
Engineering an Incremental ASP Solver

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele

Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract. Many real-world applications, like planning or model checking, com-
prise a parameter reflecting the size of a solution. In a propositional formalism
like Answer Set Programming (ASP), such problems can only be dealt with in
a bounded way, considering one problem instance after another by gradually in-
creasing the bound on the solution size. We thus propose an incremental approach
to both grounding and solving in ASP. Our goal is to avoid redundancy by grad-
ually processing the extensions to a problem rather than repeatedly re-processing
the entire (extended) problem. We start by furnishing a formal framework cap-
turing our incremental approach in terms of module theory. In turn, we take ad-
vantage of this framework for guiding the successive treatment of program slices
during grounding and solving. Finally, we describe the first integrated incremen-
tal ASP system, iclingo, and provide an experimental evaluation.

1 Introduction

Answer Set Programming (ASP; [1]) faces a growing range of applications. This is due
to the availability of efficient ASP solvers and ASP’s rich modeling language, jointly al-
lowing for an easy yet efficient handling of knowledge-intensive applications. Among
them, many real-world applications, like planning or model checking, comprise pa-
rameters reflecting solution sizes. However, in the propositional setting of ASP, such
problems can only be dealt with in a bounded way by considering in turn one prob-
lem instance after another, gradually increasing the bound on the solution size. Such
an approach can nonetheless be highly efficient as demonstrated by Satisfiability (SAT)
solvers in the aforementioned application areas [2, 3]. However, while SAT has its focus
on solving, ASP is also concerned with grounding in view of its modeling language.

We address this by proposing an incremental approach to both grounding and solv-
ing in ASP. Our goal is to avoid redundancy by gradually processing the extensions
to a problem rather than repeatedly re-processing the entire extended problem. To this
end, we express a (parametrized) domain description as a triple (B,P,Q) of logic pro-
grams, among which P and Q contain a (single) parameter k ranging over the natural
numbers. In view of this, we sometimes denote P and Q by P [k] and Q[k]. The base
program B is meant to describe static knowledge, independent of parameter k. The role
of P is to capture knowledge accumulating with increasing k, whereas Q is specific for
each value of k. Our goal is then to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP [k/j] ∪Q[k/i] (1)

has an answer set for some (minimum) integer i ≥ 1. In what follows, we write R[i]
rather than R[k/i] whenever clear from the context.

For illustration, consider an action description in C+ [4], involving an action a and
a fluent p, along with a query inQn [5] about trajectories of length n. We translate these
statements into the following domain description:

a causes p
exogenous a
inertial p

 7→



B =

 p(0)← not ¬p(0)
¬p(0)← not p(0)

← p(0),¬p(0)



P [k] =



a(k)← not ¬a(k)
¬a(k)← not a(k)
p(k)← a(k)
p(k)← p(k−1),not ¬p(k)
¬p(k)← ¬p(k−1),not p(k)

← p(k),¬p(k)
← a(k),¬a(k)


¬p holds at 0
p holds at n
¬a occurs at n

 7→

Q[k] =

← not ¬p(0)
← not p(k)
← not ¬a(k)


.

(2)

This domain description induces no answer sets for R[1], but we obtain a single one for
R[2], that is, AS (R[2]) = {{¬p(0), a(1), p(1),¬a(2), p(2)}}.

Such an answer is usually found by appeal to iterative deepening search. That is,
one first checks whether R[1] has an answer set, if not, the same is done for R[2], and
so on. For a given i, this approach re-processes B for i times and (i−j+1) times each
P [j], where 1 ≤ j ≤ i, while eachQ[j] is dealt with only once. Unlike this, we propose
to compute answers sets of (1) in an incremental fashion, starting from R[1] but then
gradually dealing with the program slices P [i] and Q[i] rather than the entire program
R[i] in (1). However, B and the previously processed slices P [j] and Q[j], 1 ≤ j < i,
must be taken into account when dealing with P [i] and Q[i]: while the rules in P [j]
are accumulated, the ones in Q[j] must be discarded. For accomplishing this, an ASP
system has to operate in a “stateful way.” That is, it has to maintain its previous state for
processing the current program slices. In this way, all components, B, P [j], and Q[i],
of (1) are dealt with only once, and duplicated work is avoided when increasing i.

Given that an ASP system is composed of a grounder and a solver, our incremental
approach has the following specific advantages over the standard approach. As regards
grounding, it reduces efforts by avoiding reproducing previous ground rules. Regarding
solving, it reduces redundancy, in particular, if a learning ASP solver is used, given that
previously gathered information on heuristics, conflicts, or loops (cf. [6]), respectively,
remains available and can thus be continuously exploited. We provide some empirical
evidence using the new incremental ASP system iclingo [7].

2 Background

Our language is built from a set F of function symbols (including the natural numbers),
a set V of variable symbols, and a set P of predicate symbols. In view of our goal, V
contains a distinguished parameter symbol k (varying over natural numbers). The set T

of terms is the smallest set containing V and all expressions of the form f(t1, . . . , tn),
where f ∈ F and ti ∈ T for 1 ≤ i ≤ n. The set A of atoms contains all expressions of
the form p(t1, . . . , tn), where p ∈ P and ti ∈ T for 1 ≤ i ≤ n. A literal is an atom a
or its (default) negation not a. Given a set L of literals, let L+ = {a ∈ A | a ∈ L}
and L− = {a ∈ A | not a ∈ L}. A logic program over A is a set of rules of the
form a ← b1, . . . , bm,not cm+1, . . . ,not cn, where a, bi, cj ∈ A for 0 < i ≤ m <
j ≤ n. The semantics of integrity constraints and choice rules is given through program
transformations. For instance, {a}← is a shorthand for a ← not a′, a′ ← not a and
similarly ← a for a′ ← a,not a′, for a new atom a′. For a rule r, let head(r) = a
be the head of r, body(r) = {b1, . . . , bm,not cm+1, . . . ,not cn} be the body of r,
and finally atom(r) = {head(r)} ∪ body(r)+ ∪ body(r)−. For a program P , define
head(P) = {head(r) | r ∈ P} and atom(P) =

⋃
r∈P atom(r). Given an expression

e ∈ T ∪A, let var(e) denote the set of all variables occurring in e; analogously, var(r)
gives all variables in rule r. Expression e ∈ T ∪A is ground, if var(e) = ∅. The ground
instantiation of a program P is defined as grd(P) = {rθ | r ∈ P, θ : var(r) → U},
where U = {t ∈ T | var(t) = ∅}; analogously, grd(A) = {a ∈ A | var(a) = ∅}.

