
Qualitative constraint enforcement in advanced
policy specification

Alessandra Mileo1 and Torsten Schaub2?

1 Dipartimento di Informatica e Comunicazione, Universitá degli Studi di
Milano-Bicocca — Lab. Nomadis, via Bicocca degli Arcimboldi 8, I–20126 Milano,

mileo@dico.unimi.it
2 Institut für Informatik, Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam,

torsten@cs.uni-potsdam.de

Abstract. We consider advanced policy description specifications in the
context of Answer Set Programming (ASP). Motivated by our applica-
tion scenario, we further extend an existing policy description language,
so that it allows for expressing preferences among sets of objects. This is
done by extending the concept of ordered disjunctions to cardinality con-
straints. We demonstrate that this extension is obtained by combining
existing ASP techniques and show how it allows for handling advanced
policy description specifications.

1 Introduction

The specification of policies and their enforcement plays a key role in advanced
system environments, where a large variety of events, conditions and actions are
to be executed and monitored. The development and analysis of a collection
of such policies can be rather complex, in particular, in view of their overall
consistency. To this end, a high-level policy description language called PDL
has been developed by Chomicki, Lobo and Naqvi [1] in the context of Network
management, through a mapping into Answer Set Programming (ASP;[2]).

A first extension of PDL lead to the description of PPDL language [4, 3].
In PPDL a policy is a set of event-condition-action rules describing how events
observed in a system, trigger actions to be executed, and a consistency monitors
is a set of rules of the form:

never a1 × . . .× an if C. (1)

meaning that actions named a1, . . . , an cannot be jointly executed. In case con-
dition C holds and actions a1, . . . , an have all been triggered by the policy ap-
plication, a1 should be preferably blocked, if this is not possible (i.e. a1 must
be performed), a2 should be blocked, . . . , then if all of a1, . . . , an−1 must be
performed, then an must be blocked.

? Affiliated with the School of Computing Science at Simon Fraser University, Burnaby,
Canada.

A rule as in (1) is mapped into ASP through LPOD [5] encoding as follows:

block(a1) × . . . × block(an) ← exec(a1), . . . , exec(an), C.
accept(A) ← not block(A). (2)

where block(ai) indicates conflicting actions that have to be blocked, exec(ai)
refers to actions triggered by the policy application, and accept(ai) tells us which
actions can be executed without any constraint violation.

As illustrated in [4], the introduction of user-preferences in PPDL monitor
rules enables users to tell the system in which order to enforce constraints on
the execution of actions triggered by the policy.

From the viewpoint of policy enforcement, it is often the case that an ordering
relation among users, resources and more generally, among objects on which
actions have to be executed, is to be expressed on sets of entities having certain
characteristics or being hierarchically organized.

As an example, consider the context of resource management: reliability of
a resource could be influenced by its use and (dynamically determined) per-
formance. Preference relation on actions involving resources has to be dynamic
too.3 Besides the dynamic nature of our logic-based approach, preferences on
sets are much more intuitive than static classification of objects. Formal aspects
related to the specification of preferential monitors in PPDL have been fully
addressed in [4, 3] by appeal to LPOD programs.

Another interesting aspect is related to expressing a further ordering among
strategies (represented by monitor rules) for conflicts resolution.

We address these issues in the policy enforcement context by extending
LPOD to allow for ordered disjunctions of cardinality constraints and we call
this extension S-LPOD. Moreover, we consider the preference relation on LPOD
rules introduced by Brewka et al. [6], by discussing some of its properties, and
we apply it to S-LPOD rules, resulting in so-called SR-LPOD programs.

Given our application-oriented motivation, we tried to keep our formal devel-
opment as conservative as possible in relying on existing approaches whenever
feasible. Fortunately, this is achievable in straightforward way due to the com-
positional nature of many ASP extensions.

