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Abstract: An approach to skeptical query-answering in Constrained Default Logic
based on the Connection Method is presented. We adapt a recently proposed gen-
eral method to skeptical reasoning in Default Logics—a method which does neither
strictly require the inspection of all extensions nor the computation of entire exten-
sions to decide whether a formula is skeptically entailed. We combine this method
with a credulous reasoner which uses the Connection Method as the underlying calcu-
lus for classical logic. Furthermore, we develop the notion of a skeptical default proof
and show how such a proof can be extracted whenever our calculus proves skeptical
entailment of a particular query.

1 Introduction

Nonmonotonic Logics in general, and approaches like Autoepistemic [10] or Default

Logic [14] in particular, aim at extending an underlying classical logical system in order

to provide conclusions that go beyond this system. For this, they induce one or several

so-called extensions of a given world description, each of which represents a reasonable

set of beliefs. This phenomenon of multiple extensions suggests two natural approaches

to query-answering: A credulous one, in which a query is said to be derivable if it be-

longs to a single extension, and a skeptical one, in which one stipulates that a query lies

in all extensions.

So far, computational approaches to nonmonotonic logics have mainly focused on the

computation of entire extensions, like [4, 19, 7, 22, 11], or credulous query-answering,

like [14, 18]. [8] compute intersections of extensions in Autoepistemic Logic. Skepti-

cal query-answering has up to now been primarily studied in restricted nonmonotonic

reasoning frameworks, like Theorist [12] (corresponding to so-called prerequisite-free

default theories in Default Logic) [13, 20]. From the perspective of Default Logic, im-

plementations of Circumscription, like [5], fall into the same category since they use

roughly the same restricted fragment of Default Logic. Finally, a major category of im-

plementations for fragments of Default Logic is given by the wide body of implementa-

tions of Logic Programming.

In what follows, we develop a method for skeptical query-answering in Default Logics.

This work builds on [21], where a general framework to skeptical reasoning in (semi-

monotonic) Default Logics was proposed. There, we have given a high-level description

of skeptical query-answering that abstracts from an underlying credulous reasoner. In

this paper, we make the aforementioned meta-algorithm precise and employ it to ex-

tend an existing approach to credulous query-answering [18] based on the Connection

Method [1].

The reader may wonder why we have chosen Constrained Default Logic [16, 3] rather

than Reiter’s original approach. In fact, Constrained Default Logic serves us as an ex-

emplary Default Logic enjoying the property of semi-monotonicity, which stipulates that
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the addition of default rules to a theory does not invalidate the application of previously

applied default rules. As pointed out in [14], semi-monotonicity is indispensable for fea-

sible query-answering in Default Logics. This is so because it allows for local proof pro-

cedures focusing on default rules relevant for answering a query; otherwise the whole set

of default rules has to be taken into account. Now, semi-monotonicity is only enjoyed by

so-called normal default theories in Reiter’s Default Logic. However, since both afore-

mentioned Default Logics coincide on normal default theories, our exposition applies

to this fragment of Reiter’s Default Logic, too. As concerns other variants of Default

Logic, we note that Constrained Default Logic yields the same conclusions as Cumu-

lative Default Logic [2]; both variants differ in representational issues only. Moreover,

Constrained Default Logic coincides with Rational Default Logic on the large fragment

of so-called semi-normal default theories [9]. All these interrelations render our exem-

plar, Constrained Default Logic, a prime candidate for exposing our approach.

Of course, a similar question may arise concerning the choice of the Connection

Method [1]. Unlike resolution-based methods that decompose formulas in order to de-

rive a contradiction, the Connection Method analyses the structure of formulas for prov-

ing their unsatisfiability. In fact, we will see that skeptical query-answering requires

numerous variants of similar subproofs. In such a case, it is advisable to reuse informa-

tion gathered on similar structures. This approach is supported by the structure-sensitive

nature of the Connection Method. As a result, we obtain a homogeneous characterization

of skeptical default proofs at the level of the underlying deduction method.

The paper is organized as follows. After recapitulating the basic concepts of Con-

strained Default Logic in Section 2, we elaborate in Section 3 on the general framework

to skeptical query answering proposed in [21]. The latter provides an abstract decision

procedure for skeptical query-answering in (semi-monotonic) Default Logics; it has its

roots in [13, 20], which address skeptical reasoning in Theorist [12]. In fact, we for-

malize the general ideas presented in [21] by appeal to sequences of default rules. As a

result, we obtain in Section 3 an algorithm instantiating the general framework in [21].

The resulting formal underpinnings given in Theorem 3, 4, and 5 are obtained as corol-

laries to results in [21]. In addition, Section 3 offers a general definition of a skeptical

default proof —a point left open in [21]. Such a skeptical default proof is returned by

the algorithm developed in the same section. Section 4 describes our underlying method

for credulous query-answering based on the Connection Method [18]. The major con-

tribution of this paper is presented in Section 5: We develop an analytic calculus for

skeptical query-answering by combing the approaches described in Section 3 and 4. We

give a soundness and completeness result of this approach and illustrate how skeptical

default proofs can be extracted whenever a query has been successfully proven. Our

results are summarized in Section 6.

