
Unsatisfiability-based optimization in clasp
Benjamin Andres1, Benjamin Kaufmann1, Oliver Mattheis1, and
Torsten Schaub1

1 University of Potsdam, {bandres,mattheis,torsten}@cs.uni-potsdam.de

Abstract
Answer Set Programming (ASP) features effective optimization capacities based on branch-and-
bound algorithms. Unlike this, in the area of Satisfiability Testing (SAT) the finding of minimum
unsatisfiable cores was put forward as an alternative approach to solving Maximum Satisfiability
(MaxSAT) problems. We explore this alternative approach to optimization in the context of
ASP. To this end, we extended the ASP solver clasp with optimization components based upon
the computation of minimal unsatisfiable cores. The resulting system, unclasp, is based on an
extension of the well-known algorithmsmsu1 andmsu3 and tailored to the characteristics of ASP.
We evaluate our system on multi-criteria optimization problems stemming from realistic Linux
package configuration problems. In fact, the ASP-based Linux configuration system aspuncud
relies on unclasp and won four out of seven tracks at the 2011 MISC competition.

1 Introduction

Answer Set Programming (ASP,[2]) utilizes effective and elaborate optimization techniques
based on branch-an-bound algorithms [11]. While these technique have shown to be able
solve many problems efficiently, an alternative to this approach emerged in the field of
Satisfiability Testing (SAT) for solving Maximum Satisfiability (MaxSAT,[7]) problems. The
approach of using unsatisfiable cores has already shown to be sucessful by the Maximum
Satisfiability with UNsatisfiable COREs (MSUnCore,[10]) solver, being ranged as the best
solver in the industrial category in the 2008 MaxSAT evaluation. A closer survey shows that
the MSUnCore is able to solve some instances that are difficult for the ASP solver clasp
[5] efficently. To this end, we propose a new algorithm for solving optimization problems
in ASP, combining the MSUnCore solving techniques of msu1 and msu3 with regard of
the characteristics of ASP. The algorithm is extended with techniques for multi-criteria
optimization and utilizes the algorithm from [9] for solving weighted optimization problems.
The implemented algorithm forms a branch of the clasp solver, unclasp, specialized for
solving unweighted multi-criteria optimization ASP problems. In fact, aspuncud, an ASP-
based Linux configuration system based on unclasp, won four out of seven tracks at the 2011
Mancoosi International Solver Competition (MISC) competition [8]. The unclasp solver is
avaliable in the lab section of the Potsdam Answer Set Solving Collection [4].

The remainder of the paper is structured as follows. The fundamentals of the MSUnCore
algortihms are introduced in section 2. Section 3 presents our adaptation of the unsatis-
fiable based MSUnCore algorithms for solving ASP optimization, and its implementation
into unclasp Our experimental results, including instances from MISC and a number of
(un)weighted problems, are discussed in section 4. Section 5 concludes the paper.

2 The MSUnCore Algorithm

The MSUnCore solver features several strategies for solving unweighted, partial MaxSAT
problems. Partial MaxSAT is an extension of the SAT problem, in which the number of
satisfied clauses of a given subset of the SAT problem is to be maximized, while all other

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Unsatisfiability-based optimization in clasp

clauses of the problem must still hold. The clauses of the subset are called soft, while all
other are hard clauses. A partial MaxSAT is unweighted if no clause of the subset is favored,
and weighted otherwise. To this end, all MSUnCore strategies utilize unsatisfiability based
approaches. The basic idea behind unsatisfiability based optimization is trying to solve
the given problem and to extract an unsatisfiable core if the problem is not satisfiable.
An unsatisfiable core is a subset of clauses of the original problem whose conjunction is
still unsatisfiable. All soft clauses of the extracted core are relaxed, allowing the solver
to arbitrarily satisfy one of the clauses. Afterwards, the problem is tried to be solved
again with the relaxed clauses. This procedure is iterated until the problem is satisfied
or an unsatisfiable core with no soft clauses is identified, meaning that the problem is
unsatisfiable. Each of the four strategies of MSUnCore, msu1-4, implements a different
approach in utilizing the identified unsatisfiable core. In the following the msu1 algorithm
is explained as an introduction to unsatisfiability based optimization. Subsequently, the
features of the other MSUnCore algorithms are presented.