2 Background

To begin, we recall the basic definitions of Logic Program with Ordered Dis-
junction (LPOD), as given in [5] and [6]. For basic definitions in Answer Set
Programming, we refer the reader to [2].

Given an alphabet P of propositional symbols, an LPOD-program is a finite
set of LPOD-rules of the form

c1 × . . .× cl ← a1, . . . , am,not b1, . . . ,not bn. (3)

3 See Section 5 for further details related to this context.

where each ai, bj , ck is a literal, that is, an atom p ∈ P or its negation ¬p
for 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ l If m = n = 0, then (3) is a
fact. If l = 1, then we have a normal rule. If l = 0, then (3) is an integrity
constraint. (cf. [2]) For a rule r as in (3), let head(r) = {c1, . . . , cl} be the head
of r and body(r) = {a1, . . . , am,not b1, . . . ,not bn} be the body of r; and let
body+(r) = {a1, . . . , am} and body−(r) = {b1, . . . , bn}.

The “non-standard” part of such a rule is the ordered disjunction c1× . . .×cl

constituting its head. Given that the body literals are satisfied, its intuitive
reading is:

– if possible c1, but if c1 is impossible, then c2,
– . . .,
– if all of c1, . . . , cl−1 are impossible, then cl.

Each ck stands for a choice of rule (3). Note that the “×” connective is allowed
to appear in the head of rules only; it is used to define a preference relation that
allows to select some of the answer sets of a program by using ranking of literals
in the head of the rules, on the basis of a given strategy.

To this end, the semantics of an LPOD program is given in terms of a pref-
erence criterion over answer sets. The formal definition of answer sets in LPOD
is based on the concept of split programs [7]: Given a rule r as in (3), we define
for 1 ≤ k ≤ l the k-th option of r as the rule

rk = ck ← body(r),not c1,not c2, . . . ,not ck−1.

Then, P ′ is some split program of an LPOD program P , if it is obtained from
P by replacing each rule in P by one of its options. With this concept, Brewka
defines in [5] an answer set of an LPOD program P as a consistent answer set
of some split program P ′ of P .

For defining preferred answer sets, Brewka [5] introduces the notion of degree
of satisfaction: An answer set S satisfies a rule as in (3)

– to degree 1, if body+(r) 6⊆ S or body−(r) ∩ S 6= ∅, and otherwise,
– to degree d = min{k | ck ∈ S}.

The degree of rule r in answer set S is denoted by degS(r). Intuitively, the
degrees can thus be considered as penalties: the higher the degree, the less we
are satisfied about the choice. Brewka shows in [5] that every answer set satisfies
all program rules to some degree.

Degrees can be used in various ways for defining a preference relation over
answer sets. As an example, we give the definition for the well-known Pareto
criterion: An answer set S1 of an LPOD program P is Pareto-preferred to another
one S2 (S1 >p S2) if there is a rule r ∈ P such that degS1(r) < degS2(r) and
for no r′ ∈ P we have degS1(r

′) > degS2(r
′). Then, an answer set S of P is

Pareto-preferred among all answer sets, if there is no answer set S′ of P that is
Pareto-preferred to S.

For extending the expressive power of LPOD programs in view of our appli-
cation, we take advantage of the concept of cardinality constraint [8, 9]. Syntac-
tically, a cardinality constraint is a complex literal of the form:

l {a1, . . . , am} u (4)

where l and u are two integers giving a lower and upper bound, respectively, on
the number of satisfied literals within the constraint4. For a cardinality constraint
C as in (4), we let lit(C) denote its set of literals {a1, . . . , am} and let lb(C) = l
and ub(C) = u. C is satisfied by a set of literals S, if

lb(C) ≤ |lit(C) ∩ S| ≤ ub(C) .

Whenever bound l or u is missing, it is taken to be 0 or |lit(C)|, respectively. In
what follows, we restrict ourselves to cardinality constraints, C, such that 0 ≤
lb(C) ≤ ub(C) ≤ |lit(C)|. For defining answer sets of programs with cardinality
constraints, we follow the approach taken in [9].