A set X ⊆ grd(A) is an answer set of a program P over A, if X is the ⊆-smallest
model of {head(r) ← body(r)+ | r ∈ grd(P), body(r)− ∩ X = ∅}. The set of
answer sets of a program P is denoted AS (P). Two programs, P and P ′, are equivalent,
denoted by P ≡ P ′, if AS (P) = AS (P ′).

3 Semantic Underpinnings through Incremental Modularity

For providing a clear interface between program slices and guaranteeing their composi-
tionality, we build upon the concept of a module developed in [8]: a module P is a triple
(P, I,O) consisting of a (ground) program P over grd(A) and sets I,O ⊆ grd(A) such
that I ∩ O = ∅, atom(P) ⊆ I ∪ O, and head(P) ⊆ O. The elements of I and O are
called input and output atoms, also denoted by I(P) and O(P), respectively; similarly,
we refer to P by P (P). We say that P is input-free, if I(P) = ∅.

For giving an incremental account of modularity, we begin with associating a (non-
ground) program P and a set I of (ground) input atoms with a module, denoted by
P(I), imposing certain restrictions on the ground program induced by P . To this end,
we define for a program P over grd(A) and a set X ⊆ grd(A), the set P |X of rules as

{head(r)←body(r)+∪L | r ∈ P, body(r)+ ⊆ X,L = {not c | c ∈ body(r)−∩X}} .

Note that P |X projects the bodies of rules in P to the atoms of X . If a body con-
tains an atom outside X , either the corresponding rule or literal is removed, depending
on whether the atom occurs positively or negatively. This allows us to associate (non-
ground) programs with (ground) modules in the following way.

Definition 1. Let P be a program over A and I ⊆ grd(A). We define P(I) as the
module (grd(P)|Y , I, head(grd(P)|X)), where X = I ∪ head(grd(P)) and Y =
I ∪ head(grd(P)|X).

The full ground instantiation grd(P) of P is projected onto inputs and atoms defined in
grd(P). The head atoms of this projection, viz., head(grd(P)|I∪head(grd(P))), serve as
output atoms and are used to simplify grd(P), sparing only input and output atoms.

As a simple example, consider P [k] = {p(k) ← p(Y),not p(2); p(k) ← p(2)}.
Note that grd(P [1]) is infinite. However, for X = {p(0), p(1)}, we get

grd(P [1])|X = {p(1)← p(0); p(1)← p(1)} and head(grd(P [1])|X) = {p(1)} .

For I = {p(0)}, we obtain I ∪head(grd(P [1])) = I ∪head(grd(P [1])|X) = {p(0)}∪
{p(1)} = X . Thus, P[1]({p(0)}) = (grd(P [1])|{p(0),p(1)} , {p(0)} , {p(1)}), and
P (P[1](I)) = grd(P [1])|X is finite. Note that, if p(1) had been in I , we would not
have obtained a module since P [1] defines p(1). Hence, it must be an output atom.

Proposition 1. Let P be a program overA, I ⊆ grd(A), and P(I) = (P ′, I, O). Then,
we have O ⊆ grd(A) and atom(P ′) ⊆ I ∪O.

We define the join of two modules P and Q, denoted by P tQ, as the module

(P (P) ∪ P (Q) , I(P) ∪ (I(Q) \O(P)) , O(P) ∪O(Q)) ,

provided that (I(P)∪O(P))∩O(Q) = ∅. This definition is simpler than the original one
in [8], but also more restrictive. For instance, our definition does not permit (negative)
recursion between two modules to be joined, similar to splitting [9]. (Note that positive
and negative recursion are allowed within each module.) Also note that the join of P
and Q, as defined above, is not commutative: even if P tQ is defined, Q t P might be
undefined. However, lacking commutativity is not an issue in our incremental context,
where portions of a domain description are always processed in order.

We make use of the join to formalize the compositionality of modules induced by
domain descriptions.

Definition 2. A domain description (B,P [k], Q[k]) is modular, if the modules

Pi = Pi−1 t P[i](O(Pi−1)) and Qi = Pi tQ[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅).
The requirement of the join being defined demands that gradually obtained ground pro-
grams must define distinct atoms. Also, the directedness of the join, in a sense, permits
an information flow between ground programs in increasing order of values substituted
for k, but not the other way round.

As an example, consider (B,P [k], Q[k]) over A, where:

B = { dbl(0, 0)← }
P [k] = { n(k)← ; dbl(k, 2∗Y)← n(Y),not n(Y+1) }
Q[k] = { ← dbl(Y, k−1) } .

(3)

This domain description induces the following modules:1

P0 = (B = {dbl(0, 0)←} , ∅ , {dbl(0, 0)}) ,
P1 = (B ∪ {n(1)←; dbl(1, 2)← n(1)} , ∅ , O(P0) ∪ {n(1), dbl(1, 2)}) ,
Q1 = (P (P1) ∪ {← dbl(0, 0)} , ∅ , O(P1)) ,
P2 = (P (P2) , ∅ , O(P1) ∪ {n(2), dbl(2, 2), dbl(2, 4)})

where P (P2) = P (P1) ∪ {n(2)←} ∪
{
dbl(2, 2)← n(1),not n(2)
dbl(2, 4)← n(2)

}
,

Q2 = (P (P2) , ∅ , O(P2)) ,
1 For simplicity, we evaluate arithmetic expressions.