Algorithm 1 presents the pseudo code of the msu1 strategy. The algorithm consists of
a main loop, identifying a solution with the maximum number of satisfied clauses. To this
end, the loop iterates through the following steps. First, the problem is passed to a solver.
If the solver returns satisfiability, an optimal solution for the problem is found and the loop
ends. Otherwise, the reason for unsatisfiability, i.e. an unsatisfiable core, is taken from the
solver. Next, all soft clauses of the identified core are relaxed, that is, a unique variable v is
added to the clause. Since the newly added relaxation variable is unique, the solver is able to
arbitrarily set the variable to true and thus to satisfy the clause. If the identified core does
not contain any soft clauses, the core can not be relaxed and the loop ends returning the
problem as unsatisfiable, since every solution to the problem must injure at least one clause
within the core by definition. Finally, an at-most-1 constraint is added to the problem to
ensure that at most one of the newly added relaxation variables is set to true. If V is the
set of newly added relaxation variables, then the at-most-1 constraint for msu1 consists of
the following clauses:

the clause
∨

v∈V v, and one clause in the form of ¬vi ∨ ¬vj for any vi, vj ∈ V .

The first clause ensures that at least one of the relaxation variables is true, while the
others prevent that more than one is true. Thus, |V | variables and 1 +

(|V |
2
)
clauses are

added to the problem. Since in every iteration only one additional soft clause is satisfied
through relaxation, the first valid solution found by the SAT solver is optimal. The number
of additional variables and clauses needed is a major disadvantage for the msu1 algorithm,
especially for bigger problems. The msu2 and the msu3 algorithms offer two approches for
reducing the number of needed clauses and relaxation variables, respectively.

By introducing additional relaxation variables msu2 is able to reduce the number of
additional clauses to encode the at-most-1 constraint from Θ(|V |2) to Θ(|V |). Since ASP
offers its own efficient encoding of the at-most-1 constraint, this approach is not further
examined. As stated above, msu1 adds a new relaxation variable for every soft clause in an
indentified unsatisfiable core. This leads to clauses with many relaxation variables in the
case of intersection between cores. Thus, creating several possible combinations for satisfying
one set of clauses, obfuscating the solving process. The msu3 algorithm trades the ability to
distinct between identified unsatisfiable cores for a reduced number of relaxation variables.
At first, all identified unsatisfiable cores are removed from the problem without substitution,
until the problem is satisfiable. While this is not compulsory, it allows to identify disjoint
unsatisfiable cores efficiently. Afterwards, the identified cores are relaxed, but instead of

Benjamin Andres, Benjamin Kaufmann, Oliver Mattheis, and Torsten Schaub 3

adding a relaxation variable each time a clause occurs in an identified core as in msu1, msu3
relaxes each clause only once. Thereby, potentialy reducing the number of used relaxation
variables. While msu1-3 use true top-down approaches for finding optimal solutions, msu4
combines the msu3 approach with bottom-up search. Instead of allowing only one additional
soft clause to be relaxed in each iteration, msu4 states that each subsequent solution must
satisfy at least one additional soft clause without being relaxed. Thus, approaching the
optimal solution from the lower end. All identified unrelaxable cores are treated as in msu4.