3 From LPOD to S-LPOD

In what follows, we present a straightforward extension of LPOD that allows us
to express preferences on sets of atoms.

In policy enforcement contexts [4], it is rather unintuitive that the syntax
of rules of the form in (3) requires us to impose a total preference ordering
over actions (as with c1 × . . .× cj), in particular when objects on which actions
have to be executed (e.g. devices, users, etc.) are classified on the basis of some
given parameters. In similar cases, such total ordering may be unrealistic or even
unacceptable.

We thus need to introduce a syntactic variation to the rules of (3) in order
to accommodate partial preference orderings among actions, according to the
classification of objects involved.

Definition 1. An S-LPOD program consists of S-LPOD rules of the form

C1 × . . .× Cl ← A1, . . . , Am,not B1, . . . ,not Bn (5)

where each Ai, Bj , Ck is a cardinality constraint for 0 ≤ i ≤ m, 0 ≤ j ≤ n, and
0 ≤ k ≤ l.

A single literal l can be represented by the cardinality constraint 1{l}, as we
illustrate below.

For a set of literals S and a cardinality constraint C, define the number of
literal of C that are in S as sel(C,S) = |S ∩ lit(C)|. Then, given a set of literals
S, the intuitive reading of the rule head of an S-LPOD rule as in (5) can be
given as follows:
4 The interested reader may note that we confine ourselves to positive literals within

cardinality constraints. As detailed below, this is motivated by our application.

– if lb(C1) ≤ sel(C1, S) ≤ ub(C1), then choose sel(C1, S) elements of lit(C1),
otherwise

– if lb(C2) ≤ sel(C2, S) ≤ ub(C2), then choose sel(C2, S) elements of lit(C2),
otherwise

– . . .
– if lb(Cl) ≤ sel(Cl, S) ≤ ub(Cl), then choose sel(Cl, S) elements of lit(Cl),
– otherwise an incoherent situation is obtained.

The number of elements selected from the chosen cardinality constraint is
determined by S. It is nonetheless non-deterministic insofar that different choices
of S yield different selections.

The definition of an option as well as that of a split program carry over from
LPOD programs to S-LPOD programs. Answer sets of (split) programs with
cardinality constraints are defined as in [9]. Let us illustrate this by building
split programs of a S-LPOD along those definitions.

Example 1. Let program P consist of the rules:

r1 : 1{a, b}1 × {c, d, e}. r2 : 1{b, c, d} × 1{a, f}.

We obtain 4 split programs:

P ′
1 : 1{a, b}1. P ′

2 : 1{a, b}1.
1{b, c, d}. 1{a, f} ← not 1{b, c, d}.

P ′
3 : {c, d, e} ← not 1{a, b}1. P ′

4 : {c, d, e} ← not 1{a, b}1.
1{b, c, d}. 1{a, f} ← not 1{b, c, d}.

We obtain the following answer sets for program P 5:

{a}, {b}, {c}, {d}, {f}, {a, c}, {a, d}, {a, f}, {b, c}, {b, d},
{c, e}, {c, d}, {d, e}, {e, f}, {a, c, d}, {b, c, d}, {c, d, e}

Hence, as with standard LPOD programs, an answer set of an S-LPOD program
is simply an answer set of one of its split programs.

To complete the semantics of S-LPOD programs, we first have to account for
the definition of the degree of satisfaction:

Definition 2. A set of literals S satisfies a rule as in (5)

– to degree 1, if Ai is not satisfied by S for some 0 ≤ i ≤ m or Bj is satisfied
by S for some 0 ≤ j ≤ n, and otherwise,

– to degree d = min{k | lb(Ck) ≤ sel(Ck, S) ≤ ub(Ck)}.

As above, we denote the degree of rule r in answer set S as degS(r). As with
standard LPOD, our extended definition assures that if an answer set S of an
S-LPOD program exists, then S satisfies all rules of P to some degree.

