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Abstract. Logic programs under answer-set semantics constitute an important
tool for declarative problem solving. In recent years, two research issues received
growing attention. On the one hand, concepts like loops and elementary sets have
been proposed in order to extend Clark’s completion for computing answer sets
of logic programs by means of propositional logic. On the other hand, differ-
ent concepts of program equivalence, like strong and uniform equivalence, have
been studied in the context of program optimization and modular programming.
In this paper, we bring these two lines of research together and provide alternative
characterizations for different conceptions of equivalence in terms of unfounded
sets, along with the related concepts of loops and elementary sets. Our results
yield new insights into the model theory of equivalence checking. We further ex-
ploit these characterizations to develop novel encodings of program equivalence
in terms of standard and quantified propositional logic, respectively.

1 Introduction

Among the plethora of semantics that emerged during the nineties of the twentieth cen-
tury for giving meaning to logic programs with nonmonotonic negation, two still play
a major role today: firstly, the answer-set semantics, due to Gelfond and Lifschitz [1],
and secondly, the well-founded semantics, due to Van Gelder, Ross, and Schlipf [2].
While the answer-set semantics adheres to a multiple intended models approach, rep-
resenting the canonical instance of the answer-set programming (ASP) paradigm [3],
the well-founded semantics is geared toward efficient query answering and can be seen
as a skeptical approximation of the answer-set semantics. In this paper, our interest lies
with the answer-set semantics of nonmonotonic logic programs. The results developed
here can informally be described as linking two research issues in the context of the
answer-set semantics by way of the central constituents of the well-founded semantics,
viz. unfounded sets [2,4]. Let us explain this in more detail.

* This work was partially supported by the Austrian Science Fund (FWF) under grant P18019.



An important concept in logic programming is Clark’s completion [5], which asso-
ciates logic programs with theories of classical logic. While every answer set of a logic
program P is also a model of the completion of P, the converse does not hold in general.
As shown by Fages [6], a one-to-one correspondence is obtained if P satisfies certain
syntactic restrictions. In recent years, a large body of work was devoted to extensions
of Fages’ characterization in which the syntactic proviso is dropped at the expense of
introducing additional formulas to Clark’s completion, referred to as loop formulas [7].
Although exponentially many such loop formulas must be added in the worst case [8],
implementations for the answer-set semantics based on this technique, like ASSAT [7]
and Cmodels [9], exploiting solvers for classical logic as back-end inference engines,
behave surprisingly well compared to dedicated answer-set tools like DLV [10] and
Smodels [11]. While DLV exploits unfounded sets as an approximation technique [4],
recent work also reveals relations between unfounded sets and the semantical concepts
underlying loop formulas [12, 13].

Another issue extensively studied in the context of answer-set semantics are differ-
ent notions of program equivalence. The main reason for dealing with varying forms of
equivalence for logic programs is that ordinary equivalence, in the sense that two pro-
grams are equivalent if they have the same answer sets, does not satisfy a substitution
principle similar to that of classical logic. That is to say, replacing a subprogram () of
an overall program P by an equivalent program R does not, in general, yield a program
that is equivalent to P. This is of course undesirable for modular programming or pro-
gram optimization when submodules should be replaced by other, more efficient ones.
This led to the introduction of more robust notions of equivalence, notably of strong
equivalence [14] and uniform equivalence [15], defined as follows: two programs, P
and @, are strongly equivalent iff, for every program R, P U R and Q U R have the
same answer sets; and P and @) are uniformly equivalent iff the former condition holds
for every set R of facts.

The interesting fact about strong equivalence is that it can be reduced to equiva-
lence in the nonclassical logic of here-and-there (also known as Godel’s three-valued
logic) [14], which is basically intuitionistic logic restricted to two worlds, “here” and
“there”. This characterization was subsequently adapted by Turner [16] by introducing
SE-models: an SE-model of a program P is a pair (X,Y’), where X, Y are interpre-
tations such that X C Y, Y |= P, and X = PY, where PY is the usual Gelfond-
Lifschitz reduct [1] of P relative to Y. Two programs are then strongly equivalent iff
they possess the same SE-models. Uniform equivalence, in turn, can be captured by
certain maximal SE-models, termed UE-models [15].

We provide a new perspective on SE- and UE-models by relating them to unfounded
sets. As it turns out, an explicit reference to the reduct is not required; for a model Y of
a program, unfounded sets U with respect to Y allow us to characterize and distinguish
SE- and UE-models of the form (Y \ U,Y).* While UE-models are certain maximal
SE-models, our new characterization of UE-models involves minimal unfounded sets.

4 A similar relationship has been established by Eiter, Leone, and Pearce [17] with respect to
the logic IN2; a logic that later has been used as a first characterization of strong equivalence.
Thus, certain connections between unfounded sets and strong equivalence already appear in
their work, but only in an implicit manner.



Using our characterization of SE- and UE-models, we also derive novel charac-
terizations of program equivalence in terms of unfounded sets. These can in turn be
linked to loop formulas, and consequently to classical logic. Similar to the observation
that expressing answer sets in terms of loop formulas yields an exponential blow-up in
the worst case, our reductions into standard propositional logic are likewise exponen-
tially sized. However, we can avoid this exponential increase by switching to quantified
propositional logic as the target language, which extends standard propositional logic
by admitting quantifications over atomic formulas. Our encodings not only provide us
with new theoretical insights, but the availability of practicably efficient solvers for
quantified propositional logic also gives an easy means to build implementations for
equivalence checking in a straightforward way. Indeed, other axiomatizations of strong
equivalence in terms of propositional logic and of ordinary and uniform equivalence in
terms of quantified propositional logic already appeared in the literature [18-20] with
that purpose in mind, but these differ significantly from ours as they were based upon
different approaches. Finally, all of our encodings are adequate in the sense that the
evaluation problems obtained are of the same complexity as the encoded equivalence
problems.

