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Abstract. Consistency-based approaches in nonmonotonic reasoning may be ex-
pected to yield multiple sets of default conclusions for a given default theory.
Reasoning about such extensions is carried out at the meta-level. In this paper, we
show how such reasoning may be carried out at the object level for a large class
of default theories. Essentially we show how one can translate a (normal) default
theory A, obtaining a second\’, such thatA’ has a single extension that encodes
every extension ofA. Moreover, our translated theory is only a constant factor
larger than the original (with the exception of unique names axioms). We prove
that our translation behaves correctly. In the approach we can now encode the no-
tion of extensiorfrom within the framework of standard default logic. Hence one
can encode notions such as skeptical and credulous conclusions, and can reason
about such conclusions within a single extension. This result has some theoretical
interest, in that it shows how multiple extensions of normal default theories are
encodable with manageable overhead in a single extension.

1 Introduction

In nonmonotonic reasoning, in so-callednsistency-baseapproaches such as default
logic [9] and autoepistemic logic [6], one typically obtains not just a single set of de-
fault conclusions, but rather multiple sets of candidate default conclusions. Consider
the by-now hackneyed example wherein Quakers are normally pacifist, republicans are
normally not, along with adults are normally employed. Assume as well that someone
is a Quaker, republican, and an adult. In default logic (see Section 2) this can be en-
coded by: ({955, Bl ALEY 1 R, A}). This theory has twextensionsr sets of
default conclusions, one containif@, R, A, E, P} and the othe{Q, R, A, E, ~P}.
In autoepistemic logic the same example appropriately encoded yields two analogous
expansion®r possible belief sets.

Reasoning about these extensions (resp. expansions) is carried out at the meta-level:
a default conclusion that appears in some extension (suél) &scalled acredulous
(or brave default conclusion, while one that appears in every extension (SUEl ias
called askepticalconclusion. Intuitively it might seem that skeptical inference is the
more useful notion. However, this is not necessarily the case. In diagnosis from first
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principles [10] for example, in one encoding there is a 1-1 correspondence between
diagnoses and extensions of the (encoding) normal default theory. Hence one may want
to carry out further reasoning to determine which diagnosis to pursue. More generally
there may be reasons to prefer some extensions over others, or to somehow synthesize
the information found in several extensions.

In this paper, we show how such reasoning can be carried out at the object level. For
a defaulttheoryA = (D, W), we translateA to obtain a second theory = (D', W'),
such thatA’ has a single extension that encodes every extensiah Gfiven this, one
can express in the theory what it means for something to be a skeptical or credulous
default conclusion. Our result isn’t completely general; however it appliemtmal
default theories. The translation has several desirable properties. The translated theory
A’ is only a constant factor larger than the origidglwith the exception of introduced
unigue names axioms. As well, vpeovethat our translation behaves correctly.

We first show for a set of defauli®,,, how, using an encoding, we can detect the
case wherein all defaults ibv,,, apply. From this, for a default theof\D U D,,,, W)
we show how to obtain a second theory wherein (informally) either all of the defaults
in D,, are applied en masse (if possible) or none of them are. This is done by nam-
ing each of the defaults i®,,, and then expressing in default logic the applicabil-
ity conditions for the defaults. We develop this in Section 3. In Section 4 we present
our main result, where we show how a default theory can be translated into a sec-
ond theory whose extension encodes the extensions of the original. Roughly we pro-
vide an axiomatisation that “locates” maximal sets of applicable defaults; for such
a set, the set of default conclusions is “tagged” with the set name, to distinguish it
from other instances. For example, in our original exampleydet be the name of
the set{ %, A EY andm, 3 be the name of £:3P AE} These are maximal
applicable sets of defaults, and from our translation we would obtain a single exten-
sion Containing{Q(ng),Q(m/273),R(m173),R(m273),A(m1,3), A(mg,g), E(m1,3),
E(mgy3),P(ma3),mP(m23)}. AS mentioned, we are able to prove that our transla-
tions in fact accomplish what is claimed.

The advantage of this approach is that we can encode the notion of extension within
the framework of standard default logic. Hence one can reason about (skeptical and
credulous) conclusions within the framework of a single extension of a default theory.
Thus for example, in a diagnosis setting one could go on and axiomatise notions of
preference among diagnoses having to do with, perhaps, number of faulty components,
or based on components expected to fail first. This result has some theoretical interest,
in that it shows (for theories that we consider) how multiple extensions are encodable,
with no significant overhead in a single extension. The overall approach is similar to
that of [2].