2 Constrained Default Logic

We consider a straightforward yet powerful extension of Constrained Default Logic [3],

called Pre-Constrained Default Logic [17]. The idea is to supplement some initial con-

sistency constraints that direct the subsequent reasoning process. This is a well-known

technique, also used in Theorist [12], in which the “context of reasoning” is predeter-

mined and subsequently dominated by some initial consistency requirements. These ad-



ditional constraints play an important role in our approach to skeptical query-answering,

as we will see below.

A pre-constrained default theory (D;W ; C) (default theory, for short) consists of a set

of formulasW , a set of default rulesD, and a set of formulas C representing some initial

constraints. A default rule is any expression of the form � : �



where �; �;  are formulas.

For convenience, we denote the prerequisite � of a default rule by Prereq(�), its justi-

fication � by Justif (�), and its consequent  by Conseq(�).3 A normal default theory

is restricted to normal default rules, whose justification is equivalent to the consequent.

For simplicity, we deal with a propositional language over a finite alphabet and assume

that W [ C is satisfiable. A constrained extension is defined as follows.

Definition 1. Let (D;W ; C) be a default theory and let E and C be sets of formulas.

Define E
0

=W and C
0

=W [ C and for i � 0

E
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= Th(E
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) [ f  j
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i=0
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Observe that the initial constraints, C, enter merely the final constraintsC (atC
0

) but not

the extension E. Thus, the initial constraints C direct the reasoning process without ac-

tually becoming a part of it. In particular, they usually decrease the number of applicable

default rules.

Let us guide the formal development of our approach by means of the following ex-

ample. Consider the default statements “quakers are doves if they are no anti-pacifists,”

“republicans are hawks if they are no pacifists,” “doves as well as hawks are traditional-

ists,” along with the strict knowledge telling us that we have a “republican quaker.” This

is formalized in the following default theory:
�n

Q :P

D

;

R ::P

H

;

D :T

T

;

H :T

T

o

; fQ;Rg; ;

�

(1)

The first and second default cannot be combined in a single constrained extension due to

their mutually exclusive justifications,P and:P . Hence, this theory has two constrained

extensions, one containing D and T and another one containing H and T .

In the sequel, we follow [18] in dealing with default theories in atomic format in the

following sense: For a default theory � = (D;W ; C) in some language L
�

; let L
�

0

be the language obtained by adding, for each � 2 D; three new propositions, named

�

�

; �

�

; 

�

, which do not occur elsewhere. Then,� is mapped into a default theory�0 =

(D

0

;W

0

; C

0

) in L
�

0 where

D

0

=

n

�

�

:�

�
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W

0

=W [ fPrereq(�) ! �

�

; �

�

! Justif (�); 
�

! Conseq(�) j � 2 Dg

C

0

= C :

The resulting default theory�0 is called the atomic format of the original default theory,

�. As shown in [15], this transformation is a conservative extension of the formalism.

3 These projections extend to sets and sequences of default rules in the obvious way.



Hence, it does not affect the computation of queries to the original default theory. We

can therefore restrict our attention to atomic default rules without losing generality. The

advantages of atomic default rules over arbitrary ones are, first, that their constituents are

not spread over several clauses while transforming them into clausal format and, second,

that these constituents, e.g. the consequents, are uniquely referable to. The motivations

for this format are detailed in [18] and they are somehow similar to the ones for clausal

form in automated theorem proving.

3 Skeptical reasoning in constrained default logic

In classical logic, we can say that a formula ' is derivable from a set of facts W iff

it belongs to the deductive closure of W , that is if ' 2 Th(W): Due to the possible

existence of multiple extensions, this notion of derivability is not directly applicable to

Default Logic. Rather we obtain two different notions of derivability: A formula ' is

credulously derivable from (D;W ; C) iff ' 2 E for some constrained extension (E;C)

of (D;W ; C).4 And a formula ' is skeptically derivable from (D;W ; C) iff ' belongs

to all such extensions of (D;W ; C). In our example, (1), D and H are only credulously

derivable while T is also skeptically derivable.

In order to furnish a corresponding proof-theory, we need the following concepts. A

default proof segment in a default theory � = (D;W ; C) (or �-segment, for short) is a

(finite) sequence of default rules h�
i

i

i2I

such that

W [ Conseq(f�
0

; : : : ; �

i�1

g) ` Prereq(�
i

) for i 2 I and (2)

W [ C [ fConseq(�
i

); Justif (�
i

) j i 2 Ig is satisfiable. (3)

A credulous default proof , or CDP for short, for a formula ' from � is a �-segment

h�

i

i

i2I

such that W [ fConseq(�
i

) j i 2 Ig ` ': Furthermore, we say that a formula '

is provable from a �-segment h�
i

i

i2I

iff there is a CDP h�
j

i

j2J

for ' such that I � J ,

that is, if the segment is extendible to a CDP for '. In our example, there are five �-

segments, each of which is extendible to one of the two CDPs of T , namely
D

Q :P

D

;

D :T

T

E

and



R ::P

H

;

H :T

T

�

: (4)

Clearly, a formula is credulously derivable iff it is provable from some�-segment, since

in this case it has a CDP. Accordingly, a formula is skeptically derivable iff it is provable

from all �-segments.5

A basic question is that on the concept of a default proof in skeptical reasoning. Since

in general there is not a single CDP valid in each extension, it is however natural to

view a skeptical default proof as being compound of multiple CDPs. In fact, we take a

skeptical default proof of a formula to be a set P of CDPs such that P is complete, that

is, for each constrained extension (E;C), P includes a proof which is valid in (E;C):

Definition 2 Skeptical Default Proof. Let � = (D;W ; C) be a default theory and '

a formula. A skeptical default proof of ' from � is a set P of CDPs for ' such that

for each constrained extension (E;C) of � there is some h�
i

i

i2I

2 P such that C [

fConseq(�
i

); Justif (�
i

) j i 2 Ig is satisfiable.

