∅).

Theorem 3. Let (D,W) be a (standard) default theory overL with extensionE and
(respective) set of generating defaultsGD(D,E). ThenSm((∅ ∪ GD(D,E),W)) has
extensionE′ whereE = E′ ∩ L.

4 Encoding extensions using sets

For encoding extensions of a normal default theory(D,W), we use the machinery de-
veloped in the previous section to determine maximal (with respect to set inclusion)
sets of applicable defaults. Names are introduced for each subset ofD, and for each
instance of a rule in each subset ofD. As well, new predicate symbols are introduced to
further control application of sets of rules. We then give a translation that yields a sec-
ond default theory(D′,W ′). Viewed algorithmically, this second theory carries out the
following: If the original set of defaultsD constitutes the set of generating defaults of
an extension, then a corresponding “ap”-literal is derived; all default consequences are
obtained; and all subsets of the defaults are rendered inapplicable. If this isn’t the case
(andD isn’t a set of generating defaults), we proceed along the partial order induced
by set inclusion and consider every setD \ {δ} for everyδ ∈ D to see whether it is a
set of generating defaults. Crucially, default conclusions are “tagged” with the name of
the set in which they appear so as to eliminate possible side effects.

To name sets of defaults, we take some fixed enumeration〈n1, . . . , nk〉 of N , and
definem as ak-ary function symbol. Then, forn⊥ 6∈ N , define

DCAM : ∀x1, . . . , xk. set-name(m(x1, . . . , xk)) ≡
(x1 = n1 ∨ x1 = n⊥) ∧ · · · ∧ (xk = nk ∨ xk = n⊥).

Intuitively, xi = n⊥ tells us thatni does not belong to the set at hand.
Accordingly, forx = x1..xk andx′ = x′1..x

′
k define

UNAM : ∀x,x′. set-name(m(x)) =
set-name(m(x′)) ≡ x1 = x′1 ∧ · · · ∧ xk = x′k .

The advantage of this “vector-oriented” representation over a dynamic one including
a binary function symbol (as with lists) is that each set has a unique representation.
We write∀x ∈ M. P (x) instead of∀x. set-name(x) ⊃ P (x). Further, we useM for
denoting the set of all valid set-names, that is,

M = {m | DCAM |= set-name(m)} .

In order to ease notation, we writem1,3 instead ofm(n1, n⊥, n3, n⊥, . . . , n⊥)
when representing the set{δ1, δ3}. Also, we abbreviatem(n⊥, . . . , n⊥) by m∅ and
m(n1, . . . , nk) bymD. Note the difference between namesni andmi, induced by our
notational convention.

We also rely on the “vector-oriented” representation for capturing set membership,
denoted byin/2. Consider for instanceN = {n1, n2}. Membership is then axiomatized
through the formulas

∀x1, x2. in(n1,m(x1, x2)) ≡ (n1 = x1)
∀x1, x2. in(n2,m(x1, x2)) ≡ (n2 = x2).

While this validatesin(n1,m1,2), it falsifiesin(n1,m2). See (15) for the general case.
We need to be able to refer to separate instances of the same default appearing

in different sets. For this we introduce a function-symbol·/2. For δj ∈ Di we write
nδj ·mi or nj ·mi to name the instance ofδj appearing inDi. This results in name set
N ·M = {n·m | n ∈ N,m ∈M}. Corresponding axioms, as DCAN ·M and UNAN ·M ,
are obtained in a straightforward way. In what follows, we refer to the various domain
closure and unique names axioms pertaining toN ,M , andN ·M asAx(N).3

Given languageL, we define a family of languagesL(m) for m ∈ M as follows.
If P is ani-ary predicate symbol thenP (·) is a distinct (i+ 1)-ary predicate symbol. If
γ ∈ L thenγ(m) ∈ L(m) is the formula obtained by replacing all predicate symbols
in γ with predicate symbols extended as described, and with termm as the(i + 1)st

argument. This extra argument is used to index formulas by the (names of) sets in which
they are used.