As well, we can use the degree of satisfaction to induce different preference
criteria on the answer sets of an S-LPOD program. In particular, the criterion
of Pareto-preference given above carries over from LPOD to S-LPOD.
5 Each of the answer set reported is an answer set of at least one of the split programs.

This is a necessary condition to be answer set of the original program [5].

Example 2. Consider again the program P given in Example 1. All Pareto-
preferred answer sets satisfy both rules of program P with degree 1:

{a, c}, {a, d}, {b}, {b, c}, {b, d}, {a, c, d}, {b, c, d}.

Thus, we can have more than one preferred answer set and each of them is also
an answer set of some split program of the original program.

Finally, let us show that S-LPOD is conservative insofar as it corresponds
to LPOD whenever we have no cardinality constraints. To see this, consider
rule (5), where each cardinality constraint is of the form 1{l} for some literal
l ∈ L:

1{c1} × . . .× 1{cl} ← 1{a1}, . . . , 1{am},not 1{b1}, . . . ,not 1{bn}. (6)

A set of literals S satisfies such a rule r

– to degree 1, if 1{ai} is not satisfied by S for some 0 ≤ i ≤ m or 1{bj} is
satisfied by S for some 0 ≤ j ≤ n, and otherwise,

– to degree d = min{k | lb(ck) ≤ sel(ck, S) ≤ ub(ck)}.

In this special case, we have sel(l, S) = |S ∩ lit(l)| = |S ∩ {l}|, and lb(l) = 1
and ub(l) = |lit(l)|. While the first condition is equivalent to body+(r) 6⊆ S or
body−(r) ∩ S 6= ∅, the latter gives d = min{k | 1 ≤ |S ∩ {l}| ≤ |lit(l)|}. In order
to respect the bounds 1 ≤ |S ∩ {l}| ≤ 1, we must have l ∈ S, so that the degree
of satisfaction of rule r is d = min{k | l ∈ S}, which is what we have in the
definition of degree of satisfaction for LPODs.

4 From S-LPOD to SR-LPOD

We have seen in Example 1 that S-LPOD programs may yield many answer sets,
among which one may still find a substantial number of preferred answer sets.
This is even more severe in practice. In fact, in practice, it is also very natural
to impose additional preferences among S-LPOD rules.

As before, it turns out that ASP-techniques can be composed in a quite
straightforward way in order to obtain an extension encompassing the desired
features. To this end, we take advantage of ordered logic program, being a pair
(P,<), where P is a logic program and < ⊆ P × P is a strict partial order.
Given, r1, r2 ∈ P , the relation r1 < r2 expresses that r2 has higher priority than
r1. Then, an SR-LPOD program is an ordered logic program (P,<), where P
is an S-LPOD program. As before, the formation of preferred answer sets can
be made precise in different ways. Among them, we follow the proposal in [6]
by using the extended definition of the Pareto-preference criteria proposed in [6,
Definition 9]: An answer set S1 of an LPOD program P is Pareto-preferred to
another one S2 wrt program P , written as S1 >pr S2, if

1. there is a rule r ∈ P such that degS1(r) < degS2(r) and
2. for each r′ ∈ P such that degS1(r

′) > degS2(r
′), there is some rule r′′ such

that r′ < r′′ and degS1(r
′′) < degS2(r

′′).

We found out that this definition is applicable to SR-LPOD6 and it allows us
to obtain a more fine-grained ordering on answer sets as with S-LPOD program,
in that it may introduce additional preferences among answer sets that were
considered incomparable or equally preferred according to the original definition
of Pareto-preference criteria given in [5], even when preferences on sets of objects
are expressed.