4 For brevity, we sometimes simply say ' “belongs to” (or “is contained in”) an exten-
sion (E;C), which always means ' 2 E.

5 This is formally shown in [21].



This view relies heavily on the notion of CDPs. In fact, we keep this fundamental idea

and base our method for skeptical reasoning on credulous reasoning, too [21]: The idea

is to start with an arbitrary CDP of a given query. Then, we determine in some way

a representative selection of �-segments incompatible with our initial CDP. These �-

segments indicate extensions in which our initial default proof is invalid. Intuitively, they

can be thought of as putative counterarguments challenging our initial CDP. Next, we

verify in turn whether our query is derivable from each such�-segment. If this is indeed

the case, then our initial query is skeptically derivable.

In order to illustrate this approach, let us verify that T is skeptically derivable in our

example. We start with an arbitrary CDP of T from Default Theory (1). Consider the sec-

ond CDP in (4):



R ::P

H

;

H :T

T

�

: This proof takes place in the extension of (1) containing

H and T . Next, we regard all �-segments ‘challenging’ default rules in



R ::P

H

;

H :T

T

�

:

This notion is captured formally by the property of orthogonality:6 Two default proof

segments h�
i

i

i2I

and h�
j

i

j2J

in a default theory (D;W ; C) are called C-orthogonal iff

W [ C [ fConseq(�
k

); Justif (�
k

) j k 2 I [ Jg is unsatisfiable. That is, a �-segment

is orthogonal to another one if its induced constraints, i.e., the set of justifications and

consequents of its default rules, are incompatible with the same constraints of the other

�-segment. Observe that each �-segment orthogonal to a given CDP indicates one or

more extensions in which our CDP is not valid.

The formal basis for our approach is laid in the following theorem.

Theorem 3. Let (D;W ; C) be a default theory and ' a formula. Then, ' is skeptically

derivable from (D;W ; C) iff there is a CDP h�

i

i

i2I

for ' and ' is provable from all

default proof segments which are C-orthogonal to h�
i

i

i2I

.

In our example, there are two �-segments orthogonal to



R ::P

H

;

H :T

T

�

; namely

D

Q :P

D

E

and
D

Q :P

D

;

D :T

T

E

:

This is so because the justification of the first default rule, R ::P

H

, in our CDP is contra-

dictory to the justification of default rule Q :P

D

: There is no �-segment orthogonal to the

second default rule in our default proof. As will be shown in Theorem 4, we can restrict

our attention to minimal orthogonal�-segments. Accordingly, it is sufficient to consider

the orthogonal �-segment
D

Q :P

D

E

:

Intuitively, we then focus on all extensions of the initial default theory to which the

�-segment
D

Q :P

D

E

contributes and check whether our initial query T belongs to these

extensions too. Importantly, this is accomplished by using only default rules relevant for

deriving T and hence without computing any extensions. We achieve this by checking

whether T is skeptically derivable from the default theory obtained by ‘applying’ the

default rules in our orthogonal�-segment. In this way, we try to prove our query under

the restrictions imposed by the �-segment contesting our initial CDP. To this end, we

add the consequence of the default rule Q :P

D

to the facts of Default Theory (1) while

deleting the default rule itself. Furthermore, we have to add its justification to the set of

6 Orthogonality usually refers to distinct extensions (c.f. [14]). In Constrained Default Logic, two
constrained extensions (E;C) and (E

0

; C

0

) are orthogonal iff C [ C

0 is unsatisfiable [3].



initial constraints. This yields the following modified default theory:

��

R ::P

H

;

D :T

T

;

H :T

T

	

; fQ;R;Dg; fPg

�

(5)

Now, it remains to be shown that T be skeptically derivable from Default Theory (5).

Proceeding recursively, we check first whether T is credulously derivable from this de-

fault theory. In fact, T can be proven by means of the CDP



D :T

T

�

: Next, we have to

proceed as above and in turn find all minimal�-segments orthogonal to D :T

T

: However,

there are no such segments since Default Theory (5) has a single extension containing

D and T , in which, moreover, default rule R ::P

H

is blocked due to initial constraint P .

Importantly, the previous step supplies us with an alternative CDP of T from our origi-

nal default theory in (1). This is obtained by appending�-segment
D

Q :P

D

E

and the CDP

of T from default theory (5), viz.



D :T

T

�

. This results in the first CDP given in (4). Since

there are no other �-segments orthogonal to our initial default proof



R ::P

H

;

H :T

T

�

, we

are done. As a result, we have obtained a skeptical default proof consisting of two CDPs

supporting the skeptical conclusion T . This approach is justified by the following theo-

rem [21]:

Theorem 4. Let h�
i

i

i2I

be a default proof segment in a default theory (D;W ; C) and '

a formula. Then, ' is provable from all default proof segments h�
j

i

j2J

where I � J iff

' is skeptically derivable from

(D n f�

i

j i 2 Ig;W [ fConseq(�
i

) j i 2 Ig; C [ fJustif (�
i

) j i 2 Ig):

Let us summarize our approach to checking whether a query ' is skeptically derivable:

We start with a CDP of ': Then, we determine all minimal orthogonal �-segments

contesting our initial CDP. Next, we check in turn whether ' is skeptically derivable

under the restrictions imposed by each such �-segment. In this way, we check whether

' belongs to all extensions orthogonal to the one containing our initial CDP of ': It is

important to note that the choice of the initial CDP is a “don’t care”-choice in so far

that deciding whether ' is skeptically entailed is independent of which CDP is initially

chosen. The design of the resulting skeptical default proof, on the other hand, depends

on the latter choice.

