Lemma Handling in Default Logic Theorem Provers

Thomas Linke! and Torsten Schaub?*

! AG Knowledge-Based Systems, Faculty of Technology, University of Bielefeld,
D-33501 Bielefeld, tlinke@techfak.uni-bielefeld.de
2 Theoretische Informatik, TH Darmstadt, Alexanderstrae 10, D-64283 Darmstadt,
schaub@iti.informatik.th-darmstadt.de
Abstract. We develop an approach for lemma handling in automated the-
orem provers for query-answering in default logics. This work builds on the
concept of so-called lemma default rules. We show how different forms of
such lemmas can be incorporated for reducing computational efforts.

1 Introduction

In automated theorem proving, one often caches lemmas, ie. auxiliary proposi-
tions used in the demonstration of several propositions, in order to reduce com-
putational efforts. This renders the integration of lemma handling of great prac-
tical relevance in automated theorem proving. Unfortunately, such a technique
is not applicable in default logics [8], since the addition of derived propositions
to default theories may change the entire set of conclusions [7].

The central concepts in default logic are default rules along with their induced
extensions of an initial set of facts. Default logic augments classical logic by
default rules that differ from standard inference rules in sanctioning inferences
that rely upon given as well as absent information. Hence, a default rule 28 hag

7,

two types of antecedents: A prerequisite a which is established if « is derivable
and a justification B which is established if § is consistent in a certain way. If
both conditions hold, the consequent v is concluded by default. A set of such
conclusions (sanctioned by a given set of default rules and by means of classical
logic) is called an extension of an initial set of facts. At this point it should be
clear that the need to incorporate lemmas is even greater in default theorem
proving than in standard theorem proving, since computation in default logics
not only involves deduction but also consistency checks.

We further develop an approach to lemma handling in default logics, intro-
duced in [9]. The idea is to change the status of a default conclusion whenever
it is added to a world-description by turning it into a new default rule. This
default rule comprises information about the default proof of the original con-
clusion and so tells us when its proof is valid or not. In what follows, we elaborate
the implementation of this method. This is accomplished by extending an exist-
ing algorithm for query-answering in default logics [10]. The whole approach is
developed for a variant of default logic, known as constrained default logic [3].

2 Lemma Handling in Default Logics

Knowledge is represented in default logics by default theories (D, W) consisting
of a consistent? set of formulas W and a set of default rules D. A normal default

* On leave from IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
3 The restriction to consistent set of facts is not really necessary, but it simplifies
matters.



theory is restricted to normal default rules whose justification is equivalent to
the consequent. In any default logic, default rules induce one or more extensions
of an initial set of facts.

Since [8], it is well-known that query-answering in default logics is only feasible
in the presence of the property of semi-monotonicity: If D’ C D for two sets of
default rules, then if E’ is an extension of (D’, W) then there is an extension E of
(D, W) such that £’ C E. Given this property, it suffices to consider a relevant
subset of default rules while answering a query, since applying other default
rules would only enlarge or preserve the partial extension at hand. Also, semi-
monotonicity implies that extensions are constructible in a truly iterative way by
applying one applicable default rule after another. Due to the semi-monotonicity
of constrained default logic, one thus obtains the following specification [10]:

Theorem 1. For a default theory (D, W) and sets of formulas E and C, (E,C)
is a constrained extension of (D, W) iff there is some mazimal D' C D that has
an enumeration (0;);c; such that for i € I the following conditions hold.

1. E=Th(W U Cons(D")) and C =Th(W U Just(D")U Cons(D"))

2. WU Cons({éo,...,0;—1}) b Pre(d;)

3. WU Cons({do, ..., 0;i—1}) U Just({do, . .., 0i—1}) I ~Just(d;) V ~Cons(6;)
Condition (2) spells out that D’ has to be grounded in W. In general, a set of
default rules D is grounded in a set of facts W iff there exists an enumeration
(0;)ier of D that satisfies Condition (2). Condition (3) expresses the notion of
incremental consistency. Here, the “consistent” application of a default rule is
checked at each step, whereas this is done wrt to the final set of constraints in
the usual definition of a constrained extension (cf. [3]). A default proof D, for a
formula ¢ from a default theory (D, W) is a a sequence of default rules (d;);er
such that W U {Cons(d;) | i € I} + ¢ and Condition (2) and (3) in Theorem 1
are satisfied for all € I. Then, one can show that ¢ € E’ for some constrained
extension (E’,C") of (D, W) iff ¢ has a finite default proof D, from (D, W).