The outline of this paper is as follows. In Section 2, we introduce the formal back-
ground, and in Section 3, we develop characterizations of models substantial for pro-
gram equivalence, viz. answer sets, SE-models, and UE-models, based on unfounded
sets. We further exploit these characterizations in Section 4 for providing novel specifi-
cations of program equivalence as well as encodings in standard and quantified propo-
sitional logic. Finally, we discuss our results in Section 5.

2 Background
A propositional disjunctive logic program is a finite set of rules of the form
a1V Vag < Qgt1,- -3 Qm, NOL A1, ..., NOE Ay, D

where 1 < £k < m < n,every a; (1 < ¢ < n) is a propositional atom from some
universe U, and not denotes default negation. A rule r of form (1) is called a fact

if k. = n = 1, and positive if m = n. Furthermore, H(r) = {a1,...,a;} is the
head of r, B(r) = {ak+1,.--,@m,not a1, ..,nota,} is the body of r, BY(r) =
{@k+1,--.,am}is the positive body of r, and B~ (r) = {am+1,-. ., an} is the negative

body of r. We sometimes denote a rule r by H(r) « B(r).
The (positive) dependency graph of a program P is the pair

U,{(a,b) | r € P,ac H(r),b € BY(r)}).

A nonempty set U C U is a loop of P if the subgraph of the dependency graph of P
induced by U is strongly connected. Following Lee [12], we consider every singleton
over U as a loop. A program P is tight [6,21] if every loop of P is a singleton.

As usual, an interpretation Y is a set of atoms over . For a rule r, we write Y =1
iff Hir)NY # 0, BT (r) £ Y,or B~ (r)NY # 0. An interpretation Y is a model of
a program P, denoted by Y |= P, iff Y |= r for every r € P. The reduct of P with



respectto Y is PY = {H(r) « B*(r) | r € P,B=(r)NY = 0}; Y is an answer set
of P iff Y is a minimal model of PY .

Two programs, P and @), are ordinarily equivalent iff their answer sets coincide.
Furthermore, P and @) are strongly equivalent [14] (resp., uniformly equivalent [15])
iff, for every program (resp., set of facts) R, P U R and @) U R have the same answer
sets. For interpretations X, Y, the pair (X,Y") is an SE-interpretation iff X C Y. An
SE-interpretation (X,Y’) is an SE-model [16] of a program P iff Y |= P and X = PY.
The pair (X,Y) is a UE-model [15] of P iff it is an SE-model of P and there is no SE-
model (Z,Y") of P suchthat X C Z C Y. The set of all SE-models (resp., UE-models)
of P is denoted by SE(P) (resp., UE(P)). Two programs, P and @), are strongly (resp.,
uniformly) equivalent iff SE(P) = SE(Q) (resp., UE(P) = UE(Q)) [16, 15].

Example 1. Consider P = {a Vb <} and Q = {a <« notb; b «— nota}. Clearly,
both programs are ordinarily equivalent as {a} and {b} are their respective answer sets.
However, they are not strongly equivalent. Indeed, since P is positive, we have that
SE(P) = {(a,a), (b,b), (ab,ab), (a,ab), (b, ab)}.> For Q, we have to take the reduct
into account. In particular, we have Q1**} = (), and so any interpretation is a model
of Q1*} Hence, each pair (X, ab) with X C {a, b} is an SE-model of Q. We thus have
SE(Q) = {(a,a), (b,b), (ab,ab), (a,ad), (b, ad), (#,ab)}. That is, SE(P) # SE(Q),
so P and @ are not strongly equivalent. A witness for this is R = {a « b; b < a}, as
P U R has {a, b} as its (single) answer set, while Q U R has no answer set.
Concerning uniform equivalence, observe first that UE(P) = SE(P). This is not
the case for @), where the SE-model (), ab) is not a UE-model since there exist further
SE-models (Z, ab) of Q with ) C Z C {a, b}, viz. (a, ab) and (b, ab). One can check
that (f), ab) is in fact the only pair in SE'(Q) that is not a UE-model of Q. So, UE(Q) =
SE(Q)\ {(B,ab)} = SE(P) = UE(P). Thus, P and @ are uniformly equivalent. ¢

We conclude this section with the following known properties. First, for any pro-
gram P and any interpretation Y, the following statements are equivalent: (i) Y = P;
(i) Y | PY; (iii) (Y,Y) € SE(P); and (iv) (Y,Y) € UE(P). Second, if Y = P,
Y is an answer set of P iff, for each SE-model (resp., UE-model) (X,Y)of P, X =Y.

3 Model-Theoretic Characterizations by Unfounded Sets

In this section, we exploit the notion of an unfounded set [2,4] and provide alterna-
tive characterizations of models for logic programs and program equivalence. Roughly
speaking, the aim of unfounded sets is to collect atoms that cannot be derived from a
program with respect to a fixed interpretation. Given the closed-world reasoning flavor
of answer sets, such atoms are considered to be false. However, we shall relate here
unfounded sets also to SE- and UE-models, and thus to concepts that do not fall under
the closed-world assumption (since they implicitly deal with program extensions). For
the case of uniform equivalence, we shall also employ the recent concept of elemen-
tarily unfounded sets [13], which via elementary sets decouple the idea of (minimal)
unfounded sets from fixed interpretations. Finally, we shall link our results to loops.

> Whenever convenient, we use strings like ab as a shorthand for {a, b}. As a convention, we let
universe U be the set of atoms occurring in the programs under consideration.



Given a program P and an interpretation Y, a set U C U is unfounded for P with
respect to Y if, for each » € P, at least one of the following conditions holds:

1. Hr)nU =0,

2. Hr)n (Y \U) # 0,

3. BYf(r)ZYor B~ (r)NY # 0, or
4. BY(r)nU # 0.

Note that the empty set is unfounded for any program P with respect to any interpreta-
tion since the first condition, H (r) N ) = @, holds for all r € P.