Algorithm 1 Iterative UNSAT Core Elimination of msu1
T := ∅ {set of all relaxation variables}
while SAT solver returns UNSATISFIABLE do
LET UC be the UNSAT core provided by the SAT solver
S := ∅ {set of new relaxation variables for UC}
for all Clause c ∈ UC do

if c is relaxable then
Allocate a new relaxation variable v

c := c ∪ {v}
S := S ∪ {v}

end if
end for
if S = ∅ then

return CNF UNSATISFIABLE
else
Add clauses enforcing the one-hot constraint for S to the SAT solver
T := T ∪ S

end if
end while
R := {v|v ∈ T, v = 1}; k := |R|
return Satisfying Assignment, k, R.

3 Implementation of unclasp

The problem of ASP optimization is strongly related to partial MaxSAT. Both problems
consist of an unrelaxable rule set and a linear optimization function. While the literals of
an ASP optimization rule can be interpreted as distinct soft clauses of a partial MaxSAT
problem, the relaxation variables used to solve a partial MaxSAT can be used to form an
optimization rule in ASP. We utilize this correlation in our approach for developing an
unsatisfiability based algorithm for ASP optimization. This approach tries to combine the
advantages of msu1 with the practical improvements of msu3 in regard of the characteristics
of ASP. To this end, we create a branch of the ASP solver clasp, utilizing its sofisticated ASP
solving technique. The resulting system, unclasp, is specialized for unweighted, hierarchic
optimization problems. Although, able to solve weighted problems as well. The advantages
gained by porting the MSUnCore’s unsatisfiability based approach of solving MaxSAT, to
an ASP solving strategy are presented in the following. Afterwards, an extension for solving
weighted problems, is explained. Finally, the implentation of our approach into unclasp is
presented.

When solving ASP optimization problems with themsu3 approach, the one-literal clauses

4 Unsatisfiability-based optimization in clasp

of an ASP optimization rule offer a distinct advantage over the longer clauses of MaxSAT.
Since, in msu3 each clause is limited to only one relaxation variable, one can interpret the
negated literal as its own relaxation variable.

Take, for example, the one-literal clause {¬l}. If extended by the relaxation variable v

we get {¬l∨v}, which is equivalent v ← l. Since, an optimal solution minimizes the number
of true relaxation variables, and v is unique in the problem description, v ←→ l follows.
Thus, {l} is the relaxed clause of {¬l}.

With this, msu3 can be processed for ASP problems without additional variables. The
next strong point of ASP is its management of cardinality constraints. Cardinality con-
straints are satisfied if the number of satisfied literals of the constraint are within a specified
range. The ASP solver clasp is able to handle the constraint as a single rule simply by
counting the number of satisfied literals. Clasp only generates the specific clauses for the
cardinality constraint when needed for resolution. This is done on demand. This does
not only allow to encode at-most-1 constraints efficently, but also to formulate at-most-n
constraints. Being constraints, that enforces the usage of at most n relaxation variables.

In respect to these two characteristics of ASP, our approach works as follows: The
problem is given to the solver, and in case of unsatisfiability the core is extracted. All
clauses from the optimization rule in the core are relaxed as described above, and an at-
most-1 constraint from the new relaxation variables is formulated as inmsu1. In difference to
msu1, the relaxed clauses are marked as hard for any successive solving pass. This prevents
them to be relaxed a second time. Instead, the new at-most-1 constraint becomes a soft
rule. When a at-most-n constraint is encountered in an unsatisfiable core, it is relaxed by
an at-most-(n+1) rule for the same variables. This algorithm iterates until the problem is
solved or an unsatisfiable core without soft clauses is encountered.

For dealing with weighted problems the idea from [9] is added to the management of
unsatisfiable cores. After the core is identified, each containing clause is split into two. This
is done in such a way, that a maximum equal weighted core and a remainder is obtained.
Now, the equal weighted core is interpreted as unweighted, while the clauses in the remainder
are added to the problem. For example, the weighted core (a = 3, b = 5, c = 4) is split into
an equal weighted core (a = 3, b = 3, c = 3) and its remainder (b = 2, c = 1). The equal
weighted core is now interpreted as unweighted (a, b, c) and the weighted clauses b = 2 and
c = 1 are added to the problem.