The approach we have outlined so far can be put together to a concrete algorithm as

follows. Let (D;W ; C) be a default theory and ' be a formula. We assume a function

cred(D;W ; C; ') such that

cred(D;W ; C; ') =

�

h�

i

i

i2I

if h�
i

i

i2I

is a CDP of ' from (D;W ; C)

? otherwise

Moreover, given a CDP h�

i

i

i2I

, let orth(D;W ; C; h�

i

i

i2I

) yield the set of all minimal

�-segments C-orthogonal to h�

i

i

i2I

:

7 These two functions yield the following algo-

rithm for skeptical query-answering. Similar to its credulous source, it returns ? if ' is

not skeptically derivable; otherwise it returns a set of CDPs forming a skeptical default

proof. The function “�” concatenates two �-segments.

7 Note that this set is finite in case of a finite propositional alphabet. The procedure orth will be
designed below.



skep(D;W ; C; ') =

if cred(D;W ; C; ') =?

then return ?

else let h�
i

i

i2I

= cred(D;W ; C; ') in

let O = orth(D;W ; C; h�

i

i

i2I

) in

P := ; ;

while O 6= ; do

select h�
j

i

j2J

2 O ;

let D0 = D n f�

j

j j 2 Jg in

let W 0

=W [ fConseq(�
j

) j j 2 Jg in

let C0 = C [ fJustif (�
j

) j j 2 Jg in

if skep(D0;W 0

; C

0

; ') =?

then return ?

else P := P [ fh�

j

i

j2J

�h�

l

i

l2L

j h�

l

i

l2L

2skep(D

0

;W

0

; C

0

; ')g

fi ;

O := O n fh�

j

i

j2J

g

od ;

return fh�
i

i

i2I

g [ P

fi

The variable P accumulates the set of resulting CDPs. Whenever the procedure ends up

with success, the CDPs in P form a skeptical default proof of ' from (D;W ; C).

Finally, we have to address the determination of minimal �-segments orthogonal to a

CDP at hand. Again, this is accomplishable by appeal to credulous reasoning. Note that

the notion of orthogonality refers to the consistency constraints induced by a CDP. For

this, we have to consider additionally a default rule’s justification any time the default

rule applies: For a set of atomic default rulesD, we define the set of normalization rules

as N(D) = f

�

! �

�

j

�

�

:�

�



�

2 Dg: Intuitively, the addition of normalization rules

to the facts of a default theory in atomic format turns each atomic default rule �

�

:�

�



�

into a default rule of the form �

�

:�

�

�

�

^

�

: With this, the following theorem tells us how to

determine �-segments orthogonal to a CDP at hand:8

Theorem 5. Let h�
i

i

i2I

and h�

j

i

j2J

be default proof segments in a default theory

(D;W ; C) in atomic format. Then, h�
i

i

i2I

and h�
j

i

j2J

are C-orthogonal iff there is

some i 2 I such that h�
j

i

j2J

is a CDP for :Conseq(�
i

) _ :Justif (�
i

) in this default

theory:

(Dnf�

k

j k < ig;W[N(Dnf�

k

j k < ig)[fConseq(�
k

); Justif (�
k

) j k < ig; C) (6)

That is, in order to find �-segments orthogonal to our CDP



�

1

=

R ::P

H

; �

2

=

H :T

T

�

;

we consider the default theories9

�n

Q :P

D

;

R ::P

H

;

D :T

T

;

H :T

T

o

; fQ;Rg [ fD ! P;H ! :Pg; ;

�

(7)

8 The following is a variant of Theorem 5.7 in [21], where a more complex normalization proce-
dure is employed. By usingN(D) instead, we exploit the fact that we deal with default theories
in atomic format only (c.f. Section 2).

9 For sake of readability, we refrain from presenting Theory (7) and (8) in atomic format. More-
over, we discard normalization rules for normal default rules since they are tautological.



�n

Q :P

D

;

D :T

T

;

H :T

T

o

; fQ;Rg [ fD ! Pg [ fH;:Pg; ;

�

(8)

In turn, we must determine all minimal CDPs of the negated consequences or the negated

justifications of R ::P

H

and H :T

T

, respectively. That is, first we search for a proof for

:H _ P from Theory (7) and then for a proof of :T from Theory (8). While :T is not

provable from (8),:H_P is provable from (7) yielding a single orthogonal�-segment,
D

Q :P

D

E

:

Theorem 5 leads to the following algorithm for the function orth:

orth(D;W ; C; h�

i

i

i2I

) =

for i 2 I do

let D0 = D n f�

k

j k < ig in

let W 0

=W [N(D

0

) [ fConseq(�
k

); Justif (�
k

) j k < ig in

let O = ; in

let ' = :Conseq(�
i

) _ :Justif (�
i

) in

O := O [ fh�

j

i

j2J

j h�

j

i

j2J

= cred(D

0

;W

0

; C; ') and there is no J 0 � J

such that h�
j

0

i

j

0

2J

0

= cred(D

0

;W

0

; C; ') g

od ;

return O

This procedure yields a set containing all minimal �-segments orthogonal to a given

CDP h�
i

i

i2I

:

In all, our approach has the following advantages. First, it avoids the computation of

entire extensions. Second, it is goal-directed and thus restricted to default rules relevant

to proving a given query. Third, it takes advantage of basic techniques developed for

credulous reasoning. Clearly, it is necessary to consider all mutually orthogonal CDPs

belonging to distinct extensions. In this way, we cannot get around the exponential factor

present in worst-case, where there is an exponential number of extensions each of which

comprises a CDP orthogonal to all CDPs in all other extensions. In fact, skeptical reason-

ing is �P

2

-complete [6]. While this theoretical threshold is inevitable in the worst-case,

our local proof theory avoids investigating all or even entire extensions whenever a large

domain is ‘locally structured,’ that is, if the query under consideration is deductively

connected with merely a small fraction of the entire theory. This advantage becomes

obvious by looking at some more examples. Suppose that we extend Default Theory

(1) with a default rule like R :W

W

saying that “republicans are Western fans.” Proving

that W is skeptically derivable is doable by a single CDP,



R :W

W

�

; since this CDP is

not contested by any orthogonal�-segments. For another example, suppose that we ex-

tend Default Theory (1) with default rules like Q : V

V

and R ::V

:V

saying that “quakers

are vegetarians” and “republicans aren’t vegetarians.” This leads to four distinct exten-

sions. Proving that T is skeptically derivable however is doable with the same steps as

described above. That is, the two additional extensions do not increase computational

efforts. This is so because the new default rules are irrelevant to proving T .

4 Credulous query-answering

In what follows, we extend the approach for query-answering in Default Logics de-

veloped in [18] to Pre-Constrained Default Logic. This approach is based on the Con-

nection Method [1], which allows for testing unsatisfiability of formulas in conjunctive



normal form (CNF). Unlike resolution-based methods that decompose formulas in order

to derive a contradiction, the Connection Method analyses the structure of formulas for

proving their unsatisfiability.

In the Connection Method, formulas in CNF are displayed two-dimensionally in the

form of matrices (see (9) for an exemplar). A matrix is a set of sets of literals (literal

occurrences, to be precise).10 Each column of a matrix represents a clause of the CNF of

a formula. In order to show that a sentence ' is entailed by a sentenceW , we proveW^

:' be unsatisfiable. In the Connection Method this is accomplished by path checking:

A path through a matrix is a set of literals, one from each clause. A connection is an

unordered pair of literals which are identical except for the negation sign (and possible

indices). A mating is a set of connections. A mating spans a matrix if each path through

the matrix contains a connection from the mating. Finally, a formula, like W ^ :'; is

unsatisfiable iff there is a spanning mating for its matrix.

The approach of [18] relies on the idea that a default rule can be decomposed into

a classical implication along with two qualifying conditions, one accounting for the

character of an inference rule and another one enforcing the respective consistency con-

ditions. The computational counterparts of these qualifying conditions are given by the

proof-oriented concepts of admissibility and compatibility, which we introduce in the

sequel.

In order to find out whether a formula ' is in some extension of a default theory

(D;W ; C), we first transform the default rules in D into their sentential counterparts.

This yields a set of indexed implications:

W

D

=

n

�

�

! 

�

�

�

�

�

�

:�

�



�

2 D

o

Second, we transform bothW andW
D

into their clausal forms,C
W

andC
D

. The clauses

in C

D

, like f:�
�

; 

�

g; are called �-clauses; all other clauses like those in C
W

are re-

ferred to as !-clauses. Finally, a query ' is derivable from (D;W ; C) iff there is a span-

ning mating for the matrixC
W

[C

D

[f:'g agreeing with the concepts of admissibility

and compatibility.11

A useful concept is that of a core of a matrix M wrt a mating � , which allows for

isolating the clauses relevant to the underlying proof. [18] defines the core of M wrt �

as12

�(M;�) = fc 2M j 9� 2 � : c \ � 6= ;g :

For instance, the core of Matrix (9) below wrt the mating drawn is given by all clauses

connected by arcs. Then, the proof-theoretic counterpart of condition (2), also called

groundedness, can be captured as follows [18]:

Definition 6 Admissibility. Let C
W

be a set of !-clauses and C
D

be a set of �-clauses

and let � be a mating for C
W

[ C

D

: Then, (C
W

[ C

D

; �) is admissible iff there is an

enumeration hf:�
�

i

; 

�

i

gi

i2I

of �(C
D

; �) such that for each i 2 I; � is a spanning

mating for C
W

[

�

S

j<i

ff:�

�

j

; 

�

j

gg

�

[ ff:�

�

i

gg:

10 In the sequel, we simply say literal instead of literal occurrences; the latter allow for distin-
guishing between identical literals in different clauses.

11 Without loss of generality, we deal with atomic queries only, since any query can be transformed
into ‘atomic format.’

12 Recall that we deal with literal occurrences.



Note that sometimes not all connections in� are needed for showing the unsatisfiability

of the previous submatrices.