2 Default Logic

Default logic [9] augments classical logic bigfault rulesof the form 2. A default
rule isnormalif 3 is equivalent toy; it is semi-normaif 5 implies~. We sometimes
denote theprerequisitex of a defaultd by PRE(), its justification 5 by JUS6), and
its consequenty by CON(§). Accordingly, PRE D) is the set of prerequisites of all



defaults inD; JUS D) andCON(D) are defined analogously. Empty components, such

as no prerequisite or even no justifications, are assumed to be tautological. Semantically,
defaults with unbound variables are taken to stand for all corresponding instances. A
set of default rule and a set of formuladl’” form adefault theory( D, W) that may
induce a single or multiplextensiongn the following way [9].

Definition 1. LetA = (D, W) be a default theory. For any set of formulsislet I'4(.S)
be the smallest set of formul&$ such that

1. Wcys,
2. Th(S") = 5,
3. For any"‘#ﬁ e D,ifae S and-g ¢ Stheny € S,

A set of formulad? is an extension o\ iff Ix(E) = E.

Any such extension represents a possible set of beliefs about the world at hand. Further,
define for a set of formulaS and a set of default®, theset of generating default rules
asGD(D,S) = {6 € D | PREJ) € S and-JUS) ¢ S}.

3 Applying All, or None, of a Set of Defaults

In this section we consider the problem of how to apply all defaults in some set, or none
in the set. We will thus work with default theori¢®, W) having some distinguished
finite subsetD,,, C D. For making the seD,,, explicit, we denote such theories by
(D U D,,,W). The idea is that we wish to obtain extensiong bBfU D,,,, W) sub-
ject to the constraint thatll defaults inD,,, are applied, ononeare. For example, in
the theory({ 2} U {2, %52} ,0) we would want to obtain an extension contain-
ing A, but notB (since both defaults if £, <221 cannot be jointly applied). For
({2} u {2, <2},{C}) we would want to obtain an extension containidgB,
andD.

We begin by associating a unique name with each default. This is done by extending
the original language by a set of constdndé such that there is a bijective mapping
n : D — N.We write ns instead ofn(d) (and we often abbreviates, by n; to
ease notation). Also, for defaultalong with its name:, we sometimes write, : §
to render naming explicit. To encode the fact that we deal with a finite set of distinct
default rules, we adopt a unique names assertion (MNed domain closure assertion
(DCAy) with respect taV. So, for a name se&¥ = {n4,...,n;}, we add axioms

UNAy : ~(n; =n;) forall n;,n; € N with i #j
DCAy : Vx. name(z) = (x =ny V- -V =mng).

We writeVz € N. P(z) for Va. name(xz) D P(z).

We introduce a new constamtas the name of the designated ruleBgt. We relate
the name of the rule set denotedaywith the names of its members by introducing a
binary predicaten wherein(z,y) is true just if the default named byis a member

1 [5] first suggested naming defaults using a sedsgectunctions. See also [8, 1].



of the set named by. In this section, instances af. will be of the formin(-,m).
While we could get away with not using (andm) here, this additional machinery is
required in Section 4, and it is most straightforward to introduce it here. Note that we
do not need a full axiomatization of,, representing set membership, since we use it in
a very restricted fashion.

For applying all, or none, of the defaults iny,,, we need to be able to, first, detect
when a rule has been applied or is blocked and, second, control the application of a rule
based on other prerequisite conditions. There are two cases for a c%jﬁuh not be
applied: the prerequisite is not known to be true (and so its negatiois consistent),
or the justification is not consistent (and so its negatighis derivable). For detecting
this case, we introduce a new, special-purpose preditAteSimilarly we introduce a
special-purpose predicaip/1 to detect when a rule has been applied. For controlling
application of a rule we introduce predicatés' 1 andko/1.