Example 2. Consider the following program:

p_lm: aVb— r3: ca rs: ¢« b,d
T re: bVe— ry: d< not b r¢: d<«—c,not al’

Let U = {c¢,d}. We have H(r) N U = {a,b} N {c,d} = 0, that is, 1 satisfies
Condition 1. For 75 and r¢, BT (r5) NU = {b,d} N {c,d} # 0 and B*(rg) NU =
{c} N {e,d} # 0. Hence, both rules satisfy Condition 4. Furthermore, consider the
interpretation Y = {b,¢,d}. We have H(r2) N (Y \ U) = {b,c} N {b} # 0. Thus,
ro satisfies Condition 2. Finally, for r5 and r4, B*(r3) = {a} € {b,c,d} =Y and
B~ (rg)NY = {b} N{b,c,d} # 0, that is, both rules satisfy Condition 3. From the fact
that each rule in P satisfies at least one of the unfoundedness conditions, we conclude
that U = {¢, d} is unfounded for P with respectto Y = {b, ¢, d}. O

The basic relation between unfounded sets and answer sets is as follows.

Proposition 1 ([4,17]). Let P be a program and Y an interpretation. Then, Y is an
answer set of P iff Y = P and no nonempty subset of Y is unfounded for P with
respectto Y.

Example 3. Program P in Example 2 has two answer sets: {a, c,d} and {b}. For the
latter, we just have to check that {b} is not unfounded for P with respect to {b} it-
self, which holds in view of either rule r; or 5. To verify via unfounded sets that
Y = {a, ¢, d} is an answer set of P, we have to check all nonempty subsets of Y. For
instance, take U = {c, d}. We have already seen that 71, 75, and 74 satisfy Condition 1
or 4, respectively; but the remaining rules r, r3, and r4 violate all four unfoundedness
conditions for U with respect to Y. Hence, U = {c¢,d} is not unfounded for P with
respect to Y = {a, ¢, d}. O

We next detail the relationship between unfounded sets and models of logic pro-
grams as well as of their reducts. First, we have the following relationships between
models and unfounded sets.

Lemma 1. Let P be a program and Y an interpretation. Then, the following state-
ments are equivalent:

(@Y = P;
(b) every set U CU\Y is unfounded for P with respect to Y ; and



(c) every singleton U C U \'Y is unfounded for P with respect to'Y.

Proof. (a) = (b): Assume that some set U C U\ Y is not unfounded for P with respect
to Y. Then, for some rule r € P, we have: (o) H(r)NU # 0;(8) H(r)N(Y\U) = 0;
MBT(r)CYand B (r)NY =0;and (6) BY(r)NU = 0. Since UNY = () by
hypothesis, we conclude from (/) that H(r) N'Y = (. Since () holds in addition, we
have Y }~ r and thus Y [~ P.

(b) = (c): Trivial.

(¢) = (a): Assume Y [~ P. Then, there is a rule r € P such that Y }~ r, that
is, H(r) N Y = (0 and (~) hold. By the definition of rules, H(r) # (. So, consider
any a € H(r) and the singleton U = {a}. Clearly, (o) holds for r, and (/) holds by
H(r)NY = 0. Finally, since B*(r) C Y and a ¢ Y, (§) holds as well. That is, there
is a singleton U C U \ Y that is not unfounded for P with respect to Y. a

We further describe the models of a program’s reduct by unfounded sets.

Lemma 2. Let P be a program, Y an interpretation such that Y |= P, and U C U.
Then, (Y \U) = PY iff U is unfounded for P with respect to'Y .

Proof. (=) Assume that U is not unfounded for P with respect to Y. Then, for some
rule r € P, (a)—(6) from the proof of Lemma 1 hold. Clearly, B~ (r) N Y = () implies
(H(r) « B*(r)) € PY.From B*(r) C Y and (), we conclude B*(r) C (Y \ U).
Together with (3), we obtain (Y \ U) (& (H(r) «— BT (r)) and thus (Y \ U) = PY.
(<=) Assume (Y \U) £ PY. Then, thereis arule r € P such that (Y \U) }& {r}Y.
We conclude that r satisfies (3), Bt (r) C (Y\U),and B~ (r)NY = (. Since BT (r) C
(Y'\ U) immediately implies B* () C Y, () holds. Moreover, BT (r) C (Y \ U) also
implies (8). It remains to show («). From () and Y |= 7 (which holds by the assumption
Y E P), we conclude H(r) N'Y # (). Together with (3), this implies (). Since (@),
(), (), and (9) jointly hold for some rule » € P, we have that U is not unfounded
for P with respectto Y. a

Example 4. For illustration, reconsider P from Example 2 and Y = {b, ¢, d}. For sin-
gleton {a} and 1, we have H(r1) N (Y \ {a}) = {a, b} N {b, ¢, d} # (. Furthermore,
a ¢ H(r)forallr € {ry,...,76}. Thatis, {a} is unfounded for P with respect to Y.
From this, we can conclude by Lemma 1 that Y is a model of P, ie., Y | P.

As we have already seen in Example 2, U = {c,d} is unfounded for P with
respect to Y. Lemma 2 now tells us that (Y \ U) = {b} is a model of PY =
{r1,r2,r3,75, (H(r¢) < BT (rs)) }. Moreover, one can check that {a, c, d} is as well
unfounded for P with respect to Y. O

The last observation in Example 4 stems from a more general side-effect of
Lemma 2: for any program P, any interpretation Y such that Y = P,and U C U,
U is unfounded for P with respect to Y iff (U N'Y") is unfounded for P with respect
to Y. For models Y, this allows us to restrict our attention to unfounded sets U C Y.

We now are in a position to state an alternative characterization of SE-models.

Theorem 1. Let P be a program, Y an interpretation such thatY = P, and U C U.
Then, (Y \U,Y) is an SE-model of P iff (UNY') is unfounded for P with respectto Y.