[9] introduced an approach to lemma handling in Reiter’s and constrained de-
fault logic. In what follows, we focus on the latter and introduce the notion
of a lemma default rule: For lemmatizing? a default conclusion, we take this
conclusion along with one of its default proofs and construct the corresponding
lemma default rule in the following way [9].

Definition 2. Let D, be a default proof of a formula ¢ from default theory
(D,W). We define a lemma default rule o, for ¢ wrt (D, W) as

: Nsep, Just(0) A Nsep. Cons(0)
dp = £ £ .

2

[9] shows that the addition of lemma default rules does not alter the constrained
extensions of a given default theory: Let d, be a lemma default rule for ¢. Then,
(E,C) is a constrained extension of (D, W) iff (E,C) is a constrained extension
of (D U{é,},W). So, the approach provides a simple solution for generating
and using lemma defaults. Whenever we lemmatize a conclusion, we change its
representation into a default rule and add it to the default rules of a considered

4 Te. to introduce a derivable theorem as a lemma by adding it to the initial theory.



default theory. So lemma defaults are abbreviations for the default inferences
needed for deriving a conclusion. This approach is discussed in detail in [9].
There, it is also contrasted with the one taken in [2].

In fact, we do not have to transform a default conclusion into a lemma de-
fault rule if we focus on constrained extensions that are “compatible” with the
underlying constraints imposed by the conclusion’s default proof:

Theorem 3. Let 0, be a lemma default rule for ¢ wrt a default theory (D, W).
Then, we have for all sets of formulas E and C where C' U Just(d,) U {p} is
consistent that (E,C) is a constrained extension of (D, W) iff (E,C) is a con-
strained extension of (D, W U {¢}).

This result justifies the use of so-called dynamic lemmas, which are applicable
in the course of a proof search without consistency checks due to the (previously
established) consistency of Just(d,) U {¢} with the default proof segment at
hand. In contrast to dynamic lemmas, we call a lemma default rule 6, static,
if it was generated in an independent default proof. In such a case, merely the
consistency with the default proof segment at hand has to be checked in order to
apply 6. Algorithmically, let A(p, D, W) be a boolean algorithm returning true
iff ¢ is in some constrained extension (E,C) of (D, W). Then, a lemma default
rule 6, of (D, W) is supplied as a static lemma to A if it is used as a default
rule, as in A(p, D U {d,}, W). If additionally for some D’ C D, we have W U
Just(D")U Cons(D")U Just(d,)U{¢} is consistent, then d, is dynamically usable,
via a “call” A(p, D,W U {¢}). With Theorem 3 we have A(p, DU {d,}, W) iff
A(p, D,W U{¢}) for dynamic lemma default rules.

Consider for example the statements “profs are typically adults”, “adults are
typically employed”, “employed people typically have money”, and “employed
people having money typically buy cars”, which yields the following theory.

({5 455 50 272 AP (1)

Consider the query B, asking whether profs buy cars. Proving this, by defi-
nition of a default proof, is to form a sequence (0;);c; of default rules such
that B follows from {P} U {Cons(d;) | i € I}. For proceeding in a query-
oriented manner, we have to form this sequence by starting with the right-
most default rule in sequence (d;);e; and working our way “down” to the facts
while satisfying Condition (2) and (8) of Theorem 1. So let us put the default
rule EA'# at the end of the sequence. This can be done, if we can derive
(E A M) from the remaining default rules together with {P}. That is, we have
to prove in turn F and, independently, M. This can be done by means of
the default proofs Dg = <P—;‘A,A%EE> and Dj = <P—A‘4,%,%> for
E and M, respectively. For the query B, we then obtain the default proof
Dp = <PAA, ‘%ﬁ, %, Lj\ﬁ) . Observe that this approach bears a certain
redundancy due to Dg C Dj;. That is, if we build the default proof Dpg in
the aforementioned way, we consider the subsequence (Pff‘, ATE> twice. Con-
sequently, we also have to check conditions (2) and (3) of Theorem 1 twice for
each default rule in this default proof segment. However, this redundancy can
be avoided by means of lemma default rules. Suppose, we first build the default