We are given a default theofypUD,,,, W) over languagé€ and its set of associated
default namesVU{m}. 2 Let

Dy = {n; : 228 | j = 1.k}

(For simplicity, we reuse the symbojsk, m,n;, a;, etc. below.) We definé,,, ((D U
D,,,W)) = (D',W') over L*, obtained by extending to £* with new predicates
symbolsok/1, ko/1, bl/1, ap/1, and name&VU{m}, as follows

D'=DUDNUDy,
W' =W UWy U{DCAy,UNAy}

where
Dy = { bolm)eds | = 1.k} (1)
: —ko(m
Dy = {ok(71,1)/\~~(/\oz<(nk)} (2)
soag (YA AYR) DB .
U { g, anguiooBic | 1 k) 3)
Wy ={Vx € Nin(z,m)=(x=n1 V..Vz =ng)} 4)
U {bl(m) D ko(m)} (5)
U {(Vz € N.in(z,m) D ap(z)) D ap(m)} (6)

Clearly, Dy contains the images of the original rulesih,,. Each rulej; € Dy is
applicable, ifok(n;) is derivable. In fact, we assesk(n;) for everyd; € D,,, unless
we cannot jointly apply all rules ab,,,. That is, before activating the constituent rules,
we have to make sure that none of them will be blocked. This is accomplished through
the justification—ko(m) in (2) together with Axiom (5). We block Rule (2) (and with it
the derivability of allok(n;)) when we detect that one 6f, . . ., d; is blocked. That is,
ko(m) will be an immediate consequencetdfm,).

Now, we have thatD,, is blocked bl(m)) just if some rule inD,, is blocked.
However, since we must control a whole set of defaults, we must check for the blockage

2 We letU stand for disjoint union.



of one of the constituent default rules in the context of all other rules in the set applying.
For detecting the failure of consistency, we verify 105, and some set of formulas
(cf. Definition 1), whetheS U{v1, ...,y } - —0; rather tharS - —3;. This motivates
the prerequisite of the second rule in (3). This contéx,A - - - A ), is not needed
for detecting the failure of derivability by means of the first rule in (3), since this test is
effectuated with respect to the final extensigwvia ~«; € E.
Finally, as given in (6)D,,, is applied ép(m)) just if every rule inD,, is applied; it
is only in this last case that the consequents of the constituent rulgg iare asserted.
Consider theoryD U D,,,, W), where

D={£}, Dp={n:4, ng: ¢} 7)

For Dy andD,,, we obtain (after simplifying and removing redundant defaults):

ok(nyi): P ok(nz): S : ~ko(m) (=PV=S):
PAap(ni)? SAap(nz)?’ ok(ni)Aok(ngz)? bl(m)

The in predicate has instancesi(ny,m) andin(ng, m). From (6) we can deduce
[ap(n1) A ap(n2)] D ap(m).

Let W = {=(P A E A S)}. We obtain two extensions, one containifgS, —-F
and the other containing, —=(P A S). For the first case, we obtadérk(n;) andok(nz).
If both §; andd, are applicable (which they are) then we concludle\ ap(n;) and
S A ap(ny) as well asap(m). From this we gef” and.S and so-E. For the other ex-

tensions, if the default% is applied, then-P v =S is derivable, and sé%

is applicable, from which we obtaihl(m), and soko(m), blocking application of
—kolm) __ consequently neith g;gnf) nor 2kn2):5 can he applied.

ok(n1)Aok(ng) " PAaj SAap(nz) ]
In the next example, defaults inside a set depend upon each other. Cqffisider
D, 1) with

Dm = {m Ig, %) QiRR}
We get forDy and D, the following rules.

ok(ni1):Q QAok(na): R : —ko(m) (=QV-R):  :-Q
QAap(n1)’ RAap(n2) ok(ni)Aok(nz)’ bl(m) * bl(m)"

We obtainok(n;), and ok(ns), which allow us to apply defauli;, yielding in turn
Q A ap(n1). Given@, we can now apply defaul, yielding R A ap(n2). This allows
us to deducep(m). We thus get an extension containi@gand R.

The last example also shows why we cannot avoid the translation by repiaging

by AéEDm;?E(D&) :é\gﬁ(’g;" W), As well, in Section 4, this replacement would result in
€Dm

an exponential blowup in the encoding.
The next theorem summarizes properties of our approach, and shows that rules are
applied either en masse, or not at all.