The following result reformulates the definition of UE-models in view of Theo-
rem 1.

Corollary 1. Let P be a program, Y an interpretation such thatY |= P, and U C U
such that (UNY') is unfounded for P with respectto Y. Then, (Y\U,Y) is a UE-model
of P iff, foreach V with (Y \U) C (Y\V) C Y, (VNY) is not unfounded for P with
respectto Y.

A simple reformulation of this result provides us with the following novel charac-
terization of UE-models.

Theorem 2. Ler P be a program, Y an interpretation such thatY = P, and U C U.
Then, (Y \ U,Y) is a UE-model of P iff (U NY') is unfounded for P with respect to'Y’
and no nonempty proper subset of (U N'Y') is unfounded for P with respectto'Y .

Note that the inherent maximality criterion of UE-models is now reflected by a
minimality condition on (nonempty) unfounded sets. Theorems 1 and 2 allow us to
characterize strong and uniform equivalence in terms of unfounded sets, avoiding an
explicit use of programs’ reducts. This will be detailed in Section 4.

Example 5. Recall programs P = {a Vb <} and Q = {a < notb; b — nota}
from Example 1. We have seen that the only difference in their SE-models is the pair
(B, ab), which is an SE-model of @, but not of P. Clearly, Y = {a, b} is a classical
model of P and of (), and in view of Theorem 1, we expect that Y is unfounded for ()
with respect to Y, but not for P with respect to Y. The latter is easily checked since the
ruler = (aVb «)yields () H(r)NY #0; Q) Hir)N(Y\Y)=0;3) BT (r) CY
and B~ (r) NY = 0; and (4) BT (r) N'Y = (. Thus, none of the four unfoundedness
conditions is met. However, for r; = (a « notb) and ro = (b « nota), we have
B~ (r;))NY # 0, fori € {1,2}, and thus Y is unfounded for ) with respectto Y.
Recall that (), ab) is not a UE-model of Q. In view of Theorem 2, we thus expect
that Y = {a, b} is not a minimal nonempty unfounded set. As one can check, both
nonempty proper subsets {a} and {b} are in fact unfounded for ) with respectto Y. ¢

In the remainder of this section, we provide a further characterization of UE-models
that makes use of elementary sets [13]. For a UE-model (X, Y"), this not only gives us a
more intrinsic characterization of the difference U = (Y \ X)) than stated in Theorem 2,
but it also yields a further direct relation to loops. We make use of this fact and provide
a new result for the UE-models of tight programs.

We define a nonempty set U C U as elementary for a program P if, for each V' such
that ) C V' C U, there is some r € P jointly satisfying

1. Hr)NnV #£0,

2. Hr)n(U\V) =10,

3. BY(r)nV =0, and

4. BT (r)yn(U\V) #0.

Due to Conditions 1 and 4, every elementary set is also a loop of P, but the converse
does not hold in general. Similar to loops, however, elementary sets can be used to
characterize answer sets in terms of propositional logic (cf. Proposition 3).



Example 6. Consider the following program:

P_{le aVd+—c rg: b« a,c rs b\/c<—d,e}
To a+—b,d Ty C—a rg: dVe <« ’
As one can check, the subgraph of the dependency graph of P induced by {a, ¢, d} is
strongly connected, hence, {a,c,d} is a loop of P. However, looking at subset {d},
we can verify that there is no rule in P satisfying all four elementary set conditions:
only for r € {ry,re}, we have H(r) N {d} # 0, but H(r1) N ({a,c,d} \ {d}) =
{a,d} N{a,c} # 0 and BT (rg) N ({a,c,d} \ {d}) = 0N {a,c} = 0. This shows that
the loop {a, ¢, d} is not an elementary set of P.

Next, consider U = {a, b, ¢}, which is again a loop of P. In contrast to {a,c,d},
U is as well elementary for P. For instance, taking V' = {a, b} and r1, we have H (r1)N
V = {a,d} Nn{a,b} # 0, Hri) N (U\V) = {a,d} N{c} =0, Bt (ri))NV =
{c} n{a,b} =0,and BT (r{) N (U \ V) ={c} n{c} #0. O

To link elementary sets and unfounded sets together, for a program P, an interpre-
tation Y, and U C U, we define

Pyy={reP|Hr)n(Y\U)=0,B"(r)CY, B~ (r)nY = (}.

Provided that H(r) N U # ), arule r € Py supports U with respect to Y, while
no rule in (P \ Py ) supports U with respect to Y. Analogously to Gebser, Lee, and
Lierler [13], we say that U is elementarily unfounded for P with respect to Y iff (i) U is
unfounded for P with respect to Y and (ii) U is elementary for Py ;. Any elementarily
unfounded set of P with respect to Y is also elementary for P, but an elementary set U
that is unfounded for P with respect to Y is not necessarily elementarily unfounded
because U might not be elementary for Py, [13].
Elementarily unfounded sets coincide with minimal nonempty unfounded sets.

Proposition 2 ([13]). Let P be a program, Y an interpretation, and U C U. Then,
U is a minimal nonempty unfounded set of P with respect to Y iff U is elementarily
unfounded for P with respectto'Y .

Example 7. Recall that U = {a,b,c} is elementary for Program P from Example 6.
ForY = {a,b,¢,d}, we have Py iy = {rq, 73,74} because H(r1)N(Y'\U) = H(rg)N
(Y\U) ={d} # 0and Bt (r5) = {d,e} € {a,b,c,d} =Y. Since B (r;) NU # 0,
for i € {2,3,4}, we further conclude that U is unfounded for P with respect to Y.
Although U is an elementary set of P and unfounded for P with respect to Y, it is not
elementary for Py ;; and thus not an elementarily unfounded set of P with respect to Y.
This is verified by taking V' = {a, b}, where we have B™ (r;)NV # 0, fori € {2,3,4}.
As one can check, V itself is unfounded for P with respect to Y and elementary for
Py = {ra,rs}. Therefore, V = {a, b} is elementarily unfounded for P with respect
to Y. Finally, observe that neither {a} nor {b} is unfounded for P with respect to Y.
Thus, V is indeed a minimal nonempty unfounded set of P with respectto Y. O

The fact that every nonempty unfounded set contains some elementarily unfounded
set, which by definition is an elementary set, allows us to derive some properties of



the difference U = (Y \ X) for SE-interpretations (X, Y). For instance, we can make
use of the fact that every elementary set is also a loop, while it is not that obvious to
conclude the same for minimal nonempty unfounded sets, only defined with respect to
interpretations.