proof Dg = <¥7 A—EE> and lemmatize the conclusion E afterwards. This yields




the lemma default rule 0 = % Notably, this lemma default rule can be used

for simplifying the second default proof

Dy = (B4, 42, 51 1o Diy = (4%, )

without any consistency checks. That is, not even the justification of dg, A A
E, has to be checked for consistency, since the underlying default proof Dpg
constitutes a viable segment of the actual default proof. In fact, the treatment
of ‘ATAE in the course of the proof search for B gives an example for handling
dynamic lemma default rules. That is, a dynamic lemma default rule is applicable
without any consistency checks due to the contribution of the underlying default
proof to the default proof of the original query. Clearly, this approach is of great
practical relevance since it reduces computational efforts in a significant way.
In addition to using §g as a dynamic lemma, we can generate and keep lemma
default rules, like g and dy; = :A/\#, for later usage. Then, during a later
proof search, we can use dg and dp; as static default rules with the usual con-
sistency check. Notably, in any case, none of the default proofs underlying dg
and §p7, namely Dg and D), have then to be reconsidered. Note also that the
use of static lemma default rules leads to even shorter proofs than in the case of
dynamic lemmas, because we can directly jump to the desired conclusions.

3 Lemma Handling while Query-Answering

The general idea of our algorithmic approach is to proceed in a query-oriented
manner. For this, we extend the approach taken in [10]. In fact, [10] gives an
algorithm following the line of Theorem 1. Even though this algorithm relies on
the connection method [1], it can as well be seen as an algorithm based on model
elimination [6]. Both deduction methods allow for testing the unsatisfiability of
formulas in conjunctive normal form (CNF) and can be outlined as follows.? The
proof procedures are carried out by means of two distinct inference operations,
called extension and reduction operation. An extension operation amounts to
Prolog’s use of input resolution. That is, a subgoal, say K, is resolved with an
input clause, say {.J, =K, L}, if the subgoal is complementary to one of the literals
in the selected clause, here =K. This yields two new subgoals, J and L. The
reduction operation renders the inference system complete: If the current subgoal
is complementary to one of its ancestor subgoals, then the current subgoal is
solved. In the connection method the ancestor goals are accumulated in a so-
called path, which intuitively corresponds to a path through a CNF obtained by
taking the ancestor subgoal from each previous input clause.

In what follows, we refine the approach taken in [10] in order to incorporate
the generation and application of lemma default rules. For this purpose, we
redefine the predicate compl(p, Cw, Cp) used in [10] as a declarative description
of a query-answering algorithm in default logics. But first let us introduce some
notions we use later on. We say a default theory (D, W) is in atomic format
if all formulas occuring in the defaults in D are atomic. A general method to
transform default theories in their atomic format is described in [10]. In what
follows, we consider only propositional default theories in atomic format.

® For a detailed description the reader is referred to [1, 6].



In order to find out whether a formula ¢ is in some extension of a default
theory (D, W) we proceed as follows: First, we transform the default rules in
D into their sentential counterparts. This yields a set of indexed implications:
Wp = {as = v | O“;—f‘ € D}. Second, we transform both W and Wp into
their clausal forms, Cy and Cp. The clauses in Cp, like {—as, s}, are called §-
clauses; accordingly, lemma §-clauses are simple unit-clauses, like {vs}; all other
clauses like those in Cyy are referred to as w-clauses. For any set of formulas S,
let Cg be the set of clauses corresponding to the CNF of S.