ASP allows to formulate multiple optimization rules and to order them in a hierarchy.
Meaning that an optimal solution to a hierarchic optimization problem, has an optimal
value in the highest hierarchy level and in all lower levels in an optimal value in respect to
the solutions possible for its predecessor levels. This is handled as a sequence of distinct
optimizations with the identified optimal values from the higher levels as additional criterion.

The implementation of unclasp is based on the clasp solver by utilizing a modification
of the internal clasp function ClaspFacade::solveIncremental. This function runs one loop,
divided into four phases as shown in figure 1. The phases are surrounded by the control
functions initStep and nextStep, initializing the next pass through the loop and deciding
whether another pass is necessary respectively. Figure 2 shows the added interface for
implementing our approach.

The loop differentiates in our implentation between the first and all successive run-
throughs. In the first pass, the initStep function is skipped and the problem is read in
the read step. During preprocess the rules of the problem are translated into an internal
representation and the constant minimizeconstraint_, holding all literals to be optimized,
is formulated by the buildin ProgramBuilder function. Next, in the getAssumptions phase,

Benjamin Andres, Benjamin Kaufmann, Oliver Mattheis, and Torsten Schaub 5

assumelevel is called, extracting the literals of the current optimization level from minimize-
constraint_ and copying them into the assumptions_ set. This is done to account for literals
that influence more than one optimization level. Also, the weights of the minimization liter-
als are copyied into the weightmap_. In the solve step, a solution to the problem with respect
to the assumptions_ is searched for. This leads to three different outcomes determining the
behavior of the nextStep function. If the problem is unsatisfiable under assumptions, that
is, the extracted unsatisfiable core consists at least one literal from assumptions_, the loop
starts another pass, beginning with nextStep. If no literal from assumptions_ is in the iden-
tified core, the problem is unsatisfiable and the incremental solving process is terminated.
Finally, in the case of satisfiability, assumelevel is called, checking whether another optimiza-
tion level exists. If no further level in the optimization hierarchy exists, the solution found
is optimal and the loop terminates. Otherwise, the assumptions_ are transformed into facts
by the factifyassumptions function and assumelevel extracts the new assumptions_ from
minimizeconstraint_. Then, the optimization continues with another pass through the loop.

In all successive passes the initStep function calls the internal2program function, which
translates the unsatisfiable core from the previous pass back into program variables. Af-
terwards, analysecore is called for managing the translated core. First, the minimal weight
of the core’s literals is identified and the weight of these literals in the weightmap are re-
duced by this amount. Then an at-most-1 constraint for the core’s literals is formulated
by the addconstraint function. A guard variable with the previous identified weight allows
the relaxation of the variable, i.e. marking it as soft with the appropriate weight. The
guard variable is saved in addtoassumptions_ for later usage in the getAssumptions phase,
when an internal representation for the guard is generated. If a literal of the core is al-
ready a guard variable of an at-most-n constraint, an appropriate at-most-(n+1) variable is
added to addconstraints. All weights in the weightmap that are reduced to 0 are removed
from assumptions_. The read phase is skipped after the first pass and the new constraints
from initStep are added into the internal representation. In the getAssumptions phase the
variables of addtoassumptions_ are mapped to the internal literals with help of the buildin
SolverStrategies::SymbolTable. The internal literals are then added to assumptions_. The
solve phase and the nextStep function behave as described above.

initStep read preprocess getAssumptions solve nextStep

UNSATISFIABLE under assumptions / SATISFIABLE with a new optimization level

SATISFIABLE /
UNSATISFIABLE

Figure 1 The incremental solving procedure

4 Experiments

We evaluate our implementation on optimization instances taken from the MISC and the
ASP problem collection asparagus [1]. In order to be able to compare our approach from
Section 3 with the MSUnCore algorithms, we implemented an ASP optimizing variant of
msu1, msu3 and msu4 in unclasp. Thus, unclasp is in no need to reduce the number of