P3 = (P (P3) , ∅ , O(P2) ∪ {n(3), dbl(3, 2), dbl(3, 4), dbl(3, 6)})

where P (P3) = P (P2) ∪ {n(3)←} ∪

dbl(3, 2)← n(1),not n(2)
dbl(3, 4)← n(2),not n(3)
dbl(3, 6)← n(3)

 ,

Q3 = (P (P3) ∪ {← dbl(1, 2);← dbl(2, 2);← dbl(3, 2)} , ∅ , O(P3)) , etc.
All above modules are defined (in terms of the join) and input-free. Since this also
applies to Pi and Qi for every i > 3, we have that domain description (3) is modular.
Hence, we can read off the results of the expressed queries from the answer sets of
each P (Qi). If i ≥ 1 is odd, we get AS (P (Qi)) = ∅. Otherwise, if i ≥ 1 is even,
then AS (P (Qi)) = {{dbl(0, 0)} ∪ {n(j), dbl(j, 2∗j) | 1 ≤ j ≤ i}}. In fact, for 1 ≤
j ≤ i and Y = j, literals not n(Y+1) are removed from the body of the second rule
in P [k] during the incremental construction because the underlying atoms n(j+1) are
undefined in P [j]. In this way, the atoms dbl(j, 2∗j) are derived. Note that this is not
possible for j < i with program

⋃
1≤j≤i P [j] in a non-incremental setting.

Proposition 2. Let (B,P [k], Q[k]) be a modular domain description, and let (Pi)i≥0
and (Qi)i≥1 as in Definition 2. Then, we have the following for i ≥ 1:

1. Pi and Qi are input-free;
2. atom(P (Pi)) ⊆ O(Pi) and atom(P (Qi)) ⊆ O(Qi);
3. P (Pi) = P (B(∅)) ∪

⋃
1≤j≤i P (P[j](O(Pj−1))) and

P (Qi) = P (Pi) ∪ P (Q[i](O(Pi)));
4. head(P (P[i](O(Pi−1)))) ∩ atom(P (Pi−1)) = ∅ and

head(P (Q[i](O(Pi)))) ∩ atom(P (Pi)) = ∅.
The third item essentially states that the combined programs obtained for i ≥ 1 equal
the union of subprograms added for each 1 ≤ j ≤ i. Importantly, the fourth item
expresses that the head atoms of a newly added subprogram are different from all atoms
encountered before. Hence, the sequence (O(Pi))i≥0 of output atoms amounts to a
splitting sequence [9] for

⋃
i≥0 P (Pi). Nonetheless, we intentionally use modules and

joins rather than splitting for formalizing our approach, as the composition of (ground)
programs done in incremental steps is only indirectly addressed by splitting sequences.

Note that we only take advantage of module theory for establishing a well-defined
formal setting for incremental ASP solving. Our computational approach deals directly
with programs in order to exploit existing ASP technology. In view of this, the next
result shows when the module-guarded formation of ground programs coincides with
separate grounding. To this end, we define a domain description (B,P [k], Q[k]) as
bound, if atom(grd(B)) ⊆ head(grd(B)) and atom(grd(P [i])) ⊆ head(grd(B ∪⋃

1≤j≤iP [j])) for all i ≥ 1. With this concept at hand, we have the following result.

Theorem 1. Let (B,P [k], Q[k]) be a bound modular domain description, and let
(Pi)i≥0 and (Qi)i≥1 as in Definition 2. Then, we have the following for i ≥ 1:

1. P (Pi) ≡ grd(B ∪
⋃

1≤j≤iP [j]);
2. P (Qi) ≡ grd(B ∪

⋃
1≤j≤iP [j] ∪Q[i]).

That is, for bound modular domain descriptions, the same result is obtained when
grounding is done either stepwise or in a single pass. Note that the domain description
given in (2) is modular and bound. Likewise, the domain description in (3) is modular,
but it is not bound because of n(Y) and n(Y+1) occurring in body literals of P [k].

4 Incremental ASP Solving

The computation of answer sets consists of two phases: a grounding phase aiming at a
compact ground instantiation of the original program and a solving phase computing the
answer sets of the obtained ground program. As motivated in Section 1, our incremental
approach is based on the idea that the grounder as well as the solver are implemented in
a stateful way. Thus, both keep their previous states when increasing parameter k in (1).
As regards grounding, at each step i, the goal is to produce only ground rules stem-
ming from program slices P [i] and Q[i], without re-producing previous ground rules.
The ground program slices are then gradually passed to the solver that accumulates all
ground rules from P [j], for 1 ≤ j ≤ i, while discarding the rules from Q[j], if j < i.

Grounding. Let us now characterize the consecutive program slices in terms of
grounding programs. In practice, given a program P , the goal of a grounder is to
produce a finite and compact yet equivalent representation of grd(P) by applying an-
swer set preserving simplifications (cf. [10, 11]). In our context, P [i] and Q[i] are not
grounded in isolation for i ≥ 1. Rather, the ground programs obtained from previ-
ous program slices are augmented with newly derived ground rules. We thus assume a
grounder to be stateful, where states are represented by the head atoms of ground rules
belonging to the output of previous grounding steps.

Given a program P over A and I ⊆ grd(A), we define an (incremental) grounder
as a partial function ground : (P, I) 7→ (P ′, O), where P ′ is a program over grd(A)
and O ⊆ grd(A). Thereby, P ′ stands for the ground program obtained from P , where
the input atoms I provide domain information used to instantiate non-ground atoms in
the rules of P . The output atoms in O essentially correspond to head(P ′). Their main
use is to carry state information, as O can serve as input to subsequent grounding steps.
Also note that ground is not required to be total, given that existing grounders, like
lparse [12] and gringo [7], impose certain restrictions on non-ground programs, such
as being ω- or λ-restricted, not necessarily met by P .

Next, we formalize a grounder’s adequacy to an incremental setting.

Definition 3. A grounder ground is adequate, if for every program P over A and I ⊆
grd(A) such that ground(P, I) = (P ′, O) is defined, the following holds:

1.
(
P ∪ {{a} ← | a ∈ I}

)
≡
(
P ′ ∪ {{a} ← | a ∈ I}

)
,

2.
⋃
X∈AS(P∪{{a}←|a∈I})(X \ I) ⊆ O ⊆ head(grd(P)|Y), where Y = I ∪

head(grd(P)), and
3. for every r′ ∈ P ′, there is some r ∈ grd(P) such that head(r) = head(r′) and

body(r)+ \ (I ∪O) ⊆ body(r′)+.