Theorem 1. Let E be a consistent extension 8§, ((D U D,,, W)) for default theory
(D U Dy, W). We have that:

1. ap(m) € Eiff {ap(ns) | 6 € D,,} UCOND,,) C E



bl(m) € Eiff {ap(ns) |0 € Dy} € E
ok(ns) € Eiff ap(ns) € E

ok(ns) € Eforall § € D, iff ko(m) & E

ap(ns) € E implies(ap(m) A in(ns,m)) € E for somes € D,,
ap(ns) € Eford € D,, iff {ap(ns) | 0 € D, } C E.

ouhwnN

Theorem 2. For default theory()UD, W), we have thas,, ((lUD, W)) has extension
E where eithertE N L = Th(WW U CON(D)) or elseE N L = Th(W).

The default theory() U { <2} , 0) has an extensioF whereE N £ = Th(f).

Theorem 3. Let (D, W) be a (standard) default theory ovérwith extensionE and
(respective) set of generating default® (D, E). ThenS,,((0 U GD(D, E),W)) has
extensionE’ whereE = E' N L.

4 Encoding extensions using sets

For encoding extensions of a normal default thedy W), we use the machinery de-
veloped in the previous section to determine maximal (with respect to set inclusion)
sets of applicable defaults. Names are introduced for each subggtarid for each
instance of a rule in each subset/of As well, new predicate symbols are introduced to
further control application of sets of rules. We then give a translation that yields a sec-
ond default theory D', W”). Viewed algorithmically, this second theory carries out the
following: If the original set of default® constitutes the set of generating defaults of
an extension, then a correspondirag™literal is derived; all default consequences are
obtained; and all subsets of the defaults are rendered inapplicable. If this isn’t the case
(and D isn't a set of generating defaults), we proceed along the partial order induced
by set inclusion and consider every get\ {4} for everyd € D to see whetheritis a
set of generating defaults. Crucially, default conclusions are “tagged” with the name of
the set in which they appear so as to eliminate possible side effects.

To name sets of defaults, we take some fixed enumerétion . ., n;) of N, and
definem as ak-ary function symbol. Then, fat, ¢ N, define

DCAs : Vaq,...,x. Set-namém(zq,...,zx))
(t1=mVar=ni )N AN =nxg VI =n,).
Intuitively, x; = n, tells us that; does not belong to the set at hand.
Accordingly, forz = ..z, andz’ = zi..x}, define
UNA ), : Vx, z’. set-namém(x)) =
set-namém(z’)) =z =2\ A ANap =), .

The advantage of this “vector-oriented” representation over a dynamic one including
a binary function symbol (as with lists) is that each set has a unique representation.

We writeVx € M. P(z) instead ofvx. set-namér) D P(z). Further, we usé/ for
denoting the set of all valid set-names, that is,

M = {m | DCA) |= set-namém)} .



In order to ease notation, we writey; 3 instead of m(ny,ni,ng,ni,...,n1)
when representing the séb;, d3}. Also, we abbreviaten(n,...,n ) by my and
m(n1,...,n,) by mp. Note the difference between namesandm;, induced by our
notational convention.

We also rely on the “vector-oriented” representation for capturing set membership,
denoted byn /2. Consider for instanc& = {n1, ny}. Membership is then axiomatized
through the formulas

Va1, za. in(ny, m(zy, 22)) = (N1 = 21)

Va1, zo. in(ng, m(zy1, 22)) = (ng = x2).

While this validatesn(ni, mq 2), it falsifiesin(ni, ms). See (15) for the general case.

We need to be able to refer to separate instances of the same default appearing
in different sets. For this we introduce a function-symb@. For; € D; we write
ns;-m; Of n;-m; to name the instance ¢f appearing inD;. This results in name set
N-M = {n-m | n € N,m € M}. Corresponding axioms, as DGAy,; and UNAy.»s,
are obtained in a straightforward way. In what follows, we refer to the various domain
closure and unique names axioms pertaining/ta\/, andN-M asAz(N).2

Given languageC, we define a family of language®(m) for m € M as follows.

If P is ani-ary predicate symbol theR(-) is a distinct { + 1)-ary predicate symbol. If

~v € L thenvy(m) € L(m) is the formula obtained by replacing all predicate symbols

in v with predicate symbols extended as described, and with teras the(i + 1)
argument. This extra argument is used to index formulas by the (names of) sets in which
they are used.