Now, let us turn to our extension of the algorithm proposed in [10]: We define a
predicate compl such that compl(—p, Cw,Cp) is true iff there is a default proof
of ¢ from (D, W). The first argument of the predicate is a set of literals describing
a partial path containing all ancestor goals, the second argument represents a
set of w-clauses, and the last argument accounts for §-clauses. For incorporating
lemma generation, we define a lemma operator as follows. Let (D, W) be default
theory and S some set of literals. For Cp: C Cp, we define

Civ(Cor) = {{¢} | v € S and compl({~¢}, Cw, Cp1)}.
For distinguishing the components of the default theory, say (D°,W°), from
formal parameters, let Cy;, and C%, be fixed sets of w- and d-clauses corresponding
to the original sets W° and D°, respectively. Cyy and C'p function as parameters.

Definition4. Let Cyy C CYyy, be a set of w-clauses, Cp C Cp, be a set of -
clauses, Cp, C Ci,.(C9) be a set of (static) lemma J-clauses and S be a set
of literals. Let Cpp, = Cp U Cp be the set of all -clauses. Then, we define
compl(p, Cw,Cpr) relative to Cy, as follows.

1. If Cw U Cpr = 0 then compl(p, Cw,Cpr) is false.
2. If Cw # 0 and c € Cyw then compl(p, Cw,Cpyr) is true iff the following two
conditions hold for ¢ = c1 U cs.

(a) for all K € ¢1, K is complementary to some literal of p.

(b) for all K € ca, there is a set of 0-clauses Cpxy € Cpr and a set
of (dynamic) lemma 6-clauses C7 C Cijyo (Ugee, Cn(x)) such that the
following two conditions hold.

i. compl(pU{K},(Cw \ {c}) UCT,Cpk)) is true.
ii. compl(Just(Ug e, D(K)),Cyy UUkee, Cp(x), D) is false.
3. If Cp # 0 and c € Cp then compl(p, Cw,Cpyr) is true iff the following two

conditions hold for ¢ = {—as, 75}

(a) ~vs is complementary to some literal of p.

(b) There is a set of §-clauses Cp(-az) € Cpr and a set of (dynamic) lemma
d-clauses C7 C C%O(C’D(ﬁaé)) such that {—as,vs} € Cpr \ Cp(-ays) and
the following two conditions hold.

i. compl({—as}, Cyy U CT, Cp(aay)) i true.
it. compl(Just(D(—as) U{6}), Ciy U Cp(aay) U {{—as, s}, 0) is false.
4. If Cp, # 0 and ¢ € Cr, then compl(p, Cw,Cpr) is true iff the following two
conditions hold for ¢ = {vs}.
(a) ~vs is complementary to some literal of p.
(b) compl(Just(8),Cy, U{{ys}},0) is false.



The preceding algorithm is an extension of the standard algorithm for the con-
nection method given in [4]. In fact, the first two conditions provide a sound and
complete algorithmic characterization of the standard connection method (see
[4] for details) when discarding all d-clauses. While Condition (1) accounts for
the limiting case, Condition (2) deals with w-clauses. (2a) corresponds to the
aforementioned reduction operation, while (2b7) is an extension operation. Con-
dition (2bii) was added in [10] in order to guarantee the compatibility of multiple
subproofs found in (2bi). Condition (3) deals with é-clauses:® (3a) corresponds
to (2a) and says that the consequent of a default rule s can be used for query-
answering as any other proposition—provided (3bi) and (3bii) are satisfied. In
fact, (3bi) “implements” Statement (2) in Theorem 1 and ensures that the pre-
requisite ag of a default rule is derivable in a non-circular way. Correspondingly,
(8bii) “implements” Statement (3) in Theorem 1. This treatment is discussed in
detail in [10], so that we focus now on the treatment of lemma default rules.

While static lemma d-clauses are globally supplied by Cp, dynamic lemma §-
clauses are generated “on the fly” from the default proofs at hand. Dynamic
lemmas are represented by C7; they are formed by considering all J-clauses used
in proving the set of subgoals under consideration, namely those in ¢z and {—as}
in (2b) and (3b), respectively. In this way, the resulting lemma J-clauses can be
treated in the subproof as if they were standard w-clauses. The consistency
of the corresponding justifications is ensured by (2bii) and (3bii). Accordingly,
dynamic lemma §-clauses are added to the current w-clauses in (2bi) and (3bi)
via (Cw \ {c}) UC} and Cf, U C}, respectively.