We also show that the ordering relation on answer sets of an (S-)LPOD
program P is preserved if we add to P preferences on its (S-)LPOD rules. In
fact, the following proposition holds:

Proposition 1. Let S1 and S2 be answer sets of an (S-)LPOD program P . Then
S1 >p S2 implies S1 >rp S2

Proof. Let us suppose that S1 >rp S2 does not hold, and show that S1 >p S2

does not hold too. S1 >rp S2 does not hold if one of the properties in its definition
do not hold, i.e.

1. ∀r ∈ P, degS1(r) ≥ degS2(r)
2. ∃r′ ∈ P : degS1(r

′) > degS2(r
′) and ∀r′′ > r′, degS1(r

′′) ≥ degS2(r
′′).

In the first case, we can immediately conclude that S1 >p S2 does not hold by
the first part of the definition of preference relation >p.

In the second case, we have that whenever such r′ exists, degS1(r
′) >

degS2(r
′) holds, and thus S1 >p S2 by the second part of the definition of

preference relation >p.

Example 3. Let us consider the S-LPOD program P in Example 1. The order-
ing relation among the answer sets of P can be represented by considering the
following three sets:

AS1 = {{a, c}, {a, d}, {b}, {b, c}, {b, d}, {a, c, d}, {b, c, d}}
AS2 = {{a}, {c}, {d}, {a, f}, {c, e}, {c, d}, {d, e}, {c, d, e}}
AS3 = {{f}, {e, f}}

According to the ordering relation derived from the original definition of Pareto-
preference criteria in Section 2, we have Si > Sj > Sk for Si ∈ AS1, Sj ∈
AS2, Sk ∈ AS3. Two answer sets in the same partition are considered incompa-
rable or equally preferred.

If we add the meta-preference on S-LPOD rules of P expressed by r1 < r2, a
more fine-grained ordering is achieved and we can identify one partition more,
thus specializing the preference relation among previously incomparable answer
sets, as follows:

AS1 = {{a, c}, {a, d}, {b}, {b, c}, {b, d}, {a, c, d}, {b, c, d}}
AS2 = {{c}, {d}, {c, e}, {c, d}, {d, e}, {c, d, e}}
AS3 = {{a}, {a, f}} AS4 = {{f}, {e, f}}

where Si > Sj > Sk > Sl for Si ∈ AS1, Sj ∈ AS2, Sk ∈ AS3, Sl ∈ AS4.
6 The interested reader may note that we only consider static preferences among S-

LPOD rules, i.e. meta-preference statements of the form r1 < r2 with empty body.

One may argue that these new meta-preferences among S-LPOD rules do
not significantly change the solution, since the Pareto-preferred answer sets of
P are the same. But suppose that there are integrity constraints preventing us
from considering any of the most preferred answer sets as a solution, e.g. the
following three constraints are added to program P :

rc1 : ← a, c. rc2 : ← b. rc3 : ← d.

As a result, all answer sets in AS1 are eliminated and some in AS2 are the
preferred ones; preference ordering among them has been refined by the new
preference relation among S-LPOD rules, so that the solution is reduced to
answer sets {c}, {c, e} as the preferred ones.

The following example illustrates how Pareto-preference including prefer-
ences among rules can be meaningful even with simple LPOD programs.

Example 4. Let program Ppref consist of the LPOD rules:

r1 : a × c. rp1 : r3 > r1. rc1 : ← a, d.
r2 : b × d. rp2 : r4 > r1.
r3 : b × a. rp3 : r3 > r2.
r4 : d × c. rp4 : r4 > r2.

where rules rpi represent preference relations among rules rk of Ppref .
We can compute 16 split programs7 obtaining from them the following answer

sets for the original program Ppref :

S1 = {a, b, c} degS1(r1) = degS1(r2) = degS1(r3) = 1, degS1(r4) = 2
S2 = {b, c, d} degS2(r2) = degS2(r3) = degS2(r4) = 1, degS2(r1) = 2
S3 = {b, c} degS3(r1) = degS3(r4) = 2, degS3(r2) = degS3(r3) = 1

According to the Pareto-preference ordering, under LPOD semantics, S1 and
S2 are the preferred answer sets for Ppref ; moreover, S1 >p S3 and S2 >p S3.
The extended notion of preference relation on LPOD rules (expressed in rules
rpi , i = 1..4), gives us a more fine-grained ordering on answer sets S1 and S2

that were incomparable under the LPOD semantics, in that S2 >pr S1.
As a consequence, only S2 results being the Pareto-preferred answer set of

Ppref according to >pr ordering relation.