6 Unsatisfiability-based optimization in clasp

class UncoreControl: public IncrementalControl {
public:

virtual void initStep(ClaspFacade& f);
void getAssumptions(ClaspFacade& f, LitVec& a);
virtual bool nextStep(ClaspFacade& f);

protected:
void initassumptions(ClaspFacade& f);
void assumelevel(ClaspFacade& f);
void removefromassumptions(const LitVec&);
void factifyassumptions(ClaspFacade& f);
virtual void analysecore(ClaspFacade& f, const LitVec&);
Var addconstraint(ClaspFacade& f, const LitVec&,

unsigned int bound);
Literal internal2program(ClaspFacade& f, Literal v);

const MinimizeConstraint* minimizeconstraint_;
std::set<Literal> assumptions_;
VarVec addtoassumptions_;
Guardtable guardtable_;
unsigned int level_;
bool nextlevel_;
std::vector<unsigned int>min_;
SolveStats totalstats_;
std::map<Literal,int> weightmap_;

};

Figure 2 Interface for implementing unclasp into clasp

clauses introduced by the one-hot condition followed by msu2. To compare the unsatisfia-
bility based approach with the branch-and-bound approach we included the clasp 2.0 solver
into the benchmark. Table 1 presents the runtime parameters used for each strategy. The
parameters for clasp are specialised for the MISC benchmark set. Below, we report the
sequential runtimes on a Linux machine equipped with 3.4 GHz Intel Xeon CPUs and 32
GB RAM. Finally, a timeout was set after 300 seconds.

The MISC benchmark set consists of instances where, given a set of installed and avail-
able packages, a solution has to satisfy requests of package addition and removal, while
minimizing the effect on the current installation. Packages may depend on or conflict each
other, creating a combinational rich unweighted hierachic optimization problem with a large
number of widely independent optimization variables. The huge number of suboptimal

new unclasp --opt-uncore=oll
msu1 unclasp --opt-uncore=msu1
msu3 unclasp --opt-uncore=msu3
msu4 unclasp --opt-uncore=msu4
clasp clasp-2.0.0 --sat-prepro --restarts=128 --local-restarts

--heuristic=VSIDS --solution-recording --opt-hierarch=1
--opt-heu=1

Table 1 Runtime parameters of the optimizing strategies used.

Benjamin Andres, Benjamin Kaufmann, Oliver Mattheis, and Torsten Schaub 7

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 300

p
(x

<
=

t)

t in sec

MISC Benchmark runtime results

unclasp/new
unclasp/msu1
unclasp/msu3
unclasp/msu4

clasp

Figure 3 Solution cost distribution plot of the MISC instance runtime.

solutions necessitate a sophisticated search heuristic and restart policy.
Figure 3 presents a solution cost distribution plot [6] of the runtime measured. The

x-axis shows the runtime for solving one instance, while the y-axis labels the percentage of
instances solved within the time. The plot shows that for smaller runtimes, up to 10 seconds,
all approaches are able to solve a comparable number of instances. On larger runtimes the
approaches start to differentiate from each other and a gap emerges. The msu1 and our new
approach clearly dominate the benchmark, able to solve all but two instances in less than 70
seconds, each. Please note, that these two instances were not solved by any approach within
the timeframe of 300 seconds, demonstrating their complexity. The next two best performing
solvers are msu3 and msu4 with 10 and 12 unsolved instances, respectively. While being
able to solve some of the instances faster than the unsatisfiability based approaches, clasp
did not solve a higher percentage of MISC instances on any given runtime. In addition clasp
could not solve 43 instances before reaching time-out. The performance of msu4 and clasp
indicates, that the bottom-up strategy used by them is not ideal. The benchmark shows
further, that the reduction of relaxation variables pursued by msu3 is not advantageous for
the MISC problem class, overall.