The first condition expresses that P and P ′, each augmented with any combination of
input atoms in I , must be equivalent. The second condition stipulates that all non-input
atoms belonging to some answer set X of P ∪{{a} ← | a ∈ I} are contained in O. In
addition, O must not exceed the head atoms of grd(P)|I∪head(grd(P)) in order to suit-
ably restrict subsequently produced ground rules, using O as an input (cf. Definition 4).
Finally, the third condition forbids the introduction of rules that cannot be obtained
from grd(P) via permissible simplifications. Clearly, an adequate grounder may apply
answer-set preserving simplifications to compact its output.

For illustration, consider P [k] in (3) along with I = {n(1)}. An adequate grounder
could, for instance, map (P [2], I) to (P ′, O = {n(2), dbl(2, 2), dbl(2, 4)}), where

P ′ = {n(2)←; dbl(2, 2)← n(1),not n(2); dbl(2, 4)← n(2),not n(3)} . (4)

Note that AS (P ′ ∪ {{n(1)} ←}) = {{n(1), n(2), dbl(2, 4)}, {n(2), dbl(2, 4)}} =
AS (P [2] ∪ {{n(1)} ←}). Due to fact n(2)←, the second rule could also be dropped
from P ′; similarly, dbl(2, 2) could be removed from O. Furthermore, literals n(2) and
not n(3) could be dropped from the last rule, still satisfying Definition 3. Note that it
is crucial to restrict the atoms in O to head(P ′). For instance, this forbids the inclusion
of n(3) in O, permitting further simplifications of P ′ wrt O.

The following definition specifies the (ground) program slices gradually obtained
from a domain description using a (stateful) grounder.

Definition 4. Let (B,P [k], Q[k]) be a domain description, and let ground be a
grounder. We define for i ≥ 1:

(P0, O0) = (P ′0|O0
, O0) , where (P ′0, O0) = ground(B, ∅) ,

(Pi, Oi) = (P ′i |(⋃0≤j≤i Oj), Oi) , where (P ′i , Oi) = ground(P [i],
⋃

0≤j<iOj) ,
(Qi, O

′
i) = ground(Q[i],

⋃
0≤j≤iOj) .

Note that the successively identified output atoms inOj , for 0 ≤ j ≤ i, are used to sim-
plify ground programs P ′i by eliminating either rules or negative body literals. We thus
obtain ground program slices Pi such that

⋃
r∈Pi

(body(r)+∪body(r)−) ⊆
⋃

0≤j≤iOj .
This reduction is important in view of the compositional semantics of domain descrip-
tions in Definition 2. For instance, if not done by ground itself, literal not n(3) must
a posteriori be removed from the body of the third rule in (4), in order to obtain the
intended ground program slice. However, ground programs Qi need not be reduced,
since their rules are neither accumulated nor reused.

The next result links the semantics of modular domain descriptions to that of ground
programs gradually produced by an adequate grounder.

Theorem 2. Let (B,P [k], Q[k]) be a modular domain description and ground an ad-
equate grounder. Let (Pi)i≥0 and (Qi)i≥1 be as in Definition 2 and (Pi, Oi)i≥0 and
(Qi, O

′
i)i≥1 as in Definition 4. If (Pj , Oj) is defined for 0 ≤ j ≤ i, we have for i ≥ 1:

1. P (P0) ≡ P0;
2. P (Pi) ≡

⋃
0≤j≤i Pj;

3. P (Qi) ≡
⋃

0≤j≤i Pj ∪Qi, provided that (Qi, O′i) is defined.

Recall that ground can be partial. In fact, existing grounders impose certain re-
strictions on the non-ground programs of a domain description, such as being ω- or
λ-restricted, guaranteeing the finiteness of equivalent ground programs. Assuming that
such requirements are met, we next detail how grounding output can be processed by
an answer set solver.

Solving. As with grounding, special care must be taken for customizing existing
ASP solving technology in an incremental setting. First, we have to guarantee the com-
positionality of successive program slices. Second, a solver has to respect the cumula-
tive and volatile roles of Pj and Qi, respectively. And finally, we have to furnish a clear
interface between the grounding and the solving component.

For capturing compositionality, we rely on [13], characterizing the answer sets of a
program P over grd(A) by the (classical) models of its completion and loop formulas.
For Y ⊆ grd(A), define the completion of P , CF (P, Y), as the set of formulas

a↔
∨
r∈P,head(r)=a(

∧
b∈body(r)+b ∧

∧
c∈body(r)−¬c) ,

for all a ∈ Y . Moreover, Y ⊆ grd(A) is a loop of P , if (Y,E = {(head(r), b) | r ∈ P,
head(r) ∈ Y, b ∈ body(r)+ ∩ Y }) is a strongly connected graph such that E 6= ∅.
Then, the set of loop formulas for P , LF (P), is given by the set of formulas∨

a∈Y a→
∨
r∈P,head(r)∈Y,body(r)+∩Y=∅(

∧
b∈body(r)+b ∧

∧
c∈body(r)−¬c) ,

for all loops Y of P . As shown in [13], a set X ⊆ grd(A) is an answer set of P iff
X |= CF (P, grd(A)) ∪ LF (P).

For programs induced by modular domain descriptions, completion and loop for-
mulas can be sliced as follows.

Theorem 3. Let (B,P [k], Q[k]) be a modular domain description, let ground be an
adequate grounder, and let (Pi, Oi)i≥0 and (Qi, O

′
i)i≥1 as in Definition 4. If (Pj , Oj)

is defined for 0 ≤ j ≤ i and if (Qi, O′i) is defined, we have the following for i ≥ 1:2

CF (
⋃

0≤j≤iPj ∪Qi, grd(A)) ≡
⋃

0≤j≤iCF (Pj , Oj) ∪ CF (Qi, grd(A)\
⋃

0≤j≤iOj)

LF (
⋃

0≤j≤iPj ∪Qi) ≡
⋃

0≤j≤iLF (Pj) ∪ LF (Qi|head(⋃0≤j≤i Pj∪Qi)) .

Recall that modular domain descriptions (B,P [k], Q[k]) induce splitting sequences [9].
This means that the answer sets of

⋃
0≤j≤i Pj ∪Qi can be decomposed into a sequence

of answer sets for subprograms P0, . . . , Pi, Qi. Theorem 3 reflects this decomposition
in terms of completion and loop formulas, which are material to the data structures
of ASP solvers. Thus, the practical consequence of the decomposability of completion
and loop formulas is that a solver can successively build its data structures in a modular
fashion. If this was not the case, it would be rather misleading to qualify an approach as
incremental. Hence, a modularity condition is essential for incremental computations.