5 Application to policy enforcement

As illustrated in [4], PPDL is a rather simple, easy-to-grasp language allowing
to define policies and consistency mechanisms in a transparent and easy way by
keeping the so-called business logic outside the specific system representation.
PPDL specifications are directly mapped into ASP and can thus be computed
very efficiently by invoking performant ASP solvers [6].

7 Note that only the coherent ones are used for computing solutions.

Although the encoding of PPDL into LPOD proposed in [4] is intuitive and
computationally easy to be automatized, it requires us to impose a total pref-
erence ordering over actions to be blocked in a single constraint specification.
Such a total ordering can be unrealistic or even unacceptable in applications,
as it would force us to specify all possible combinations of totally ordered list
of actions. We could need to group objects and consequently actions performed
on those objects, according to some common properties, thus adding a level of
non-determinism to the choice of which actions to block in order to solve a con-
flict but keeping the PPDL specification intuitive and the mapping into ASP
computationally simple. As an example, consider again a Resource Manager.
We may want to tell that a clerk should be prevented from accessing critical
resources, but resources availability is to be granted to managers8. The above
mentioned scenario suggests that we need to introduce a syntactic variation to
policy and monitor specification, in order to accommodate partial preference
orderings among sets of actions.

It is worth mentioning the fact that, in our policy specification, we allow only
positive atoms to appear in the constraints, as each literal represents an action
and we do not consider the case in which a set of events causes an action not to
be executed. Of course this is a possibility and things could be generalized, but
we don’t deal with this case here.

According to the LPOD extensions we investigated in Section 3 and 4, we
now extend the language of PPDL, mentioned in Section 1, into SR-PPDL, by
providing a more general definition of a monitor expressing preferences on sets of
actions that have to be blocked to solve conflicts arisen from policy enforcement.

Let 〈A,<〉 be a partially ordered set of actions. We define a level mapping `
as follows.

– `(a) = 1 iff ∃/a′, a′ < a.
– `(a) = i + 1 iff max{`(a′) : a′ < a} = i.

The level function partitions A into disjoint sets of actions: A = A1 ∪ . . . ∪ Ar,
where each Ai contains actions with the same preference level i and Ag ∩Al = ∅
for all g 6= l.

The preference relation defined by 〈A,<〉 can be expressed by the extended
syntax of SR-PPDL monitor rule (extending the one proposed in [4]) as follows:

r : never l1[A1]u1 × . . . × lr[Ar]ur if C. (7)

where each Ai represents a set of atoms {ai
1, a

i
2, . . . , a

i
m}, C is a Boolean condi-

tion and each element li[Ai]ui represents a cardinality constraint of the form in
Equation (4).

Given that Di is the set of actions in Ai triggered by the policy application,
the cardinality constraint C(Ai) = li{ai

1, a
i
2, . . . , a

i
m}ui is satisfied if li ≤ |Di| ≤

ui. For each constraint C(Ai) that is satisfied, we define the set of actions to
be blocked Xi as the minimum subset of Di for which |Di −Xi| ≤ li − 1. As a
consequence, we have that, for each of these Xi, |Xi| = |Di| − li + 1.
8 A complete example in this context will be detailed later on in this section.