As regards compatibility, we have to extend the corresponding notion found in [18] in

order to deal with a set of pre-constraints C.

Definition 7 C-compatibility. Let C
W

and C
C

be sets of !-clauses and let C
D

be a set

of �-clauses. Let� be a mating forC
W

[C

D

and let hf:�
�

i

; 

�

i

gi

i2I

be an enumeration

of �(C
D

; �). Then, (C
W

[C

D

; �) is C-compatible wrt I iff there is no spanning mating

for C
W

[ C

C

[

�

S

i2I

ff:�

�

i

; 

�

i

g; f�

�

i

gg

�

.

The following theorem shows that our extended method is sound and complete:

Theorem 8. Let (D;W ; C) be a default theory in atomic format and ' an atomic for-

mula. Then, ' 2 E for some constrained extension (E;C) of (D;W ; C) iff there is

a spanning mating � for the matrix M = C

W

[ C

D

[ ff:'gg and an enumera-

tion hf:�
�

i

; 

�

i

gi

i2I

of �(C
D

; �) which verifies (C

W

[ C

D

; �) be admissible and

C-compatible (wrt I).

Finally, (M;�) represents the CDP h�
i

i

i2I

for ' from (D;W ; C).

For illustration, let us verify that T is credulously derivable according to the recipe

given above. The encoding of the set of default rules yields the set W
D

of implications:

fQ

�

1

! D

�

1

; R

�

2

! H

�

2

; D

�

3

! T

�

3

; H

�

4

! T

�

4

g: The indexes denote the respec-

tive default rules in (1) from left to right. In order to verify that a republican quaker

is traditionalist, T , we first transform the facts in Default Theory (1) and the implica-

tions in W
D

into their clausal form. The resulting clauses are given two-dimensionally

as the first six columns of the matrix in (9). The full matrix is obtained by adding the

clause containing the negated query, :T . In fact, the matrix has a spanning mating, viz

ffR;:R

�

2

g; fH

�

2

;:H

�

4

g; fT

�

4

;:Tgg: We have indicated these connections in (9) as

arcs linking the respective literals.

Q

R

:Q

�

1

D

�

1

:R

�

2

H

�

2

:D

�

3

T

�

3

:H

�

4

T

�

4

:T

(9)

This proof corresponds to the second one in (4) and yields the following enumeration:

hf:R

�

2

; H

�

2

g; f:H

�

4

; T

�

4

gi (10)

For admissibility, we must therefore consider the following two submatrices of Matrix

(9):

Q

R

:R

�

2

Q

R

:R

�

2

H

�

2

:H

�

4

(11)

Observe that each of these submatrices has a spanning mating, so the original matrix and

its mating, given in (9), constitute an admissible proof.

For compatibility (or ;-compatibility, to be precise), we have to verify that the follow-

ing matrix has no spanning mating:13

Q

R

:R

�

2

H

�

2

:P

�

2

:H

�

4

T

�

4

T

�

4

(12)

13 The clauses f:P
�

2

g and fT
�

4

g represent the justifications of �
2

and �
4

, respectively.



This is indeed the case since the matrix contains a non-complementary path, viz.

fQ;R;H

�

2

; T

�

4

;:P

�

2

g:We thus obtain an admissible and compatible proof for the orig-

inal query, T , asking whether a republican quaker is traditionalist.

5 Skeptical query-answering

Let us now return to skeptical query-answering. The basic idea is to extend the given

method for credulous query-answering by adding another specific condition on proofs

ensuring that a query is skeptically derivable. This extra condition is motivated by the

general idea described in Section 3.

At first, we account for the proof-theoretic counterpart of �-segments orthogonal

to a given CDP. Let C
N(D)

be the clausal representation of N(D), i.e., C
N(D)

=

ff:

�

; �

�

g j � 2 Dg: These clauses are needed for adding the justifications of de-

fault rules while determining �-segments orthogonal to a CDP at hand. Clearly, this is

obsolete for normal default theories.

Definition 9 Challenge. Let C
W

and C
C

be sets of !-clauses and let C
D

be a set of �-

clauses. Let� be a mating forC
W

[C

D

[ff:'gg (for some') and let hf:�
�

i

; 

�

i

gi

i2I

be an enumeration of �(C
D

; �). Then, a challenge � at i 2 I is a minimal (wrt set in-

clusion) set of default rules � = f� j f:�

�

; 

�

g 2 �(C

D

; �

i

)g for some spanning

mating �
i

for the matrix

M

i

= C

W

[ C

N(D)

[ ff

�

k

g; f�

�

k

g j k < ig [ C

D

[ ff

�

i

g; f�

�

i

gg (13)

such that (M
i

; �

i

) is admissible and C-compatible (wrt some index set I
i

).

Observe that the matrix representation allows us to simplify (13) by replacing C
D

and

C

N(D)

by (C

D

n ff:�

�

k

; 

�

k

g j k � ig) and (C

N(D)

n ff:

�

k

; �

�

k

g j k � ig);

respectively, since the subtracted clauses are subsumed by ff
�

k

g; f�

�

k

g j k < ig and

the query clauses ff
�

i

g; f�

�

i

gg:Now, the overall idea is that (C
W

[C

D

; �) represents

a CDP h�

i

i

i2I

for the considered query. Then, each default proof (M

i

; �

i

) induces a

challenge� that corresponds to a minimal�-segment C-orthogonal to h�
i

i

i2I

: This is so

because (M

i

; �

i

) represents a CDP of :Conseq(�
i

) _ :Justif (�
i

) from Default Theory

(6) (c.f. Theorem 5). Of course, any matrix M
i

may have several spanning matings �
i

and hence may induce different challenges.