Formally, we derive the following properties for UE-models (resp., SE-models).

Corollary 2. Let P be a program and (X,Y') a UE-model (resp., SE-model) of P. If
X Y, then (Y \ X) is (resp., contains) (a) an elementarily unfounded set of P with
respect to Y ; (b) an elementary set of P; and (c) a loop of P.

For tight programs, i.e., programs such that every loop is a singleton, we obtain the
following property.

Corollary 3. Let P be a tight program and (X,Y') an SE-model of P. Then, (X,Y)
is a UE-model of P iff X =Y or (Y \ X) is a singleton that is unfounded for P with
respectto Y.

Proof. Given that P is tight, every loop of P is a singleton. Thus, the fact that any ele-
mentarily unfounded set is a loop of P implies that only singletons can be elementarily
unfounded. From Theorem 2 and Proposition 2, we conclude that (X, Y") is a UE-model
of Piff X =Y or Y \ X is a singleton that is unfounded for P with respectto Y. O

Example 8. Recall the SE-model (0, ab) of Q@ = {a < notb; b — not a}. The loops
of @ are {a} and {b}, thus, Q is tight. This allows us to immediately conclude that
(B, ab) is not a UE-model of @, without looking for any further SE-model to rebut it.

Corollary 3 shows that, for tight programs, the structure of UE-models is particu-
larly simple, i.e., they are always of the form (Y,Y) or (Y \ {a},Y), for some a € Y.
As we will see in the next section, this also allows for simplified encodings.

4 Characterizations for Program Equivalence

In this section, we further exploit unfounded sets to characterize different notions of
program equivalence. We start by comparing two programs, P and @, regarding their
unfounded sets for deriving conditions under which P and @) are ordinarily, strongly,
and uniformly equivalent, respectively. Based on these conditions, we then provide
novel encodings in standard and quantified propositional logic.

4.1 Characterizations based on Unfounded Sets

Two programs are ordinarily equivalent if they possess the same answer sets. As Propo-
sition 1 shows, answer sets are precisely the models of a program that do not contain
any nonempty unfounded set. Hence, ordinary equivalence can be described as follows.

Theorem 3. Let P and Q) be programs. Then, P and Q) are ordinarily equivalent iff,
for every interpretation Y, the following statements are equivalent:

(@) Y = P and no nonempty subset of Y is unfounded for P with respect to'Y; and



(b) Y | Q and no nonempty subset of Y is unfounded for Q with respectto'Y .

Note that ordinarily equivalent programs are not necessarily classically equivalent,
as is for instance witnessed by programs P = {a Vb «—}and Q = {a Vb «; a «— ¢}
possessing the same answer sets: {a} and {b}. However, {b, c} is a model of P, but
not of Q. In turn, for strong and uniform equivalence, classical equivalence is a neces-
sary (but, in general, not a sufficient) condition. This follows from the fact that every
model of a program participates in at least one SE-model (resp., UE-model) and is thus
relevant for testing strong (resp., uniform) equivalence. Therefore, the following char-
acterization of strong equivalence considers all classical models.

Theorem 4. Let P and ) be programs. Then, P and QQ are strongly equivalent iff,
for every interpretation Y such that Y = P or Y |E Q, P and Q possess the same
unfounded sets with respectto'Y .

Proof. (=) Assume that P and @ are strongly equivalent. Fix any interpretation Y such
thatY = P (or Y |= Q). Then, (Y,Y) is an SE-model of P (or @), and since P and Q
are strongly equivalent, (Y,Y") is also an SE-model of @ (or P). That is, both Y = P
and Y = Q hold. Fix any set U C U. By Lemma 2, U is unfounded for P with respect
to Y iff (Y \ U,Y) is an SE-model of P. Since P and Q are strongly equivalent, the
latter holds iff (Y \ U,Y") is an SE-model of @), which in turn holds iff U is unfounded
for ) with respectto Y.

(<=) Assume that P and () are not strongly equivalent. Then, without loss of gener-
ality, there is an SE-model (X, Y) of P that is not an SE-model of @ (the other case is
symmetric). By the definition of SE-models, we have Y = P, and by Lemma 2, (Y\ X)
is unfounded for P with respect to Y, but either Y [~ @ or (Y \ X) is not unfounded
for @ with respect to Y. If (Y \ X) is not unfounded for () with respect to Y, then P
and @) do not possess the same unfounded sets with respect to Y. Otherwise, if Y |~ Q,
by Lemma 1, there is a set U C U/ \ Y that is not unfounded for @) with respect to Y,
but U is unfounded for P with respectto Y. ad

Theorem 4 shows that strong equivalence focuses primarily on the unfounded sets
admitted by the compared programs. In the setting of uniform equivalence, the consid-
eration of unfounded sets is further restricted to minimal ones (cf. Theorem 2), and by
Proposition 2, these are exactly the elementarily unfounded sets.

Theorem 5. Let P and Q) be programs. Then, P and () are uniformly equivalent iff,
for every interpretation Y such that Y = P or Y |= Q, P and Q possess the same
elementarily unfounded sets with respect to Y.