Lastly, we introduce special-purpose predicates for controlling the application of
sets of defaults. These are summarised in the following table:

Name Use/meaning
m < m′ Dm ⊂ Dm′

ok(e) It is ok to try to apply set/rulee
ap(e) Set/rulee is applied
bl(m) Not all rules in setm can be applied
ovr(m) Some set namedm′ is applied andm < m′

ko(m) For setm, bl(m) ∨ ovr(m) is true

Taking all this into account, we obtain the following translation, mapping default the-
ories in languageL onto default theories in the languageL+ obtained by unioning
all languagesL(m) for m ∈ M and using the aforementioned names and introduced
predicates and functions:

Definition 2. Given a finite default theory(D,W) over L and its set of associated
default namesN , defineE((D,W)) = (D′,W ′) overL+ by

D′ = DN ∪DM ∪D¬
W ′ = WD ∪WW ∪WM ∪W< ∪Ax(N)

3 Note that names inM andN ·M are obtained from those inN .

where

DN =
{
α(x)∧in(n,x)∧ok(n·x) : β(x)

γ(x)∧ap(n·x)

∣∣∣ n : α : β
γ ∈ D

}
(8)

DM =
{

ok(x) :¬ko(x)
∀y∈N. in(y,x)⊃ok(y·x)

}
(9)

∪
{
in(n,x)∧ok(x) :¬α(x)

bl(x)

∣∣∣ n : α : β
γ ∈ D

}
(10)

∪
{

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬β(x))∧ok(x) :
bl(x)

∣∣∣ (11)

n : α : β
γ ∈ D

}
D¬ =

{
:¬(x<y)
¬(x<y) ,

:¬in(x,y)
¬in(x,y)

}
(12)

WW = {∀x ∈M. α(x) | α ∈W} (13)

WD = {∀x ∈M. c(nδ, x) ≡ CON(δ)(x) | δ ∈ D} (14)

WM = {∀x1, . . . , xk. in(ni,m(x1, . . . , xk)) (15)

≡ (ni = xi) | ni in 〈n1, . . . , nk〉}
∪ {∀x, x′∈M.[∃y ∈ N.¬in(y, x) ∧ in(y, x′)] (16)

∧ [∀y. in(y, x) ⊃ in(y, x′)] ⊃ x < x′ }
W< = {ok(mD)} (17)

∪ {∀x ∈M
[
∀y ∈M.x < y ⊃ bl(y)

]
(18)

⊃ ok(x)}
∪ {∀x ∈M.

[
bl(x) ∨ ovr(x)

]
⊃ ko(x)} (19)

∪ {∀x ∈M
[
∀y ∈ N. in(y, x) ⊃ ap(y·x)

]
(20)

⊃ ap(x)}
∪ {∀x, x′ ∈M. ap(x) ⊃ (x′ < x ⊃ ovr(x′))} (21)

The rules inDN andDM directly generalise those in (1–3), from treating a single set
namedm to an arbitrary set referenced by variablex. The specific consequents used
in the second rule in (3) are dealt with via the axioms in (WD/14) that allows us to
quantify over default consequents (via predicatec). This trick avoids the exponential
blowup that would occur in (11) if we were to explicitly give the consequences of the
rules.

The rules in (D¬/12) provide us with complete knowledge on predicates< andin.
The axioms in (WW /13) propagate the information inW to all possible contexts.

WM takes care of what we need wrt set operations. That is, (15) formalises set
membership, while (16) formalises strict set inclusion.W< axiomatises the control flow
along the partial order induced by<. Axioms (17) and (18) tell us when it isok to
consider a certain set: we always consider the maximum setD; otherwise, via (18), we
consider a set just when every superset is known to be blocked (and so inapplicable).
(19) tells us when the consideration of a set is cancelled. This either happens because
a set is inapplicable (given bybl) or because it has been explicitly cancelled (given by
ovr). (20) asserts that a set is applied just if all of its member rules are. Once we have

found an applicable set of rules (and hence a set of generating defaults) we need not
consider any subset; (21) annuls the consideration of all such subsets.