Lastly, we introduce special-purpose predicates for controlling the application of
sets of defaults. These are summarised in the following table:

Name |Use/meaning

m C m'|Dy, C D,

ok(e) |Itis ok to try to apply set/rule

ap(e) |Set/rulee is applied

bl(m) |Not all rules in sein can be applied
ovr(m) |Some set named’ is applied andn C m’
ko(m) |For setm, bl(m) V ovr(m) is true

Taking all this into account, we obtain the following translation, mapping default the-
ories in languagel onto default theories in the language obtained by unioning

all language<.(m) for m € M and using the aforementioned names and introduced
predicates and functions:

Definition 2. Given a finite default theoryD, W) over £ and its set of associated
default namesV, define€((D, W)) = (D', W') over L™ by

D/:DNUDMUDﬂ
W/:WDUWWUWMUWEUAI'(N)

3 Note that names i/ andN-M are obtained from those iN.



where

o a(z)ANin(n,z)Aok(n-x): B(x L
Dy *{ = ’y((fﬂ)/zap(n(-m)) = ’ " TB € D} (8)
_ ok(z) : —ko(x)
IV {VyEN. in(y,x)Dok(y-x) } (9)
U { in(n,a:)/\;l((é;;):ﬁa(m) n :aT:ﬁ c D} (10)
U { ([VyeN. in(y,w)ch(lzg;;)]jﬂﬁ(z))Aok(a:): ‘ (11)
.a:f
_ ) io(@@Cy) :oin(z,y)
D.= { ~@Ey) (o) } (12)
Ww ={Ve e M. a(z) | a € W} (13)
Wp = {Vx € M.c(ns,z) = CON(d)(z) | 6 € D} (14)
Wiy = {Vxq, ..., 2k in(n;, m(zy, ..., zx)) (15)
= ;=) | niin{ny,...,ng)}
U {Vz,z' € M.[Fy € N.~in(y,z) A in(y,z’)] (16)
A Vy.in(y,z) Din(y,2’)] Dz C 2’}
We = {ok(mp)} 7
U{Vz e M[Vye M.z Cy D bl(y)] (18)
D ok(z)}
U {Va € M. [bl(z) V ovr(z)] D ko(z)} (19)
U {Vz € M [Vy € N.in(y,z) D ap(y-z)] (20)
D ap(z)}
U {Vx,2’ € M.ap(z) D (2’ © z D ovr(z'))} (21)

The rules inDy and D, directly generalise those in (1-3), from treating a single set
namedm to an arbitrary set referenced by variableThe specific consequents used
in the second rule in (3) are dealt with via the axiomsTi¥i{/14) that allows us to
quantify over default consequents (via predicgteThis trick avoids the exponential
blowup that would occur in (11) if we were to explicitly give the consequences of the
rules.

The rules in P_/12) provide us with complete knowledge on predicatesndin.

The axioms in 'y, /13) propagate the information i to all possible contexts.

W takes care of what we need wrt set operations. That is, (15) formalises set
membership, while (16) formalises strict set inclusidi: axiomatises the control flow
along the partial order induced hy. Axioms (17) and (18) tell us when it isk to
consider a certain set: we always consider the maximurvsetherwise, via (18), we
consider a set just when every superset is known to be blocked (and so inapplicable).
(19) tells us when the consideration of a set is cancelled. This either happens because
a set is inapplicable (given ) or because it has been explicitly cancelled (given by
ovr). (20) asserts that a set is applied just if all of its member rules are. Once we have



found an applicable set of rules (and hence a set of generating defaults) we need not
consider any subset; (21) annuls the consideration of all such subsets.
For example, consider the following normal default theory:

Ay = ({n1 14 g+ 22 my 58 my - B52Y 1 0). (22)

From £(As2) we get an extension, where the onlyp*literals” areap(m42,4) and
ap(my3). That is, Ayy has two extensions with generating defaults, the first with
02, 04, and the second with;, 3. Among formulas in the extension & A,;) are
A(mi24), A(mas), B(mi24), 7B(my 3), andD(m; 2 4). TO see this, let us take a
closer look at the image a2z, namelyE(Asz). For Dy, we get

in(ny,x)Nok(ni-z): A(z)  in(na,x)Aok(nz-z): B(z) (23)
A(xz)Nap(ny-x) B(xz)Nap(nz-x)
in(ns,x)Aok(nz-xz): =B(z)  B(x)Ain(na,x)Aok(ns-z): D(z)
3ﬁB(ar;)/\aps(’rLg,~9L') D(:)/\GP(WL;) (24)