Condition (4) deals with the application of static lemma d-clauses. The treat-
ment is analogous to that of d-clauses in (3) with the exception that no prerequi-
site has to be proven. Consequently, there are no subproofs to be accomplished,
which renders further lemma generation obsolete. In contrast to the treatment of
dynamic lemmas in (8), the consistency of the justification of the corresponding
lemma default rule has to be checked in (4b).

Let us illustrate compl(p, Cw,Cp) by reconsidering the derivation of B from
default theory (1), given at the end of Section 2. Since algorithm 4 is defined
for default theories in atomic format, we partially transform our initial default
theory in atomic format: For a new atom EM , the default theory

({52 455 50 B2 APYU{E A M — EM}) (2)

is a conservative extension of default theory (1). This theory yields the set of
original w-clauses C, = {{P},{—~FE,-~M, EM}}, so that we have to show that

compl({—\B}, Ci(;[/v{{_‘Ptﬁ ) A51}’ {_‘A527E52}7 {_‘E537M53}’ {_‘EM547 B54}})' (3)
We select clauses in a connection-driven way. Thus, we select the d-clause
{—-EMs,,Bs,} since Bj, is complementary to the literal =B on the ac-
tive path. This establishes Condition (3a). Next, we have to verify (3b).
For this, we have to find a subset C’D(ﬁEM%) of the remaining J-clauses in

5 Note that default (sub)proofs are given as existentially quantified sets of default
rules, such as Cp(k) or Cp(-a,) in (2b) and (8b), respectively, in order to retain
maximum degrees of freedom.



{{-Ps,,As, }, {—As,, Es, }, {Fs,, Ms, } } satisfying (3bi) and (3bii). For illustra-
tion, we direct our subsequent choices along the line sketched by the derivation
in Section 2: For Cp(-gum,,) = {{—-Ps,,As, }» {-As,,Es,}, {—Es;, Ms,}}, we
then obtain for (8bi) and (3bii): *

compl({=EMs, }, Cyy, {{—Fs,, As, }, {—As, Es, }, {"Es,, M5, }}) is true and (4)
compl(@, C{?V U{{_'P51 ) A51}7{_'A52’ E52}7{_‘E53 ) M53}v{_‘EM547 B54}}7 Q]) is false(S)

As can be easily seen, (5) is reducible by successive applications of (2) to
compl({P, A51 5 Eéz s M53, E‘Z\f7 B54}, @, @) is false.

For showing (4), namely (3bi), we select the w-clause {—E,—-M,EM} from
CY because EM is complementary to —EMs, on the active path in (4); this
establishes (2a). For showing (2b), we have to determine Cp(-pg), Cp(-n) and
C7 such that (2bi) and (2bii) hold. Observe that (2bi) has to be separately
satisfied by Cp(~g) and Cp(-ar), while (2bii) has to be jointly satisfied by Cp(-p)
and Cp(-pr)- Since the choice of C7 is an arbitrary one, let us illustrate how
C7 C Ciyro (Cp(-g) U Cp(-ar)) can be successively build along the lines sketched
in Section 2.

Let Cp-gy = {{—Ps,, As,},{—As,, Es,}} and let C be an arbitrary set of
lemma d-clauses at this point. Then, we have to show (2bi):

compl({~EMs,, ~E}, {{P}} U Cr, {{=Fs,, As, }» {—As,, Es, }}) is true. (6)
By continuing along the same argumentation leading from (3) to (4) and (5), we
first select the o-clause {—As,, Es, }; second we select the d-clause {—Ps,, As, }
while applying (&) twice. In this way, we confirmed (6), viz. (2bi), for Cp(-p)
without any usage of lemma J-clauses. This corresponds intuitively to proving
E from {P} by means of the default proof Dg in Section 2.