Equation (7) tells us that when all cardinality constraints C(Ai), i = 1..r
are satisfied9, then actions in D1, actions in D2, . . . , actions in Dr cannot be
executed together and, in case of constraint violation, |X1| actions in D1 should
be preferably blocked; if it is not possible, block |X2| actions in D2; . . . ; if all of
the actions in Dj , j = 1..r − 1 must be performed, block |Xr| actions in Dr.

In this way, the total ordering among conflicting actions to be blocked can
be released by admitting that actions at a certain level i in the head of an SR-
LPOD rule can be non-deterministically chosen from a set Di ⊆ Ai of equally
preferred actions triggered by the policy, given that C(Ai) is satisfied and all
other actions in Dj with lj ≤ |Dj | ≤ uj and level j < i, must be executed.

To express such non-determinism, we translate the SR-PPDL rule in Equa-
tion (7) into SR-LPOD by using cardinality constraints for each set of equally
preferred literals. Thus, according to the original PPDL encoding [4], given that

A1 = {a1
1, a

1
2, . . . , a

1
g} A2 = {a2

1, a
2
2, . . . , a

2
h} . . . Ar = {ar

1, a
r
2, . . . , a

r
m}

each rule of the form in Equation (7) will result into
∏

i=1..r(ui − li + 1) SR-
LPOD rules representing all possible combination of sets of elements in the head
of the SR-LPOD rules:
l1{block(a1

1), block(a1
2), . . . , block(a1

g)}l1 ×
l2{block(a2

1), block(a2
2), . . . , block(a2

h)}l2 ×
. . . ×
lr{block(ar

1), block(ar
2), . . . , block(ar

m)}lr ← l1{exec(a1
1), . . . , exec(a1

g)}l1,
l2{exec(a2

1), . . . , exec(a2
h)}l2,

. . .
lr{exec(ar

1), . . . , exec(ar
m)}lr, C.

. . .
u1{block(a1

1), block(a1
2), . . . , block(a1

g)}u1 ×
u2{block(a2

1), block(a2
2), . . . , block(a2

h)}u1 ×
. . . ×
ur{block(ar

1), block(ar
2), . . . , block(ar

m)}ur ← u1{exec(a1
1), . . . , exec(a1

g)}u1,
u2{exec(a2

1), . . . , exec(a2
h)}u2,

. . .
ur{exec(ar

1), . . . , exec(ar
m)}ur, C.

accept(A) ← exec(A), not block(A).
← block(A), not exec(A).

The last constraint has been introduced into the mapping from SR-PPDL
to SR-LPOD in order to assure that, in non-determinism induced by cardinality
constraints on sets, actions blocked are among those triggered by the policy.

Corresponding split programs are built in the same way as illustrated in
Section 2. This may generate a lot of possibilities, further reduced when we
introduce a preferential ordering of the form ri > rj where ri and rj are SR-
PPDL rules of the form in Equation (7). Combination of our LPOD extensions
into the high-level policy language is illustrated in the following example.
9 Otherwise, if at least one of the C(Ai) is not satisfied, there is no conflict and rule

r of the form in Equation (7) is not triggered.

Example 5. Let us consider the problem of allocation of resources a, b, c and d
among two users, u1 and u2. Resources a and b are critical (actions corresponding
to the assignment of a and b should be preferentially blocked in case conflicts
arise), user u2 is to be preferentially served over u1.

The corresponding monitor rules look like:

r1 : never 1[ass(u1, R)]1× 1[ass(u2, R)]1.
r2 : never 1[ass(U, a), ass(U, b)]2× 1[ass(U, c), ass(U, d)]2.

where U and R are grounded on the set of users and resources, respectively.
Suppose that the policy application yields user u1 to obtain resources b, c, d,

and user u2 to obtain resources a, b, c10 and u1 needs at least one resource among
b and c.