For example, consider the following normal default theory:

∆22 =
({
n1 : :A

A , n2 : :B
B , n3 : :¬B

¬B , n4 : B :D
D

}
, ∅
)
. (22)

From E(∆22) we get an extension, where the only “ap-literals” areap(m1,2,4) and
ap(m1,3). That is,∆22 has two extensions with generating defaults, the first withδ1,
δ2, δ4, and the second withδ1, δ3. Among formulas in the extension ofE(∆22) are
A(m1,2,4), A(m1,3), B(m1,2,4), ¬B(m1,3), andD(m1,2,4). To see this, let us take a
closer look at the image of∆22, namelyE(∆22). ForDN , we get

in(n1,x)∧ok(n1·x) :A(x)
A(x)∧ap(n1·x)

in(n2,x)∧ok(n2·x) :B(x)
B(x)∧ap(n2·x) (23)

in(n3,x)∧ok(n3·x) :¬B(x)
¬B(x)∧ap(n3·x)

B(x)∧in(n4,x)∧ok(n4·x) :D(x)
D(x)∧ap(n4·x) (24)

We get a single nontrivial rule in (10), namely

in(n4,x)∧ok(x) :¬B(x)
bl(x) (25)

and four rules in (11)

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬A(x))∧ok(x) :
bl(x) (26)

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬B(x))∧ok(x) :
bl(x) (27)

([∀y∈N. in(y,x)⊃c(y,x)]⊃ B(x))∧ok(x) :
bl(x) (28)

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬D(x))∧ok(x) :
bl(x) (29)

Given ok(mD), we may consider any rule inDM . However, given that∀y ∈
N. in(y,mD) is true, we obtain that (14) and∀y ∈ N. in(y,mD) ⊃ c(y,mD) are
inconsistent and thus imply any formula. Consequently, rules (26) to (29) are appli-
cable and providebl(mD), yielding ko(mD), which in turn blocks (9) forx = mD.
From (16), we obtain (among other relations)m1,2,3 < mD, m1,2,4 < mD, m1,3,4 <

mD, andm2,3,4 < mD. From (18), we then getok(m1,2,3), ok(m1,2,4), ok(m1,3,4),
andok(m2,3,4).

Now, considerok(m1,2,4). From (9), we obtain

∀y ∈ N. in(y,m1,2,4) ⊃ ok(y·m1,2,4)

yieldingok(n1·m1,2,4), ok(n2·m1,2,4), andok(n4·m1,2,4). This allows us to apply three
of the four rules in (23/24) and we obtainA(m1,2,4) ∧ ap(n1·m1,2,4), B(m1,2,4) ∧
ap(n2·m1,2,4), andD(m1,2,4)∧ ap(n4·m1,2,4). From (20), we obtainap(m1,2,4), from
which we deduce with (21) in turnovr(m1,2,4), ovr(m2,4), . . . ,ovr(m4), andovr(m∅).

Next, considerok(m1,2,3). As with ok(mD), we obtain an inconsistency among
in(n1,m1,2,3), in(n2,m1,2,3), in(n3,m1,2,3), ∀y ∈ N. in(y,m1,2,3) ⊃ c(y,m1,2,3),
and (14). This validates the prerequisites of Rule (26), (27), and (28), thus yielding

bl(m1,2,3). As above, we then get fromWM thatok(m1,2), ok(m1,3), ok(m2,3). Note
that we have already obtainedovr(m1,2) from ap(m1,2,4).

Givenok(m1,3), (9) provides us withok(n1·m1,3) andok(n3·m1,3). Using the two
first rules in (23/24), we getA(m1,3) ∧ ap(n1·m1,3) and¬B(m1,3) ∧ ap(n3·m1,3).
From (20), we then getap(m1,3), from which we deduce with (21) in turnovr(m1),
ovr(m3), andovr(m∅) (again).