Proof. (=) Assume that P and () are uniformly equivalent. Fix any interpretation Y
suchthatY = P (or Y | Q). Then, (Y,Y) is a UE-model of P (or @), and since P
and @ are uniformly equivalent, (Y,Y") is also a UE-model of @ (or P). That is, both
Y = Pand Y | Q@ hold. Fix any elementarily unfounded set U of P (or ()) with
respect to Y. If U C U \ Y, by Lemma 1 and Proposition 2, U is a singleton that is
unfounded for both P and ) with respect to Y, which implies that U is elementarily
unfounded for Q (or P) with respect to Y. Otherwise, if U N'Y # (, then Lemma 1
and Proposition 2 imply U C Y. By Theorem 2 and Proposition 2, (Y \ U,Y) is a



UE-model of P (or @), and since P and () are uniformly equivalent, (Y \ U,Y) is as
well a UE-model of Q (or P). Since ) # U C Y, by Theorem 2 and Proposition 2, we
conclude that U is elementarily unfounded for ) (or P) with respect to Y.

(<) Assume that P and () are not uniformly equivalent. Then, without loss of
generality, there is a UE-model (X, Y") of P that is not a UE-model of ) (the other case
is symmetric). Since (X,Y") is also an SE-model of P, we have Y = P. If Y |~ Q, by
Lemma 1, there is a singleton U C U\ 'Y that is not unfounded for @) with respect to Y,
but U is unfounded for P with respect to Y. That is, U is elementarily unfounded for PP
with respect to Y, but not for ) with respect to Y. Otherwise, if Y = @, (Y,Y) is a
UE-model both of P and of (). Hence, X C Y, and by Theorem 2 and Proposition 2,
(Y'\ X) is elementarily unfounded for P with respect to Y. Furthermore, the fact that
(X,Y) is not a UE-model of @, by Theorem 2 and Proposition 2, implies that (Y \ X)
is not elementarily unfounded for () with respectto Y. a

In contrast to arbitrary unfounded sets, elementarily unfounded sets exhibit a certain
structure as they are loops or, even more accurately, elementary sets (cf. Corollary 2).
Theorem 5 tells us that such structures alone are material to uniform equivalence.

4.2 Characterizations in (Standard) Propositional Logic

We now exploit the above results on unfounded sets to encode program equivalence in
propositional logic. For ordinary equivalence, we use the well-known concept of loop
formulas, while for strong and uniform equivalence, we refer directly to unfounded sets.

In what follows, we write for a set of default literals, like B(r), and a set of atoms,
like H(r), B(r) — H(r) as a shorthand for

(/\aEB+(7')a A /\aeB‘(’r')_‘a) - \/aEH(T)av

where, as usual, empty conjunctions (resp., disjunctions) are understood as T (resp.,
). For instance, for a rule r of form (1), B(r) — H (r) stands for

A1 N ANam AN Qi1 N ANy — a1 V.- Vag.

Furthermore, within the subsequent encodings, an occurrence of a program P is under-
stood as A\.cp(B(r) — H(r)).

As a basis for the encodings, we use the following concept. Following Lee [12], for
a program P and U C U, the external support formula of U for P is

ESp(U) = \/TEP,H(r)ﬁUyé@,B+(r)ﬂU:(Z)_‘(B(r) — (H(r) \ U))~ @

Intuitively, the models of ES p(U) are those interpretations Y such that U is externally
supported by P with respect to Y. That is, there is a rule » € P that supports U with
respectto Y, ie., H(r)NU # 0, H(r)N(Y\U) =0, B*(r) CY,and B~ (r)NY =0
jointly hold. In addition, to make U externally supported, one requires BY (r)NU = 0,
expressing that the support comes from “outside” U.

The relationship between unfounded sets and external support formulas is as fol-
lows.



Lemma 3. Let P be a program, Y an interpretation, and U C U. Then, U is un-
Sfounded for P with respect to Y iff Y (= ESp(U).

Proof. (=) Assume Y = ESp(U). Then, there is a rule € P such that (o) H(r) N
U#0;B3) BT (r)nU =0;(y) Bf(r) CY and B~ (r)NY = 0; and (§) (H(r) \
U)nY =H(r)Nn (Y \U) = 0. That is, U is not unfounded for P with respect to Y.
(<) Assume that U is not unfounded for P with respect to Y. Then, there is a
rule r € P for which (), (8), (), and () hold. From (v) and (), we conclude Y |
=(B(r) — (H(r) \ U)), which together with (c) and (3) implies Y |= ESp(U). O

For a program P and U C U, the (conjunctive) loop formula [12] of U for P is

LFp(U) = (/\peUp) — ESp(U). 3)

With respect to an interpretation Y, the loop formula of U is violated if Y contains U
as an unfounded set, otherwise, the loop formula of U is satisfied.

Proposition 3 ([12,13]). Let P be a program and Y an interpretation such that
Y |= P. Then, the following statements are equivalent:

(a) Y is an answer set of P;

(b) Y = LF p(U) for every nonempty subset U of U;
(¢) Y = LFp(U) for every loop U of P;

(d) Y | LFp(U) for every elementary set U of P.

For ordinary equivalence, the following encodings (as well as different combina-
tions thereof) can thus be obtained.

Theorem 6. Let P and QQ be programs, and let L and £ denote the set of all loops and
elementary sets, respectively, of P and Q). Then, the following statements are equiva-
lent:

(a) P and Q are ordinarily equivalent;

(b (PA Nozvcu LFp(U)) < (QA Noxvcu LFo(U)) is a tautology;
© (PAAyee LEp(U)) < (Q A Nyeg LF(U)) is a tautology;

d) (PANpee LEp(U)) « (Q A Nyee LFo(U)) is a tautology.

Recall that, for tight programs, each loop (and thus each elementary set) is a single-
ton. In this case, the encodings in (c¢) and (d) are therefore polynomial in the size of the
compared programs. Moreover, one can verify that they amount to checking whether
the completions [5] of the compared programs are equivalent in classical logic.