The resulting SR-LPOD program Psr−lpod is as follows:

r1
1 : 1{block(u1, b)}1× 1{block(u2, b)}1.

r2
1 : 1{block(u1, c)}1× 1{block(u2, c)}1.

r1
2 : 1{block(u1, a), block(u1, b)}1× 2{block(u1, c), block(u1, d)}2.

r2
2 : 2{block(u2, a), block(u2, b)}2× 1{block(u2, c), block(u2, d)}1.
← block(u1, b), block(u1, c).
← block(U,R), not exec(U,R), res(R), usr(U).
accept(U,R)← not block(U,R), res(R), usr(U).

We obtain three answer sets of Psr−lpod:

S1 = {block(u1, b), block(u2, c)}
S2 = {block(u1, c), block(u1, d), block(u2, b), block(u2, c)}
S3 = {block(u1, b), block(u2, a), block(u2, b), block(u2, c)}

with S3 >p S1. Thus, S2 and S3 are the preferred answer sets for Psr−lpod in
terms of blocked assignments.

Suppose we now add a rule preference r2 > r1 on rules of the monitor. This
means that, in their grounded instances, each of the rules ri

2 is preferred to
each of the rules rj

1. According to relation >rp, we now have S3 >rp S1
11 and

S3 >rp S2, thus obtaining only S3 as the preferred answer set.
To accomplish specific systems requirements, additional constraints could be

added, such as that each user has to be assigned to at least one resource, or that
a resource cannot be assigned to two different users, thus restricting the set of
admissible solutions.

It’s easy to imagine that when a wide number of combinations are possible
according to how resources/users are grouped into sets, introducing a further
level of preferences on rules that determine (S-)LPOD preferences, can results
in more accurate solutions by reducing the set of Pareto-preferred solutions.
10 For simplicity, we focus on the consistency monitor specification omitting policy

rules. This does not change the way priorities are computed, cause not triggered
rules have degree equal to 1 by definition.

11 Note that the Pareto-preference relation >p is preserved.

6 Conclusion

We have considered advanced policy description specifications based on advanced
semantics of Answer Set Programming. Our analysis is aimed at providing a
tool to enforce complex policy consistency mechanisms, enriched with qualita-
tive preferential information by using the high-level policy description language
PPDL investigated in [4]. To this end, we extended the logical formalism by al-
lowing ordered disjunctions over cardinality constraints and we used a rule-based
Pareto-preference criterion for distinguishing preferred answer sets. Next step is
to extend the PPDL language syntax in this direction, by mapping extended
monitor constructs of the resulting SR-PPDL into SR-LPOD.

We believe in the potential of high-level specification languages to control and
monitor complex systems efficiently. In fact, the proposed extension to qualita-
tive preference handling from policy and monitor enforcement perspectives could
enable us to find new contexts of application in other fields of AI.

Future work will address implementation issues: we want to adapt the com-
pilation technique proposed in [6] to our approach. Also, it is worthwhile to
check under which restrictions a specification can be compiled in a normal logic
program (without any need for genuine disjunctions).

References

1. Chomicki, J., Lobo, J., Naqvi, S.: Conflict resolution using logic programming.
IEEE Transactions on Knowledge and Data Engineering 15(1) (2003) 244–249

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

3. Mileo, A.: Preference Specification and Enforcement in Declarative Policies. PhD
thesis, Universitá degli Studi di Milano (2006)

4. Bertino, E., Mileo, A., Provetti, A.: PDL with preferences. Proc. of POLICY 2005.
5. Brewka, G.: Logic programming with ordered disjunction. Proc. of AAAI02. Ex-

tended version presented at NMR02 (2002)
6. Brewka, G., Niemelä, I., Syrjänen, T.: Implementing ordered disjunction using

answer set solvers for normal programs. Proc. of JELIA02 (2002) 444–455
7. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic

programs and deductive databases. J. Autom. Reasoning 13(1) (1994) 145–172
8. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model

semantics. 138(1-2) (2002) 181–234
9. Liu, L., Truszczynski, M.: Properties of programs with monotone and convex con-

straints. Proc. of AAAI05. 701–706