We get a single nontrivial rule in (10), namely

in(maw)/:]cl)(kx) :~B(z) (25)
and four rules in (11)
([vyeN. in(y@))célzé,;))]D—\A(w))/\ok(w): (26)
([VyeN. z‘n(y,w)Dcélg?f))bﬂB(w))Aok(z): 27)
([VyeN. in(y,w))c&%;}g)]) B(z))Nok(z) : (28)
([VyeN. in(y,x)Dcély(,zcc))]j—\D(m))/\ok(z): (29)

Given ok(mp), we may consider any rule iD,;. However, given thatvy <

N. in(y, mp) Is true, we obtain that (14) andy € N. in(y,mp) D c(y,mp) are
inconsistent and thus imply any formula. Consequently, rules (26) to (29) are appli-
cable and provid®l(mp), yielding ko(mp), which in turn blocks (9) forx = mp.

From (16), we obtain (among other relatioms) 3 C mp, mi24 C mp, mi,3.4 T

mp, andm2,374 C mp. From (18), we then g&tk(m172,3), ok(m17274), ok(m173,4),
andok(m2,374).

Now, considebk(ms 2.4). From (9), we obtain

Yy € N.in(y,m1,2,.4) D ok(y-m12.4)

yieldingok(n1-m1 2,4), ok(ng-m1 2,4), andok(ns-mq 2 4). This allows us to apply three
of the four rules in (23/24) and we obtaifi(m; 2 4) A ap(n1-mi2,4), B(mi2,4) A
ap(ng-mi 2,4), andD(my 2 4) Aap(na-mq 2.4). From (20), we obtaiap(m; 24), from
which we deduce with (21) in turevr(mq 2,4), ovr(mz 4), .. .,ovr(my), andovr(my).

Next, considefok(my 2 3). As with ok(mp), we obtain an inconsistency among
in(n17m172)3), in(ng,ml,zg), in(ng, m172}3), Vy € N. in(y,m1}273) D) c(y,m172,3),
and (14). This validates the prerequisites of Rule (26), (27), and (28), thus yielding



bl(mq,2,3). As above, we then get frofV,,; thatok(m 2), ok(my 3), ok(mz 3). Note
that we have already obtainedr(m4 o) fromap(mi 2.4).

Givenok(m 3), (9) provides us witlok(n,-m4 3) andok(ng-m; 3). Using the two
first rules in (23/24), we geti(m1 3) A ap(ni-my 3) and—B(mq 3) A ap(ns-mq3).
From (20), we then gedp(m; 3), from which we deduce with (21) in turevr(m;),
ovr(ms), andovr(my) (again).

Given ok(ms3), along with the fact thatn(ng,ma3), in(ns,mags), Yy €
N. in(y,mgyg) > c(y,m273), and (14) |mp|yB(m273) and —|B(m273), Rule (27)
and (28) fire and we géi (mg 3).

The next results show that our default theories resulting féohave appropriate
properties.

Theorem 4. Let E be a consistent extension &f(D, W)) for normal default theory
(D,W). We have for alb € D and for all D,,,, D,,» C D that:

.(mCm)eEiff-(mCcm)¢E

. in(ng,m) € Eiff ﬁin(ntg, m)¢E

. ok(m) € E if ovr(m) ¢

. ok(m )EEIf(ap(m) eEorbI( ) € E)

ap(m) € E iff ko(m) ¢

. ko( ) € Eiff (bl(m) € Eor ovr(m) € E)

. ovr(m) € Eiffap(m’) € Eandm = m’ € E forsomem’ € M.

. Ifap(m) € E thenbl(m’) € E forall m’ € M withm = m’ € E.

. Ifap(m) € E thenovr(m') € E forall m’ € M withm' — m € E.
10. Ifap(m),ap(m’) € E forthen-(mCm’) € E

Theorem 5. If (D, W) is a normal default theory thefi((D, W)) has a unique exten-
sion.

The next two theorems show that our translation captures an encoding of extensions
of a normal default theory.

Theorem 6. Let (D, W) be a normal default theory and €t be the extension of
E((D,W)).

Then for anyap(m) € E withm € M, we have thafh({y | v(m) € E}) is an
extension of D, W).

Theorem 7. Let (D, W) be a normal default theory with extensiofs, ...
be the extension &f((D, W)).

Then, for anyi € {1,...,n}, there is somen € M namingGD(D, E;) such that
ap(m) € E.