For strong and uniform equivalence between P and (Q, the models of P and () along
with the corresponding unfounded sets are compared, as Theorems 4 and 5 show. We
thus directly consider external support formulas, rather than loop formulas.

Theorem 4 and Lemma 3 yield the following encoding for strong equivalence.

Theorem 7. Let P and QQ be programs. Then, P and Q are strongly equivalent iff
(PVQ)— (/\Ugu (ESp(U) <« ESq(U))) is a tautology.



Proof. By Theorem 4, P and () are strongly equivalent iff, for every interpretation Y
suchthat Y = PorY | @, P and @ possess the same unfounded sets with respect
to Y. By Lemma 3, a set U C U is unfounded for P (resp., Q)) with respect to Y iff
Y = ESp(U) (resp., Y = ESq(U)). From this, the statement follows. O

In order to encode also uniform equivalence, we have to single out elementarily
unfounded sets. To this end, we modify the definition of the external support formula,
ESp(U), and further encode the case that U is (not) a minimal nonempty unfounded
set. For a program P and U C U, we define the minimality external support formula as

ESH(U) = ESp(U)V ~(Agcver ESp(V)). )

Similar to external support formulas and unfounded sets, minimality external support
formulas correspond to elementarily unfounded sets as follows.

Lemma 4. Let P be a program, Y an interpretation, and ) € U C U. Then, U is
elementarily unfounded for P with respect to Y iff Y = ESH(U).

Proof. (=) Assume Y | ESTH(U). We have two cases. First, Y = ESp(U): By
Lemma 3, U is not unfounded for P with respect to Y, which implies that U is not
elementarily unfounded for P with respect to Y. Second, Y [~ (Aycy ey ESp(V)):
For some V such that ) € V C U, we have Y [~ ESp(V). By Lemma 3, V is
unfounded for P with respect to Y. We conclude that U is not a minimal nonempty
unfounded set of P with respect to Y, and by Proposition 2, U is not elementarily
unfounded for P with respect to Y.

(<) Assume Y & ESH(U). Then, Y & ESp(U), and by Lemma 3, U is un-
founded for P with respect to Y. Furthermore, Y = (Aycy iy ESp(V)), and thus no
set V such that  C V' C U is unfounded for P with respect to Y (again by Lemma 3).
That is, U is a minimal nonempty unfounded set of P with respect to Y, and by Propo-
sition 2, U is elementarily unfounded for P with respect to Y. a

Theorem 5 and Lemma 4 allow us to encode uniform equivalence as follows.

Theorem 8. Let P and QQ be programs, and let L and & denote the set of all loops and
elementary sets, respectively, of P and Q). Then, the following statements are equiva-
lent:

(a) P and Q are uniformly equivalent;

b (PVQ)— (/\Ugu (ESH(U) < ESG(U))) is a tautology;
© (PVQ)— (Ayer (BESp(U) « ESHU))) is a tautology;
@ (PVQ)— (Apee (BESp(U) « ESH(U))) is a tautology.

Proof. By Theorem 5, P and () are uniformly equivalent iff, for every interpretation ¥
suchthatY = PorY = @, P and ) possess the same elementarily unfounded sets
with respect to Y. Clearly, any elementarily unfounded set of P or () belongs to the
set £ of all elementary sets of P and (), which is a subset of the set £ of all loops of P
and Q, and every element of £ is a subset of 4. By Lemma 4, aset ) € U C U is
elementarily unfounded for P (resp., Q) with respect to Y iff Y & ESH(U) (resp.,
Y = ESG(U)). Finally, we have ESp(0) = ESGH(0) = LV =T = L,sothat Y |=
(ESH(0) «— ES% (D)) for any interpretation Y. From this, the statement follows. O



Again, we exploit the fact that, for tight programs, all loops and elementary sets
are singletons. It is thus sufficient to consider only the external support formulas of
singletons. To the best of our knowledge, this provides a novel technique to decide uni-
form equivalence between tight programs. In fact, the following result is an immediate
consequence of (¢), or likewise (d), in Theorem 8.

Corollary 4. Let P and Q) be tight programs. Then, P and Q) are uniformly equivalent
iff (PVQ)— (Nseu (BESp({a}) < ESq({a}))) is a tautology.

Indeed, for singletons {a}, —( Nocveiay ESp(V)) (resp., —( Nocveiay ESq(V))
can be dropped from ES%({a}) (resp., ESG ({a})) because it is equivalent to L.

Except for ordinary and uniform equivalence between tight programs, all of the
above encodings are of exponential size. As with the well-known encodings for answer
sets (cf. Proposition 3), we do not suggest to a priori reduce the problem of deciding
program equivalence to propositional logic. Rather, our encodings provide an alterna-
tive view on the conditions underlying program equivalence; similar characterizations
have already been successfully exploited in answer-set solving [7, 9].

4.3 Characterizations in Quantified Propositional Logic

We now provide encodings that avoid the exponential blow-ups encountered above.
Except for strong equivalence, this requires encodings to be stated in quantified propo-
sitional logic rather than in (standard) propositional logic.

We briefly recall the basic elements of quantified propositional logic. Syntactically,
quantified propositional logic extends standard propositional logic by permitting quan-
tifications over propositional variables. Formulas of quantified propositional logic are
also referred to as quantified Boolean formulas (QBFs). An occurrence of an atom p is
free in a QBF & if it is not in the scope of a quantifier Qp, for Q € {V, 3}. Given a finite
set P = {p1,...,pn} of atoms, QP ¥ stands for any QBF of the form Qp; ...Qp,?.
For an atom p and a formula ¥, ®[p/¥] denotes the QBF resulting from & by replac-
ing each free occurrence of p in @ by ¥. For (indexed) sets P = {pi,...,p,} and
S ={w,...,0,}, §[P/S] is a shorthand for (- - - (P[p1/¥1]) - - - ) [Pn/¥n].