For choosing Cp(-ar) (and Cf), we have two extreme possibilities. First let

Cpe-any = {{Fs,, As, }, {0 As,, Es, } {~Es,, Ms, }} and - Cp=0. (7)
In this case, no dynamic lemmas are used. On the other hand, we have established
(6) without any use of dynamic lemmas. This allows us to draw dynamic lemma
S-clauses according to the definition of C},. In this way, we can take advantage
of the fact that we have proven E in (6) and obtain the following alternative
choice for Cp-pp) (and C7):

Cp-my = {—FEs;, Ms,}}  and  CF = {{E}}. (8)

Depending on our choice of Cp(-yr) and CF, we are faced with the following
conditions establishing (2bi):
compl({=EM s, =M}, {{P}}, {{~Fs,, As, }.{~As, Es, } {~Es,, Ms, }}) is true (9)

compl({=EMs,, ~M}, {{P} U{E}}, {{~Es;, Ms, }}) is true (10)
The latter can be reduced to compl({-EMs,,—M, P, E},0,{{-Es,, Ms,}}) by
successive applications of (2), while the former

yields compl({=EMs,,~M, P}, 0,{{=Ps,, As, }, {=4s,, Es, }, {=Es;, M5, }}). In
this way, we can solve (10) by means of one default inference, namely Con-
dition (3), due to the usage of dynamic lemmas, while we are faced with three
default inferences in (9) if we fail to notice dynamic lemmas.

7 Since we deal with normal default rules no justifications have to be added in (5) to
the path.



Finally, we have to check (2bii) for Cp(-g) and Cp(-n): 8
Complw)v CSV U{{~Fs,, As, }. {—As,, Es, } {_‘E533 M53}}7 @) is false.

As above, this can be confirmed by successive applications of (2) (no matter
which choice, (7) or (8)). That is, compl({P, As,, Es,, Ms,, EM },0,0) is false.
Now, we have shown items (4) and (5) confirming Condition (3bi) and (3bii) so
that our proof of B is completed.

Finally, we obtain the following result showing that our incremental algorithm
with lemma handling is correct and complete for query-answering in constrained
default logic:

Theorem 5. Let (D, W) be a default theory in atomic format, ¢ an atomic
formula and L a set of lemma default rules. Then, ¢ € E for some constrained
extension (E,C) of (D, W) iff compl({—¢}, Cw,Cp UCL) is true, where Cy is
the matriz of W, Cp is the matriz of Wp and Cy, is the matriz of L.

4 Conclusion

We have implemented our approach and tested it on numerous examples. Due
to space restrictions however we had to remove this part of the paper. The
experimental results are given in [5]. What has been achieved? One of the original
postulates of default formalisms was to “jump to conclusions” in the absence of
information. But since the computation of default conclusions involves not only
deduction but also expensive consistency checks, the need to incorporate lemmas
is even greater in default theorem proving than in standard theorem proving.
Hence, default lemmas can be seen as a step in this direction.

References

—_

. W. Bibel. Automated Theorem Proving. Vieweg, 1987.
. G. Brewka. Cumulative default logic: In defense of nonmonotonic inference rules.
Artificial Intelligence, 50(2):183-205, 1991.

3. J. Delgrande, T. Schaub, W. Jackson. Alternative approaches to default logic. Ar-
tificial Intelligence, 70(1-2):167-237, 1994.

4. E. Eder. Relative Complexities of First Order Calculi. Vieweg, 1992.

5. Th. Linke and T. Schaub. Lemma handling in default logic theorem provers. Tech-
nical report, Faculty of Technology, University of Bielefeld, 1995. (in preparation).

6. D. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, 1978.

7. D. Makinson. General theory of cumulative inference. In M. Reinfrank et al, eds,
Proc. 2nd Int. Workshop on Non—Monotonic Reasoning, 1-18. Springer, 1989.

8. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81-132,
1980.

9. T. Schaub. On constrained default theories. In B. Neumann, ed, Proc. of the Fu-
ropean Conf. on Artificial Intelligence, p. 304-308. Wiley, 1992.

10. T. Schaub. A new methodology for query-answering in default logics via structure-

oriented theorem proving. Journal of Automated Reasoning, 1995. Forthcoming.

[\

8 Since we deal with normal default rules no justification have to be added in (2b4i)
to the path.