When processing consecutive program slices, we have to distinguish cumulative and
volatile ones. That is, while the ground rules in Pj are accumulated within the solver
for 0 ≤ j ≤ i, the ones in Qj must be discarded for 1 ≤ j < i when Qi is added.
We accomplish this by adding to each rule in Qj a new body atom αj , along with rules
achieving that αj holds only at step j. To this end, we define the following set of rules
for a program Q over grd(A) and a new atom α /∈ grd(A):

Q(α) = {head(r)← body(r) ∪ {α} | r ∈ Q} .

In our incremental setting, the addition of new atoms allows us to selectively
(de)activate volatile program slices.

Proposition 3. Let (Pi)i≥0 and (Qi)i≥1 be sequences of programs over grd(A), and
let Fj = {αj←} for αj /∈ grd(A) and j ≥ 1. Then, we have the following for i ≥ 1:⋃

0≤j≤iPj ∪Qi ∪ Fi ≡ P0 ∪
⋃

1≤j≤i(Pj ∪Qj(αj)) ∪ Fi .
2 We abuse notation and let ≡ stand for classical equivalence here.

The addition of Fi on the left hand side is merely for establishing formal equivalence,
considering that αi occurs in Qi(αi) but not in Qi. The fact that programs Qj(αj)
behave neutrally, as long as αj is underivable, provides us with a handle to control the
effective program slices. In addition to activating some Qj(αj) for j ≥ 1, we also
have to deactivate it in subsequent steps. Thus, a solver cannot include αj persistently
as a fact. But rather than explicitly deleting any fact (or rule) previously passed to
the solver, we build upon an interface supporting assumptions. This trims the required
solver interface to only two functions:

– add(P) incorporates a ground logic program P into the rule database of the solver;
– solve(L) takes a set L of ground literals and computes the answer sets X of the

ground program comprised in the solver that satisfy L+ ⊆ X and L− ∩X = ∅.

This simple interface is similar to the one for incremental SAT solving given in [14].
The literals L passed to solve constitute assumptions, which can semantically be
viewed as the set of integrity constraints {←not a | a ∈ L+} ∪ {← a | a ∈ L−}.
However, as regards clasp [6], the crucial difference between integrity constraints and
assumptions is that the former give rise to program simplifications affecting internal
data structures, while the effect of the latter is temporary, i.e., restricted to an invoca-
tion of solve. While former assumptions can easily be withdrawn, for a learning solver,
it would be much harder to support an explicit deletion of obsolete problem parts [14].

Let us now situate the solver in our incremental context.

Definition 5. Let (Ri)i≥0 and (Li)i≥0 be sequences of programs and literals over
grd(A) ∪ {αi | i ≥ 0}. A solver is a pair of total functions add : Ri 7→ Si and
solve : Li 7→ χ, where S0 = R0|head(R0), Si = Si−1 ∪ Ri|head(Si−1∪Ri) for i ≥ 1,
and χ ⊆ 2(grd(A)∪{αi|i≥0}).

Note that only add affects a solver’s state, where added programs are subject to simpli-
fication. In fact, as with Pi for i ≥ 0 in Definition 4, we assume that atoms not occurring
as the head of any rule are eliminated. Even if such an atom becomes derivable later on
when another program is added, it can thus not interact with the rules already present.
The reason for this design decision is that, although operating in an open environment,
the possible addition of information or program slices, respectively, should not force
the solver to continuously rebuild its existent data structures. Of course, this necessi-
tates program slices to be provided in a bottom-up manner. The second function, solve,
leaves the accumulated program slices (logically) unaffected, that is, the passed literals
are only assumed locally within solve.

The objective of maintaining program slices, once they have been added, also mo-
tivates the following definition of soundness.

Definition 6. A solver as in Definition 5 is sound, if for all sequences (Ri)i≥0 and
(Li)i≥0 of programs and literals over grd(A) ∪ {αi | i ≥ 0}, and for every
i ≥ 0, we have: X ∈ solve(Li) iff L+

i ⊆ X ⊆ head(Si) \ L−i such that X |=⋃
0≤j≤i(CF (Rj |head(Sj), head(Rj |Yj

)) ∪ LF (Rj |head(Sj))), where Y0 = head(R0)
and Yj = head(Sj−1 ∪Rj) for 1 ≤ j ≤ i.

First, observe that literals passed as assumptions in Li must be respected by solutionsX
returned by a sound solver. Second, X must satisfy the completion and loop formulas

individually for each program slice, thereby, restricting the attention to the respective
head atoms. This conception allows the solver to build its data structures in a modular
way, without sacrificing soundness, but it also relocates the responsibility to properly
partition a program away from the solver. However, as Theorem 3 shows, modular
domain descriptions (along with an adequate grounder) permit the construction of a
program’s completion and loop formulas locally for program slices, obtaining the same
answer sets as with the entire program.

We now define the program slices to be added to the solver for the ground rules
obtained from a domain description.

Definition 7. Let (B,P [k], Q[k]) be a domain description, let ground be a grounder,
and let (Pi, Oi)i≥0 and (Qi, O

′
i)i≥1 as in Definition 4. If (P0, O0), (Pj , Oj), and

(Qj , O
′
j) are defined for 1 ≤ j ≤ i, we define a sequence (Ri)i≥0 of programs and

a sequence (Li)i≥0 of literals for 1 ≤ j ≤ i and αj−1, αj /∈ grd(A) by:

R0 = P0 Rj = Pj ∪Qj(αj) ∪ {{αj}←} ∪ {←αj−1}
L0 = ∅ Lj = {αj} .

The difference between the cumulative rules in Pj and the volatile ones in Qj is that an
additional atom αj is appended to the bodies of the latter. Moreover, choice rule {αj}←
nominally permits the unconditional inclusion of αj in an answer set. However, upon
the invocation of solve in step j, literal αj is passed as assumption, so that answer
sets must necessarily contain αj . In contrast, in step j + 1, integrity constraint ←αj
is persistently added to the solver, forcing αj to be false. Due to this, all rules in Qj
are deactivated in later steps. Notably, clasp eliminates such false atoms and rules with
false bodies from its data structures, thus deleting a whole obsolete program Qj .