To evaluate the performance of the unsatisfiability based strategies in general and our
proposed algorithm in particular, we selected nine general optimization problems from the
asparagus benchmark collection. Most of them were used in the ASP’09 competition [3].
Table 2 shows the selected optimization problems and the corresponding runtime of the
optimizing technique. The upper six problems are unweighted, while the lower three are
weighted. In the 15-puzzle and sokoban instances the solver has to minimize the number
of steps needed to solve the problem. Since all steps build upon each other, there are no
combinatorics in the minimization function. Thus, the size of the identified core in every
iteration of unclasp is one (i.e. the next step). Because of that, the unsatisfiability based
algorithms behave the same. The branch-and-bound based algorithm of clasp also achieves
similar runtime results. The clique problem describes the problem of finding the maximal

8 Unsatisfiability-based optimization in clasp

clique in an undirected graph, given. Here, the bottom-up algorithms of msu4 and clasp
are clearly superior to the top-down algorithms, as the instances become larger. Of the
top-down algorithms, our new approach is able to achieve the best runtime results, while
msu1 could not solve three of the five instances. The other three unweighted problems,
labyrinthpath, minimum postage stamp problem (mpsp) and weight bounded
dominating set (wbds) use a large number of optimization variables and also return
large unsatisfiable cores. This highlights the different strategies of the unsatisfiability based
approaches. In labyrinthpath msu1’s ability to distinguish identified cores is advantageous
over msu3 reduced number of additional variables, as with the MISC benchmark set. In
mpsp the opposite is the case, andmsu3 outperformsmsu1, able to solve two more instances.
Interestingly, msu4 performes similar to msu3. Our approach achieves the best results on
these three problems. Especially on the mpsp and wbds instances, where it is able to
solve instances every other approach could not. clasp is not able to compete with the
unsatisfiability based approach with the exception of msu1 in the mpsp problem.

The bottom-up algorithms msu4 and clasp perform well in the weighted problems, com-
panyctrl, opendoors and fastfood, while clasp has a better runtime on opendoors and
msu4 on fastfood. The companyctrl problem demonstrates the benefit of the splitting
algorithm. While the other approaches are able to solve the problem without much effort,
the msu3 algorithm, which is incompatible with the algorithm from [9], has much difficulty.
The fastfood problem shows the limit of the top-down unsatisfiability based algorithms.
While the problem is easy in general, the cores get too big after a few loop iterations. On
this problem class the variable reduction of the msu3 algorithm shows to be useful, allowing
msu3 to solve three of the five instances tested.

Overall, unsatisfiability based optimization has shown to be efficent in solving unweighted
optimization problems. The benchmark demonstrates the effectiveness of our implentation,
but also shows its limits on weighted optimization problems.

5 Discussion

We presented an approach to bring unsatisfiabilty based optimization to ASP. Our approach
combines the msu1 and msu3 strategies of theMSUnCore MaxSAT solver with regard to the
special characteristics of ASP. The resulting algorithm is specialized for solving unweighted
hierarchical optimization problems. In fact, our implementation of the proposed algorithm
into unclasp was able to to solve a number of problems faster than the traditional branch-and-
bound approach utilized by clasp. This shows that the unclasp aproach is a useful addition
to the algorithms currently used by clasp for solving unweighted problems, expanding clasp’s
portfolio of optimization strategies.

5.0.0.1 Acknowledgments

This work was partially funded by the German Science Foundation (DFG) under grant
SCHA 550/8-2.

References
1 http://asparagus.cs.uni-potsdam.de.
2 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, 2003.
3 M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczyński. The second answer

set programming competition. pages 637–654.

Benjamin Andres, Benjamin Kaufmann, Oliver Mattheis, and Torsten Schaub 9

4 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):105–124,
2011.

5 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven answer
set solver. pages 260–265.