Lastly, our claim that a translated theory is “almost” a constant factor larger than
the original requires elaboration. UNAyields a quadratic number of unique names
assertions. In practice this is no problem, since any sensible implementation would not
explicitly list such axioms. With the exception of unique names assertions, a translated
theory is a constant factor larger than the original. To see this, it suffices to examine
Definition 2. Each of (8, 10, 11, 14, 15) introduld®| axioms/rules; (13) introduce®/|
axioms. All remaining terms introduce a single axiom. Moreover, the size of individual
axioms is similarly bounded. (For example, each instance of (8) is a constant factor
larger than the original default.)

,E,andFE



5 Discussion

We have shown how we can encode a normal default theory so that the extension from
the encoding represents all extensions of the original theory. These results don’t rely on
the normal form of the defaults, but rather on the fact that normal default theories are
semi-monotonichat is on the fact that i/ is an extension of D, W), then there is an
extensionr’ O E of (D U D', W). The results of the previous sections then extend to
any such theory.

The fact that we encode all extensions of a theory within a single extension means
that we can now encode phenomena of interest, usually dealt with at the metalevel, at
the object level. Specifically we can now encode the notions of skeptical and credulous
inference within a theory. In order to do this, we introduce two new constaagsand
cred, for “skeptical” and “credulous” respectively.

A formula is a skeptical inference if it is @ member of every extension. In our ap-
proach, this means that it follows in everyp-set”. Hence we define skeptical inference
within a theory, for a given formulg, by

(Vz € M. ap(x) D v(x)) D v(skep).

For credulous inference there are a number of possibilities. The simplest is to assert that
a formula is a credulous inference if it is a member of some extension:

(3 € M. ap(x) A y(x)) D vy(cred).

With this definition, a formula and its negation may be credulous inferences. A stronger
definition is to assert that a formula is a credulous inference if it is a member of some
extension, and its negation is a member of no extension. We can define this notion of
credulous inference (indicated byed’) for a formulay by means of the default:

dr e M. ap(z) Ay(x) : Vo e M. ap(x) D v(z)
~(cred")

Hence in Example (22), we obtain that is a skeptical inference, whileD is a
cred'ulous inferenceB and—B arecredulous inferences.

We have suggested that the approach may be applicable in diagnosis programs,
such as found in [10]. Similarly, the approach can be used to directly encode applica-
tions expressible in Theorist [8]. That is, there is a correspondence between so-called
Poole-typetheories and Theorist with constraints [3]. Since Poole-type theories are
semi-monotonic, this means that our approach can encode any application encodable
in Theorist.

Our approach relies on a first-order language. Despite this, the image of a theory
over a finite language remains finite. As regards implementation, however, it is not
advisable to use a bottom-up grounding approach, as done in many implementations
of extended logic programming [4, 7]. Instead, a query-oriented approach seems to be
advantegous, because it may rely on unification rather than ground instantiation.

In Definition 2, sets of defaults were ordered based on the partial order given by
set containment. This order represents one exampl@affarenceorder on sets of de-
faults. A natural avenue for future work would be to generalise our approach to address



arbitrary preference orders on sets of defaults. In an arbitrary preference order on sets,
one could represent desiderata as found in configuration, scheduling, or (generally)
decision-theoretic problems. This could also be combined with the present approach
yielding an encoding of preferences on extensions. Hence, for our diagnosis example,
we might want to prefer extensions (diagnoses) on the basis of an ordering based on
reliability of components.

6 Conclusion

We have described an approach for encoding default extensions within a single ex-
tension. Using constants and functions for naming, we can refer to default rules, sets
of defaults, and instances of a rule in a set. Via these names we can, first, determine
whether a set of defaults is its own set of generating defaults and, second, consider the
application of sets of defaults ordered by set containment. The translated theory requires
a modest increase in space: except for unique names axioms, only a contant-factor in-
crease is needed. The translated theory is a (regular, Reiter) default theory. Hence we
essentially axiomatise the notion of “extensions” for a class of default theories in a
single extension. Further, we are able to prove that our translation behaves correctly.

Using the approach we can now express notions such as skeptical and credulous
inference within a theory. Arguably this will prove beneficial in expressing at the object
level problems and approaches generally expressed at the metalevel. Areas of applica-
tion range from specific areas such as diagnosis, to broadly-applicable approaches such
as Theorist. Lastly, we suggest that the approach may be easily extended to address
arbitrary preferences over sets of defaults.
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