In theory, no added rule is deleted later on. Thus, we require an additional condition.

Definition 8. We define a domain description (B,P [k], Q[k]) as separated, if for all
i ≥ 1 and j > i, head(grd(Q[i])) ∩ head(grd(P [j] ∪Q[j])) = ∅.

Separation can easily be achieved by using distinct predicates and parameter k in the
heads of rules in Q[k] as well as in body atoms corresponding to such heads. The do-
main descriptions given in (2) and (3), trivially, are separated.

Using an adequate grounder and a sound solver, we finally establish that our incre-
mental solving strategy leads to the desired outcomes for modular domain descriptions.

Theorem 4. Let (B,P [k], Q[k]) be a separated modular domain description, let
ground be an adequate grounder, and let (Pi, Oi)i≥0 and (Qi, O

′
i)i≥1 as in Defini-

tion 4. Furthermore, let (add, solve) be a sound solver, (Ri)i≥0 and (Li)i≥0 as in
Definition 7, and Sj = add(Rj) for j ≥ 0 as in Definition 5. If (P0, O0), (Pj , Oj), and
(Qj , O

′
j) are defined for 1 ≤ j ≤ i, we have the following for i ≥ 1:

X ∈ solve(Li) iff (X \ {αi}) ∈ AS (
⋃

0≤j≤i Pj ∪Qi).

Comparing with the third item in Theorem 2 shows that our approach, comprising in-
cremental grounding and solving, matches exactly the semantics of (programs induced
by) separated modular domain descriptions. In this context, the modularity condition in
Definition 2 allows us to largely reuse existing ASP technology, as we see below.

Algorithm 1 combines
our grounding and solving
functions for successively
computing the answer
sets of programs induced
by a domain descrip-
tion (B,P [k], Q[k]). To this
end, isolve makes use of
one instance of a grounder,
denoted by GROUNDER, and
one instance of a solver, viz.,
SOLVER. Programs B, P [i],
and Q[i] are then gradually
grounded by means of
GROUNDER. Provided that
GROUNDER can instantiate
the given programs, i.e., if
they satisfy any additional
requirements GROUNDER

Algorithm 1: isolve
Input : A domain description (B,P [k], Q[k]).
Output : A nonempty set of answer sets.
Internal: A grounder GROUNDER.
Internal: A solver SOLVER.

i← 01

(P0, O)← GROUNDER.ground(B, ∅)2

SOLVER.add(P0)3

loop4

i← i+ 15

(Pi, Oi)← GROUNDER.ground(P [i], O)6

SOLVER.add(Pi)7

O ← O ∪Oi8

(Qi, O
′
i)← GROUNDER.ground(Q[i], O)9

SOLVER.add(Qi(αi)∪{{αi}←}∪{←αi−1})10
χ← SOLVER.solve({αi})11

if χ 6= ∅ then return {X \ {αi} | X ∈ χ}12

may impose, the obtained ground programs are fed into SOLVER through function add.
i Rules L
0 B p(0) ← not ¬p(0)

¬p(0) ← not p(0)
← p(0),¬p(0)

1 P [1] a(1) ← not ¬a(1)
¬a(1) ← not a(1)
p(1) ← a(1)
p(1) ← p(0),not ¬p(1)
¬p(1) ← ¬p(0),not p(1)

← p(1),¬p(1)
← a(1),¬a(1)

Q[1](α1) ← not ¬p(0), α1 α1

← not p(1), α1

← not ¬a(1), α1

{α1} ←
← α0

2 P [2] a(2) ← not ¬a(2)
¬a(2) ← not a(2)
p(2) ← a(2)
p(2) ← p(1),not ¬p(2)
¬p(2) ← ¬p(1),not p(2)

← p(2),¬p(2)
← a(2),¬a(2)

Q[2](α2) ← not ¬p(0), α2 α2

← not p(2), α2

← not ¬a(2), α2

{α2} ←
← α1

Fig. 1: Tracing Algorithm 1: isolve.

In Line 7, 10, and 11 of Algorithm 1, cumulative
and volatile program slices are handled accord-
ing to the sequences of programs and assumptions,
respectively, specified in Definition 7. Note that
isolve terminates as soon as function solve of
SOLVER reports some answer set. Otherwise, if no
answer set is found in any step i ≥ 1, isolve (in
theory) loops forever on increasing values for k.

For illustrating isolve, reconsider the exam-
ple in (2). We give in Figure 1 the accumulation of
ground rules within the solver during the formation
of the answer set containing {¬p(0), a(1), p(1),
¬a(2), p(2)}. The left column shows the value of i
in Algorithm 1, the middle one groups the rules
added in Line 2, 7, and 10 of Algorithm 1, and the
right one gives the assumption, αi, used in each it-
eration. The rules accumulated within the solver at
the end of the first iteration yield no answer set un-
der assumption α1, while the addition of the rules
obtained in the next step yields the above answer
set under assumption α2. Note that this answer set

also includes α2, while it does not contain α1 due to integrity constraint← α1.
If GROUNDER is adequate and if SOLVER is sound, for a separated modular do-

main description (B,P [k], Q[k]) such that P (Qi) (cf. Definition 2) has an answer set
for some i ≥ 1, isolve returns the answer sets of P (Qi) for the least such i ≥ 1.

Theorem 5. Let (B,P [k], Q[k]) be a separated modular domain description, let
GROUNDER be an adequate grounder, and let SOLVER be a sound solver. Let
(Pi, Oi)i≥0 and (Qi, O

′
i)i≥1 be as in Definition 4 for ground = GROUNDER.ground,

and let (Qi)i≥1 as in Definition 2. If (P0, O0), (Pi, Oi), and (Qi, O
′
i) are defined for

all i ≥ 1, we have isolve((B,P [k], Q[k])) = AS (P (Qi)) for the least i ≥ 1 such
that AS (P (Qi)) 6= ∅.