6 H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Applications. Elsevier /
Morgan Kaufmann, 2004.

7 D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, Academic, 9, 1974.

8 mancoosi. http://www.mancoosi.org.
9 V. Manquinho, J. Marques-Silva, and J. Planes. Algorithms for weighted Boolean opti-

mization. pages 495–508.
10 msuncore. http://www.csi.ucd.ie/staff/jpms/soft/soft.php.
11 P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model

semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

10 Unsatisfiability-based optimization in clasp

oll msu1 msu3 msu4 clasp
15-puzzle
init1 9,58 9,42 9,53 9,45 6,74
init1simple 0,93 0,93 0,93 0,94 2,02
init1simple2 0,42 0,42 0,42 0,42 1,48
init2 81,84 82,74 82,27 81,81 73,85
init3 13,38 13,28 13,44 13,43 16,81
sokoban
dimitr_yo51s10 0,24 0,24 0,25 0,25 0,21
dimitr_yo51s14 1,65 1,65 1,66 1,66 1,06
dimitr_yo51s17 2,54 2,55 2,55 2,58 1,59
dimitr_yo52s10 1,67 1,67 1,67 1,67 0,65
dimitr_yo55s10 0,81 0,81 0,81 0,83 0,49
clique
gen10_25 0,02 0,02 0,02 0,02 0,02
gen200_8000 4,77 300,00 21,35 0,73 0,77
gen300_20000 28,87 300,00 143,45 4,17 3,94
gen75_1000 0,06 8,19 0,12 0,07 0,05
gen100_2000 0,14 300,00 0,51 0,16 0,08
labyrinthpath
l10_10_01 1,88 1,89 1,88 1,86 18,33
l11_11_01 2,41 1,88 2,39 2,37 300,00
l12_12_01 3,44 4,82 212,90 236,66 300,00
l13_13_01 300,00 300,00 300,00 300,00 300,00
l14_14_01 300,00 300,00 300,00 300,00 300,00
mpsp
mpsp30-2 0,04 0,13 0,08 0,09 0,05
mpsp36-2 0,12 3,35 0,44 1,02 0,30
mpsp48-2 2,99 300,00 50,90 53,01 116,59
mpsp54-2 1,96 300,00 64,83 36,83 80,59
mpsp60-2 17,14 300,00 300,00 300,00 300,00
wbds
r100_400_11_1 72,01 300,00 300,00 300,00 300,00
r100_400_11_13 3,40 300,00 300,00 300,00 300,00
r100_400_11_9 4,16 300,00 300,00 300,00 300,00
r150_600_11_17 300,00 300,00 300,00 300,00 300,00
r150_600_11_3 300,00 300,00 300,00 300,00 300,00
companyctrl
02-company 0,85 0,88 285,46 0,93 0,74
12-company 3,96 4,02 4,52 4,08 3,91
22-company 1,46 1,52 300,00 1,52 1,13
32-company 0,96 0,94 300,00 0,92 0,85
42-company 1,54 1,51 1,76 1,71 1,52
opendoors
level_00 0,09 0,10 0,09 0,11 0,11
level_05 0,19 0,26 0,19 0,22 0,20
level_10 0,37 0,37 0,37 0,62 0,28
level_17 24,73 6,76 24,17 71,98 4,92
level_28 300,00 300,00 300,00 300,00 18,64
fastfood
a5.16.dl 300,00 300,00 32,36 12,15 13,02
a5.4.dl 300,00 300,00 300,00 3,84 1,15
fa8.17.dl 300,00 300,00 24,42 8,72 5,92
a8.8.dl 300,00 300,00 300,00 276,82 300,00
a9.11.dl 300,00 300,00 28,94 7,29 6,15

Table 2 Runtime of selected optimization instances from asparagus.

	Introduction
	The MSUnCore Algorithm
	Implementation of unclasp
	Experiments
	Discussion