Given ok(m2,3), along with the fact thatin(n2,m2,3), in(n3,m2,3), ∀y ∈
N. in(y,m2,3) ⊃ c(y,m2,3), and (14) implyB(m2,3) and ¬B(m2,3), Rule (27)
and (28) fire and we getbl(m2,3).

The next results show that our default theories resulting fromE have appropriate
properties.

Theorem 4. LetE be a consistent extension ofE((D,W)) for normal default theory
(D,W). We have for allδ ∈ D and for allDm, Dm′ ⊆ D that:

1. (m < m′) ∈ E iff ¬(m < m′) 6∈ E
2. in(nδ,m) ∈ E iff ¬in(nδ,m) 6∈ E
3. ok(m) ∈ E if ovr(m) 6∈ E
4. ok(m) ∈ E if (ap(m) ∈ E or bl(m) ∈ E)
5. ap(m) ∈ E iff ko(m) 6∈ E
6. ko(m) ∈ E iff (bl(m) ∈ E or ovr(m) ∈ E)
7. ovr(m) ∈ E iff ap(m′) ∈ E andm < m′ ∈ E for somem′ ∈M .
8. If ap(m) ∈ E thenbl(m′) ∈ E for all m′ ∈M withm < m′ ∈ E.
9. If ap(m) ∈ E thenovr(m′) ∈ E for all m′ ∈M withm′ < m ∈ E.

10. If ap(m), ap(m′) ∈ E for then¬(m < m′) ∈ E
Theorem 5. If (D,W) is a normal default theory thenE((D,W)) has a unique exten-
sion.

The next two theorems show that our translation captures an encoding of extensions
of a normal default theory.

Theorem 6. Let (D,W) be a normal default theory and letE be the extension of
E((D,W)).

Then for anyap(m) ∈ E with m ∈ M , we have thatTh({γ | γ(m) ∈ E}) is an
extension of(D,W).

Theorem 7. Let (D,W) be a normal default theory with extensionsE1, ..., En andE
be the extension ofE((D,W)).

Then, for anyi ∈ {1, . . . , n}, there is somem ∈ M namingGD(D,Ei) such that
ap(m) ∈ E.

Lastly, our claim that a translated theory is “almost” a constant factor larger than
the original requires elaboration. UNAN yields a quadratic number of unique names
assertions. In practice this is no problem, since any sensible implementation would not
explicitly list such axioms. With the exception of unique names assertions, a translated
theory is a constant factor larger than the original. To see this, it suffices to examine
Definition 2. Each of (8, 10, 11, 14, 15) introduce|D| axioms/rules; (13) introduces|W |
axioms. All remaining terms introduce a single axiom. Moreover, the size of individual
axioms is similarly bounded. (For example, each instance of (8) is a constant factor
larger than the original default.)

5 Discussion

We have shown how we can encode a normal default theory so that the extension from
the encoding represents all extensions of the original theory. These results don’t rely on
the normal form of the defaults, but rather on the fact that normal default theories are
semi-monotonic, that is on the fact that ifE is an extension of(D,W), then there is an
extensionE′ ⊇ E of (D ∪D′,W). The results of the previous sections then extend to
any such theory.

The fact that we encode all extensions of a theory within a single extension means
that we can now encode phenomena of interest, usually dealt with at the metalevel, at
the object level. Specifically we can now encode the notions of skeptical and credulous
inference within a theory. In order to do this, we introduce two new constantsskep and
cred, for “skeptical” and “credulous” respectively.

A formula is a skeptical inference if it is a member of every extension. In our ap-
proach, this means that it follows in every “ap-set”. Hence we define skeptical inference
within a theory, for a given formulaγ, by

(∀x ∈M. ap(x) ⊃ γ(x)) ⊃ γ(skep).

For credulous inference there are a number of possibilities. The simplest is to assert that
a formula is a credulous inference if it is a member of some extension:

(∃x ∈M. ap(x) ∧ γ(x)) ⊃ γ(cred).