Note that the above result builds upon the assumption that (B,P [k], Q[k]) is modu-
lar. When feeding a non-modular domain description (that GROUNDER can instantiate)
into isolve, interpretations computed by SOLVER.solve do not necessarily match the
answer sets of the combined program slices.

We next provide simple syntactic conditions under which B, P [k], and Q[k] assem-
ble a modular domain description.

Proposition 4. Let (B,P [k], Q[k]) be a domain description, and let P =
⋃
i≥1 P [i]

and Q =
⋃
i≥1Q[i]. Then, (B,P [k], Q[k]) is modular if the following conditions hold:

1. atom(grd(B)) ∩ (head(grd(P)) ∪ head(grd(Q))) = ∅,
2. atom(grd(P)) ∩ head(grd(Q)) = ∅, and
3. {head(grd(P [i])) | i ≥ 1} is a partition of head(grd(P)).

Pragmatically, these conditions can be granted by using predicates not occurring in
B ∪ P [k] for the heads of rules in Q[k], and by including 0 as parameter in every atom
ofB as well as parameter k in the head of every rule in P [k]. Of course, parameter 0 can
also be omitted in atoms of B if the corresponding predicates are not used in the heads
of rules in P [k]. Recalling the domain descriptions given in (2) and (3), one can ob-
serve that the respective programs B, P [k], and Q[k] fit into this scheme. In fact, many
problems over time parameters are naturally stated via modular domain descriptions.

5 Experiments with the Incremental ASP System iclingo

We implemented our approach to incremental ASP solving within the system iclingo by
building on grounder gringo (2.0.0) and solver clasp (1.1.0) (all available at [7]). As in-
put, gringo accepts λ-restricted programs, inducing finite equivalent ground programs.
Procedurally, iclingo uses gringo as delineated in Algorithm 1. The customization of
clasp conceptually affects two components, namely, the treatment of a program’s com-
pletion and loop formulas, respectively. Note that neither of these adaptations would
be necessary in a SAT solver, since the underlying semantics does not rely on Clark’s
completion. Over time, clasp accumulates ground program slices and, moreover, learns
further constraints during solving. As a matter of fact, clasp is equipped with dynamic
deletion and simplification techniques disposing of superfluous constraints.

Our experiments consider iclingo in four settings: keeping over successive solving
steps (1) learned constraints, (2) learned constraints and heuristic values, (3) heuristic
values only, and (4) neither. We compare these variants with iterative deepening search
using clingo, the direct combination of gringo and clasp via an internal interface, as well
as gringo and clasp via a textual interface (using the output language of lparse [12]).

Except for using different communication channels, clingo as well as piped gringo and
clasp run identically, and clingo is consistently faster at a fraction of run-time.

The benchmarks in Table 1 belong to four different classes. In the Blocksworld
example, the goal is to reconstruct a tower of n blocks in inverse order, requiring a
plan of length n. In the Queens example, we compute (at most) one answer set for each
value of k, iterating from 1 to n. For Sokoban and Towers of Hanoi, we use handmade
instances from [15, 16], each instance requiring n steps for achieving its goal condition.
With both of these planning problems, the default encoding includes the initial state in
a base program B and the goal condition in a query program Q[k]. We also provide
alternative encodings (attributed by “back” in Table 1), in which B contains the goal
and Q[k] the initial state. Table 1 summarizes run-time results in seconds, taking the
average of three runs per instance. The rows marked withΣ show the sums of run-times
over all instances of a benchmark class, also distinguishing encodings, with timeouts
taken as 1200s. The last row (ΣΣ) sums run-times over all benchmark classes. All
benchmarks as well as extended results are available at [7].

On the Blocksworld and Queens examples, we see that iclingo clearly outper-
forms clingo by one order of magnitude, which is primarily due to reduced ground-
ing overhead. In fact, the simple Blocksworld problems are solved without any search,
but clingo has to redo full grounding and propagation in each iterative deepening
step, working on ground programs of considerable size. For example, considering the
Blocksworld problem with four blocks, viz., n = 4, gringo produces 158 ground rules
in the first step and 236 ground rules for each further step. While iclingo adds this num-
ber of rules in each incremental step, resulting in 158+(n−1)∗236 = 866 ground rules
for n = 4, clingo processes n ∗ 158+ (n ∗ (n−1)/2) ∗ 236 = 2048 ground rules before
obtaining a solution. Of course, the ratio of ground rules processed by iclingo gets even
smaller as n increases, explaining the dramatic performance gains on Blocksworld. On
the Queens example, we observe a similar effect, but here, clasp has to search for a
solution for n ≥ 4. Interestingly, iclingo (1), keeping learned constraints, has a clear
edge, but iclingo (2), additionally keeping heuristic values, is by far the slowest among
all iclingo variants. However, iclingo (3), keeping heuristic values, is again consistently
faster than iclingo (4), keeping neither heuristic values nor learned constraints. This
suggests that the strategy of iclingo (2) here tends to bias future runs too much, while a
moderate amount of memory via either learned constraints or heuristic values is helpful.

Other than the simple Blocksworld and combinatorial Queens examples, Sokoban
and Towers of Hanoi contain more realistic instances, shifting the focus to search for
a plan. In fact, all systems underlie non-deterministic heuristic effects and traverse the
search space differently. Though all systems spend most of their run-time in the solving
component, the savings in grounding are still noticeable for iclingo, but smaller than
on Blocksworld and Queens. On Sokoban, we observe varying relative performance of
the considered systems on individual instances, which is due to the elevated difficulty
of the problem. However, on the instance requiring the most steps, viz., n = 21, we
have that the learning variants, iclingo (1) and iclingo (2), perform much better than the
remaining ones, iclingo (3) and iclingo (4), which are also outperformed by clingo. The
“back” encoding of Sokoban does not yield overall performance gains for any of the
considered systems, but we observe that iclingo (1) copes best with this encoding. Note

Name n iclingo (1) iclingo (2) iclingo (3) iclingo (4) clingo gringo|clasp
Blocksworld 20 2.61 2.61 2.62 2.62 37.09 42.41

25 6.78 6.84 6.80 6.80 124.35 138.68
30 15.68 15.80 15.71 15.81 330.15 362.39
35 32.43 32.36 32.29 32.31 753.90 821.96
40 60.99 60.75 60.71 61.04 - -
Σ 118.49 118.36 118.13 118.58 2445.49 2565.44