For an interpretation I and a QBF &, the relation I = & is defined analogously to
standard propositional logic, with the additional cases that, if # = Vp W, then I = &
iff | =Wp/T]and I = ¥[p/L],and if ® = IpP,then I E Piff I | ¥[p/T] or
I |=¥[p/1]. We say that a QBF & is valid if I |= @ for every interpretation I.

Given a universe U, we use further copies U’ = {p' | p € U}, U = {p
p € U}, etc. of mutually disjoint sets of new atoms. Moreover, we adopt the following
abbreviations to compare interpretations over I/ (via copies):

I/|

U <U stands for A o, (p" — p); and
U < U stands for /\peu(p, —p)A —\(/\peu(p — p/)).

These building blocks allow us to check containedness between Y, U C U as follows.
Let I be an interpretation over { UU', Y = INU,and U = {p | p’ € (INU’)}. Then,
TEU<UIfUCY,and] =E(U'<U)iffU CY.



Making use of quantifiers, we next provide polynomial encodings for program
equivalence. First, we introduce a module representing ES p(U), as given in (2), but
without explicitly referring to certain sets U. Rather, a particular U is determined by
the true atoms from a copy U’ of U. Given a rule r, we denote by 7’ the copy of r
obtained by replacing each atom p with p/, i.e., ' = r[U/U'].

Given the above notation, for a program P, we define

ESp=V,cp(H{F) A Nperry(@ — 1) ANB(r) A /\peB+(r)_‘pl)'

For an interpretation Y over U and U C U, we have (Y U {p’ |p e U}) E ESpiffU
is not unfounded for P with respect to Y. Regarding ES p(U), the following holds.

Lemma 5. Ler P be a program over U, I an interpretation over U UU', Y = T NU,
andU ={p|p' € INU')}. Then, I = ESp iff Y = ESp(U).

Similar to ESp(U) and ES p, we reformulate loop formulas LF p(U), as given
in (3), without explicit reference to U:

LFp =YU'(((Vpeu?') N (U <U)) — ESp).

We obtain the following counterpart of Proposition 3 in quantified propositional logic
and afterwards reformulate the test for ordinary equivalence (as given by Theorem 6).

Lemma 6. Let P be a program over U and Y an interpretation over U such that
Y |= P. Then, Y is an answer set of P iff Y |= LF p.

Theorem 9. Let P and Q be programs over U. Then, P and () are ordinarily equiva-
lent iff VU((P A LF p) < (Q A LF)) is valid.

Modifying the encoding in Theorem 7 by using ES p and ES yields that deciding
strong equivalence between P and () amounts to checking whether

VU((P VQ)— VYU (ESp — ESQ))
is valid. However, VU’ can safely be placed in front of the formula, yielding
YUVU' (P V Q) — (ESp < ESQ)). &)

Verifying the validity of (5) can be done by checking whether the quantifier-free part
in (5) is a tautology in standard propositional logic. We can thus state the following.

Theorem 10. Let P and Q) be programs over U. Then, P and () are strongly equivalent
iff (PV Q) — (ESp < ESq) is a tautology.

Finally, we consider uniform equivalence, where we first reformulate ES%(U), as
given in (4), in the same manner as we did above for ES p(U). To this end, define

ESp = ESpV 3U" (V") AU <U') A=ESplU JU")).

Similar to Lemma 5 above, we have the following.



Lemma 7. Let P be a program over U, I an interpretation over U UU', Y = T NU,
andU ={p|p € INU')}. Then I |= ESH iff Y = ESH(U).

By replacing EST(U) with EST, we obtain the following counterpart of Theo-
rem 8.

Theorem 11. Let P and Q) be programs over U. Then, P and Q) are uniformly equiv-
alent iff YUNU' (P V Q) — (ESH — ESY,)) is valid.

This encoding is very similar in shape to the one for strong equivalence in (5). In
contrast to £Sp and ESq, ES% and ES 22 however, contain additional quantifiers,
which are needed to keep the size of the encoding polynomial with respect to P and Q).
In fact, all of the above QBFs are constructible in polynomial time from P and (). To
the best of our knowledge, they are novel and differ from the encodings proposed in
previous work [18-20].

5 Discussion

We have provided novel characterizations for program equivalence in terms of un-
founded sets and related concepts, like loops and elementary sets. This allowed us
to identify close relationships between these central concepts. While answer sets, and
thus ordinary equivalence, rely on the absence of (nonempty) unfounded sets, we have
shown that potential extensions of programs, captured by SE- and UE-models, can also
be characterized directly by appeal to unfounded sets, thereby avoiding any reference
to reducts of programs.

We have seen that uniform equivalence is located between ordinary and strong
equivalence, in the sense that it considers all models, similar to strong equivalence,
but only minimal unfounded sets, which also are sufficient to decide whether a model
is an answer set. This allowed us to develop particularly simple characterizations for
uniform equivalence in the case of tight programs. In fact, our results offer novel en-
codings for program equivalence in terms of (quantified) propositional logic, which are
different from the ones found in the literature [18—20]. The respective encodings reflect
the complexity of checking program equivalence: while checking strong equivalence
is in coNP, in general, the checks for ordinary and uniform equivalence are 74 -hard.
For tight programs, however, our simpler characterization of uniform equivalence is re-
flected by the corresponding encoding (in standard propositional logic) and makes the
complexity of checks drop into coNP, as with ordinary equivalence.

The relationship between (exponential size) propositional encodings and (polyno-
mial size) QBF encodings has also (implicitly) been investigated by Ferraris, Lee, and
Lifschitz [22], where they transform a QBF encoding [20] for answer sets into a propo-
sitional formula by eliminating quantifiers, in order to develop a general theory of loop
formulas. In fact, Ferraris, Lee, and Lifschitz [22] address answer sets (in a more gen-
eral setting than ours), but neither strong nor uniform equivalence.
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