With this definition, a formula and its negation may be credulous inferences. A stronger
definition is to assert that a formula is a credulous inference if it is a member of some
extension, and its negation is a member of no extension. We can define this notion of
credulous inference (indicated bycred′) for a formulaγ by means of the default:

∃x ∈M. ap(x) ∧ γ(x) : ∀x ∈M. ap(x) ⊃ γ(x)
γ(cred′)

.

Hence in Example (22), we obtain thatA is a skeptical inference, whileD is a
cred′ulous inference.B and¬B arecredulous inferences.

We have suggested that the approach may be applicable in diagnosis programs,
such as found in [10]. Similarly, the approach can be used to directly encode applica-
tions expressible in Theorist [8]. That is, there is a correspondence between so-called
Poole-typetheories and Theorist with constraints [3]. Since Poole-type theories are
semi-monotonic, this means that our approach can encode any application encodable
in Theorist.

Our approach relies on a first-order language. Despite this, the image of a theory
over a finite language remains finite. As regards implementation, however, it is not
advisable to use a bottom-up grounding approach, as done in many implementations
of extended logic programming [4, 7]. Instead, a query-oriented approach seems to be
advantegous, because it may rely on unification rather than ground instantiation.

In Definition 2, sets of defaults were ordered based on the partial order given by
set containment. This order represents one example of apreferenceorder on sets of de-
faults. A natural avenue for future work would be to generalise our approach to address

arbitrary preference orders on sets of defaults. In an arbitrary preference order on sets,
one could represent desiderata as found in configuration, scheduling, or (generally)
decision-theoretic problems. This could also be combined with the present approach
yielding an encoding of preferences on extensions. Hence, for our diagnosis example,
we might want to prefer extensions (diagnoses) on the basis of an ordering based on
reliability of components.

6 Conclusion

We have described an approach for encoding default extensions within a single ex-
tension. Using constants and functions for naming, we can refer to default rules, sets
of defaults, and instances of a rule in a set. Via these names we can, first, determine
whether a set of defaults is its own set of generating defaults and, second, consider the
application of sets of defaults ordered by set containment. The translated theory requires
a modest increase in space: except for unique names axioms, only a contant-factor in-
crease is needed. The translated theory is a (regular, Reiter) default theory. Hence we
essentially axiomatise the notion of “extensions” for a class of default theories in a
single extension. Further, we are able to prove that our translation behaves correctly.

Using the approach we can now express notions such as skeptical and credulous
inference within a theory. Arguably this will prove beneficial in expressing at the object
level problems and approaches generally expressed at the metalevel. Areas of applica-
tion range from specific areas such as diagnosis, to broadly-applicable approaches such
as Theorist. Lastly, we suggest that the approach may be easily extended to address
arbitrary preferences over sets of defaults.

References

1. G. Brewka. Reasoning about priorities in default logic. InProceedings AAAI’94, pages
940–945. The AAAI Press, 1994.

2. J. Delgrande and T. Schaub. Expressing preferences in default logic.Artificial Intelligence,
123(1-2):41–87, 2000.

3. J. Dix. On cumulativity in default logic and its relation to Poole’s approach. In B. Neumann,
editor,Proceedings ECAI’92, pages 289–293. Wiley, 1992.

4. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for nonmono-
tonic reasoning. In J. Dix, U. Furbach, and A. Nerode, editors,Proceedings LPNMR’97,
pages 363–374. Springer, 1997.

5. J. McCarthy. Applications of circumscription to formalizing common-sense knowledge.
Artificial Intelligence, 28:89–116, 1986.

6. R. Moore. Semantical considerations on nonmonotonic logics.Artificial Intelligence, 25:75–
94, 1985.

7. I. Niemel̈a and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode, editors,Pro-
ceedings LPNMR’97, pages 420–429. Springer, 1997.

8. D. Poole. A logical framework for default reasoning.Artificial Intelligence, 36:27–47, 1988.
9. R. Reiter. A logic for default reasoning.Artificial Intelligence, 13(1-2):81–132, 1980.

10. R. Reiter. A theory of diagnosis from first principles.Artificial Intelligence, 32(1):57–96,
1987.