Queens 80 19.46 65.83 39.98 47.79 144.28 153.61
90 36.72 135.19 70.81 81.70 249.13 264.21

100 49.25 227.69 111.99 128.62 409.69 431.23
110 64.05 424.03 176.16 201.67 636.91 669.75
120 99.54 612.76 274.29 354.00 958.34 1003.67
Σ 269.02 1465.50 673.23 813.78 2398.35 2522.47

Sokoban 16 243.22 287.46 320.07 334.08 376.74 384.41
12 26.50 37.55 50.61 28.19 27.83 28.43
16 124.26 124.44 320.97 341.94 189.48 194.12
16 135.72 164.70 128.66 183.74 120.60 123.57
18 140.80 145.07 233.71 275.12 236.60 242.19
16 26.86 40.60 29.41 27.88 45.94 47.04
17 1165.67 906.00 734.44 730.09 887.26 904.75
14 119.95 140.11 106.40 213.22 96.26 98.10
14 35.42 42.74 58.79 46.81 70.16 71.81
21 286.46 200.43 600.19 777.68 278.97 285.09
17 120.33 140.44 139.19 156.85 171.01 174.90
14 39.09 36.21 36.00 47.48 66.12 67.43
Σ 2464.28 2265.75 2758.44 3163.08 2566.97 2621.84

Sokoban back 16 - - - - - -
12 51.23 44.62 98.09 57.42 72.59 74.30
16 264.81 201.48 265.21 359.38 296.45 302.46
16 148.19 121.19 150.06 145.40 148.25 151.43
18 723.07 - - - 1059.02 1081.34
16 243.81 185.00 340.97 190.32 402.27 410.72
17 599.74 714.40 1051.60 825.61 - -
14 149.37 126.04 164.98 191.33 170.36 173.74
14 29.73 69.46 73.03 28.04 43.06 43.89
21 346.56 428.43 400.81 295.69 402.78 411.70
17 181.00 143.20 172.83 317.82 234.21 239.56
14 15.06 58.45 39.27 17.50 59.63 60.78
Σ 3952.57 4492.27 5156.85 4828.51 5288.62 5349.92

Towers 33 38.00 42.96 48.46 27.15 31.98 32.76
34 61.40 36.78 47.09 45.95 61.77 63.39
36 81.26 60.77 88.52 131.29 86.56 88.46
39 223.46 155.76 184.63 204.13 216.89 222.74
41 429.82 327.74 392.47 342.11 459.97 471.22
Σ 833.94 624.01 761.17 750.63 857.17 878.57

Towers back 33 4.62 6.42 5.68 5.80 12.59 12.79
34 55.79 33.42 56.27 42.39 52.80 54.00
36 16.66 16.46 14.69 17.11 24.81 25.38
39 27.88 25.43 28.60 32.83 46.01 46.85
41 48.20 36.38 62.75 40.62 83.78 85.60
Σ 153.15 118.11 167.99 138.75 219.99 224.62

ΣΣ 7791.45 9084.00 9635.81 9813.33 13776.59 14162.86
Table 1. Benchmark results on a 2.2GHz PC under Linux; each run limited to 1200s time.

that both the initial and the goal states of Sokoban instances are total. Hence, with both
encodings, clasp searches for a trajectory from one complete state to another. Finally, on
Towers of Hanoi, the differences between the systems are rather small, and all of them
show significant gains on the “back” encoding. In contrast to Sokoban, goal conditions
do here not define total states. Thus, learning may further constrain the goal in B, while
the total initial state inQ[k] can easily be propagated. The differences between Sokoban
and Towers of Hanoi regarding the impact of encodings show that incremental problems
constitute a whole new setting, different from traditional ones, and further investigations
are needed for optimizing computational strategies to deal with them.

6 Discussion

We presented the first theoretical and practical account of incremental ASP solving.
Our framework allows for tackling bounded problems in ASP, paving the way for more
ambitious real-world applications. Our approach is driven by the desire to minimize
redundancies while gradually treating program slices. However, fixing the incremen-
tal solving process required the integration and adaption of successive grounding and
solving steps in a globally consistent way. To this end, we developed an incremental
module theory guiding the formal setting of iterative grounding and solving by means
of existing ASP grounders and solvers. Module theory does not only provide us with
a natural semantics for non-ground, parametrized program slices but moreover makes
precise their composition by appeal to input/output interfaces. Such compositionality
provides the primary basis for incremental computations. Our experimental results in-
dicate the computational impact of our incremental approach on parametrized domain
descriptions. While savings in grounding are evident, on different encodings of search-
intensive problems, we have seen that the effectiveness of solving techniques in an
incremental setting is (currently) less predictable. Indeed, incremental problems differ
from traditional ones, so that dedicated computational strategies for them can be devel-
oped and explored. In this respect, our system iclingo makes merely a first step. Future
work also includes more elaborate incremental algorithms than isolve, allowing for
non-elementary program slices while still guaranteeing optimality of solutions.

References
1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press (2003)
2. Kautz, H., Selman, B.: Planning as satisfiability. Proc. of ECAI’92, Wiley (1992) 359–363
3. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solv-

ing. Formal Methods in System Design 19(1) (2001) 7–34
4. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.

Artificial Intelligence 153(1-2) (2004) 49–104
5. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. on AI 3(6) (1998) 193–210
6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.

Proc. of IJCAI’07, AAAI Press (2007)
7. http://www.cs.uni-potsdam.de/wv/software
8. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. Proc. of

ECAI’06, IOS Press (2006) 412–416
9. Lifschitz, V., Turner, H.: Splitting a logic program. Proc. of ICLP, MIT Press (1994) 23–37

10. Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial evaluation.
Journal of Logic Programming 40(1) (1999) 1–46

11. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and
strong equivalence. Proc. of LPNMR’04, Springer (2004) 87–99

12. http://www.tcs.hut.fi/Software
13. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-

cial Intelligence 157(1-2) (2004) 115–137
14. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes

in Theoretical Computer Science 89(4) (2003)
15. http://www.ne.jp/asahi/ai/yoshio/sokoban/handmade/
16. http://asparagus.cs.uni-potsdam.de/