Now, we are ready to formulate our additional condition on default proofs for skeptical

reasoning:

Definition 10 Protection & Stability. Let C
W

and C

C

be sets of !-clauses, C
D

be a

set of �-clauses and ' an atomic formula. Let � be a mating for C
W

[ C

D

and let

hf:�

�

i

; 

�

i

gi

i2I

be an enumeration of �(C
D

; �). Let h�
ij

i

j2J

i

be the family of all

challenges at i 2 I:

We say that (C
W

[ C

D

; �) is protected under C against �
ij

by (M

ij

; �

ij

) iff �
ij

is

a spanning mating for the matrix

M

ij

= C

W

[ ff

�

g j � 2 �

ij

g [ C

D

[ ff:'gg

such that (M
ij

; �

ij

) is admissible, C [ Justif (�
ij

)-compatible, and stable for ' under

C [ Justif (�
ij

). We say that (C
W

[ C

D

; �) is stable for ' under C iff (C
W

[ C

D

; �)

is protected under C against all challenges �
ij

.



The idea is that (C
W

[C

D

; �) represents a CDP for query ': In order to verify whether

' is skeptically derivable, we need to show that (C
W

[ C

D

; �) in addition satisfies

the stability criterion. For this, we proceed as follows. First, we isolate all challenges

� against our CDP (C

W

[ C

D

; �): In turn we verify whether ' is also skeptically

derivable from the matrices obtained by adding the consequents of the default rules in

� to C
W

and taking the justifications of the default rules in � as additional constraints

on the compatibility check. This amounts to verifying whether ' is in all extensions to

which the default rules in � contribute. Accordingly, a skeptical default proof is given

by a stable credulous default proof (C
W

[ C

D

; �) along with all its protecting default

proofs (M
ij

; �

ij

). Of course, there may be several such skeptical proofs depending on

the initial choice.

Now, let us examine whether our default proof in (9) is stable and thus renders T a

skeptical conclusion of Default Theory (1). For this, we consider the obtained enumera-

tion hf:R
�

2

; H

�

2

g; f:H

�

4

; T

�

4

gi: In turn, we determine all emerging challenges. That

is, we consider all minimal default proofs of :H
�

2

_ P

�

2

and :T
�

4

: These formulas

represent the negated consequents (and justifications) of the used default rules, �
2

and

�

4

, respectively.

In the first case, we consider the matrix obtained from our original matrix, (9), by

replacing query clause f:Tg by clauses fH
�

2

g and f:P
�

2

g: This allows us moreover

to eliminate the �-clause f:R
�

2

; H

�

2

g from (9) since it is subsumed by fH
�

2

g: Anal-

ogously, we can omit the normalization clause f:H
�

2

;:P

�

2

g due to the presence of

f:P

�

2

g: Hence, we have to add only the normalization clause f:D
�

1

; P

�

1

g since �
3

and

�

4

are normal default rules. The modifications to our initial matrix in (9) are indicated

as dashed boxes.14 This results in the following derivative of Matrix (9):15

M

2

=

Q

R

:Q

�

1

D

�

1

:D

�

3

T

�

3

:H

�

4

T

�

4

:D

�

1

P

�

1

H

�

2

:P

�

2

(14)

By discarding the two query clauses, Matrix16 M
2

can be seen as the proof-theoretic

counterpart of Default Theory (7). In fact, M
2

admits the spanning mating �

2

=

ffQ;:Q

�

1

g; fD

�

1

;:D

�

1

g; fP

�

1

;:P

�

2

gg: This CDP involves a single default rule, viz.

�

1

: We thus obtain the singleton enumeration hf:Q
�

1

; D

�

1

gi inducing the following two

matrices for verifying admissibility and compatibility, respectively:

Q

R

:Q

�

1

:D

�

1

P

�

1

:H

�

2

:P

�

2

Q

R

:Q

�

1

D

�

1

:D

�

1

P

�

1

:H

�

2

:P

�

2

(15)

Both matrices contain the normalization clauses f:D
�

1

; P

�

1

g and f:H
�

2

;:P

�

2

g: The

left matrix is complementary and thus confirms admissibility, while the right matrix has

open path fQ;R;D
�

1

; P

�

1

;:H

�

2

g establishing compatibility. Consequently, (M
2

; �

2

)

14 This is done to underline the utility of structure-oriented theorem proving.
15 For simplicity, we have refrained from turning the two query clauses fH

�

2

g and f:P
�

2

g into
fH

�

2

; 'g; f:P

�

2

; 'g along with the single atomic query clause f:'g (as stipulated in Theo-
rem 8).

16 The index 2 of M
2

and �
2

reflects the index of the query :H
�

2

_ P

�

2

.



provides us with a CDP of:H
�

2

_P

�

2

: This CDP is orthogonal to our initial proof in (9).

As a result, (M
2

; �

2

) induces the challenge �
21

= f�

1

g: There is no other challenge

induced by M
2

:

Now, let us first verify whether our CDP in (9) is protected against �
21

by some other

CDP before we determine more challenges: For establishing stability, intuitively, we

verify whether our initial query, T , belongs to the extensions formed (among others) by

the default rules in �
21

= f�

1

g: For this, we consider the matrix M
21

obtained from our

initial matrix in (9) by adding the consequents of all default rules in �
21

: This amounts

to replacing �-clause f:Q
�

1

; D

�

1

g in (9) by !-clause fD
�

1

g :

M

21

=

Q

R

D

�

1

:R

�

2

H

�

2

:D

�

3

T

�

3

:H

�

4

T

�

4

:T

(16)

According to Definition 10 we then verify whether there is a spanning mating �

21

for M
21

such that (M
21

; �

21

) is admissible, fP
�

1

g-compatible (since Justif (�
21

) =

fP

�

1

g), and stable. Admissibility and compatibility of (M

21

; �

21

) are easily verified

by checking the two following matrices induced by the only �-clause used in (16), i.e.,

f:D

�

3

; T

�

3

g:

Q

R

D

�

1

:D

�

3

Q

R

D

�

1

:D

�

3

T

�

3

P

�

1

Complementarity of the left matrix establishes admissibility while non-complementarity

(initiated by the open path fQ;R;D
�

1

; T

�

3

; P

�

1

g) of the right matrix confirms fP
�

1

g-

compatibility. Now, it remains to be shown that (M
21

; �

21

) along with its induced enu-

meration hf:D
�

3

; T

�

3

gi is stable for T under fP
�

1

g. However, there is no challenge to

f:D

�

3

; T

�

3

g since :T
�

3

is not provable from the matrix obtained by replacing query

clause f:Tg in (16) by fT
�

3

g:

17 As a result, we obtain that our CDP in (9) is protected

against �
21

by (M

21

; �

21

):

Next, we must consider all challenges of the second �-clause in (10). For this, we

determine all CDPs of :T
�

4

(the consequent of �
4

) from the matrix obtained in the fol-

lowing way. First, we add the clauses fH
�

2

g and f:P
�

2

g representing the ‘consequent’

and the ‘justification’ of the first �-clause in (10) to our initial matrix, (9). The first ad-

dition is accomplished by replacing �-clause f:R
�

2

; H

�

2

g by fH
�

2

g: Second, we add

the normalization clause f:D
�

1

; P

�

1

g: As with Matrix (14), the second normalization

clause f:H
�

2

;:P

�

2

g can be omitted since it is subsumed by f:P
�

2

g: Again, no nor-

malization clauses are added for the normal default rules �
3

and �
4

. Finally, we replace

the original query clause f:Tg of (9) by fT
�

4

g: This allows us to eliminate �-clause

f:H

�

4

; T

�

4

g since it is subsumed by fT
�

4

g:

Q

R

:Q

�

1

D

�

1

H

�

2

:D

�

3

T

�

3

:P

�

2

:D

�

1

P

�

1

T

�

4

17 In fact, there is no compatible default proof.



Observe that this matrix can be regarded as the proof-theoretic counterpart of Default

Theory (8) if we discard the query clause. The above matrix has a spanning mating

inducing the enumeration hf:Q
�

1

; D

�

1

gi: Admissibility of the previous proof can be

verified in a straightforward way, and to test compatibility, we have to consider the

following matrix:

Q

R

:Q

�

1

D

�

1

H

�

2

:P

�

2

:D

�

1

P

�

1

Obviously, this matrix has no open path so that our proof is not compatible. Accord-

ingly, :T
�

4

is not derivable (c.f. Default Theory (8)) and therefore there are no more

challenges, apart from�

21

: In this way, we have shown that our initial CDP in (9) is sta-

ble for T (in addition to its admissibility and compatibility verified in Section 4). This

is so because it is protected against its only challenge �
21

by (M

21

; �

21

): This tells us

that T is skeptically derivable from Default Theory (9).

In general, we have the following result stating the adequacy of our proof method:

Theorem 11. Let (D;W ; C) be a default theory in atomic format and ' an atomic

formula. Then, ' 2 E for all constrained extension (E;C) of (D;W ; C) iff there is

a spanning mating � for the matrix M = C

W

[ C

D

[ ff:'gg and an enumera-

tion hf:�
�

i

; 

�

i

gi

i2I

of �(C
D

; �) such that (C
W

[ C

D

; �) is admissible wrt I , C-

compatible wrt I , and stable for ' under C.

6 Conclusion

We have developed an approach to skeptical query-answering in Constrained Default

Logic based on the Connection Method. This has been accomplished by elaborating on

a recently proposed, general idea for skeptical reasoning in (semi-monotonic) Default

Logics [21]. As a result, we have obtained a precise algorithm that returns a skeptical

default proof if the query is contained in all extensions of the underlying default theory.

The approach has then been combined with a method for credulous query-answering

based on the Connection Method. This was accomplished by employing a further re-

striction on credulous default proofs, expressed by the stability criterion. This has led to

a homogeneous characterization of skeptical default proofs at the level of the underly-

ing deduction method. This approach was supported by the structure-sensitive nature of

the Connection Method. The value of this for structure-sharing among the diverse sub-

proofs involved is detailed for credulous query-answering in [18]. Even though we have

not discussed it here, it should be obvious that the utility of structure-sharing applies to

skeptical query-answering, too. We have tried to indicate this by stressing the common

structures involved in the skeptical default proof carried out in the previous section.
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