
Theory Solving Made Easy with Clingo 5∗

Martin Gebser1, Roland Kaminski2, Benjamin Kaufmann3,
Max Ostrowski4, Torsten Schaub5, and Philipp Wanko6

1 University of Potsdam, Potsdam, Germany
2 University of Potsdam, Potsdam, Germany
3 University of Potsdam, Potsdam, Germany
4 University of Potsdam, Potsdam, Germany
5 University of Potsdam, Potsdam, Germany; and

INRIA, Rennes, France
6 University of Potsdam, Potsdam, Germany

Abstract
Answer Set Programming (ASP) is a model, ground, and solve paradigm. The integration of
application- or theory-specific reasoning into ASP systems thus impacts on many if not all
elements of its workflow, viz. input language, grounding, intermediate language, solving, and
output format. We address this challenge with the fifth generation of the ASP system clingo
and its grounding and solving components by equipping them with well-defined generic inter-
faces facilitating the manifold integration efforts. On the grounder’s side, we introduce a generic
way of specifying language extensions and propose an intermediate format accommodating their
ground representation. At the solver end, this is accompanied by high-level interfaces easing the
integration of theory propagators dealing with these extensions.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Answer Set Programming, Theory Language, Theory Propagation

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.2

1 Introduction

The clingo system, along with its grounding and solving components gringo and clasp, is
nowadays among the most widely used tools for Answer Set Programming (ASP; [22]). This
does not only apply to end-users, but more and more to system developers who build upon
clingo’s infrastructure for developing their own systems. Among them, we find (alphabetically)
clasp-nk [13], clingcon [25], dflat [1], dingo [21], dlvhex [14], inca [12], and mingo [23]. None
of these systems can use clingo or its components without workarounds or even involved
modifications to realize the desired functionality. Moreover, since ASP is a model, ground, and
solve paradigm, such modifications are rarely limited to a single component but often spread
throughout the whole workflow. This begins with the addition of new language constructs
to the input language, requiring in turn amendments to the grounder as well as syntactic
means for passing the ground constructs to a downstream system. In case they are to be
dealt with by an ASP solver, it must be enabled to treat the specific input and incorporate
corresponding solving capacities. Finally, each such extension is application-specific and
requires different means at all ends.

∗ This work was partially supported by DFG-SCHA-550/9.

© Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Philipp Wanko;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 2; pp. 2:1–2:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 Theory Solving Made Easy with Clingo 5

We address this challenge with the new clingo series 5 and its components. This is
accomplished by introducing generic interfaces that allow for accommodating extensions
to ASP at the salient stages of its workflow. To begin with, we extend clingo’s grounder
component gringo with means for specifying simple theory grammars in which new theories
can be represented. As theories are expressed using constructs close to ASP’s basic modeling
language, the existing grounding machinery takes care of instantiating them. This also
involves a new intermediate ASP format that allows for passing the enriched information
from grounders to solvers in a transparent way. (Since this format is mainly for settings with
stand-alone grounders and solvers, and thus outside the scope of clingo, we delegate details
to [17].) For a complement, clingo 5 provides several interfaces for reasoning with theory
expressions. On the one hand, the existing Lua and Python APIs are extended by high-level
interfaces for augmenting propagation in clasp with so-called theory propagators. Several
such propagators can be registered with clingo, each implementing an interface of four basic
methods. Our design is driven by the objective to provide means for rapid prototyping of
dedicated reasoning procedures while enabling effective implementations. To this end, the
interface supports, for instance, stateful theory propagators as well as multi-threading in the
underlying solver. On the other hand, the functionality of the aforementioned extended APIs
is now also offered via a C interface. This is motivated by the wide availability of foreign
function interfaces for C, which enable the import of clingo in programming languages like
Java or Haskell. A first application of this is the integration of clingo 5 into SWI-Prolog.1

2 Input Language

This section introduces the novel features of clingo 5’s input language. All of them are
situated in the underlying grounder gringo 5 and can thus also be used independently of
clingo. We start with a detailed description of gringo 5’s generic means for defining theories
and afterwards summarize further new features.

Our generic approach to theory specification rests upon two languages: the one defining
theory languages and the theory language itself. Both borrow elements from the underlying
ASP language, foremost an aggregate-like syntax for formulating variable length expressions.
To illustrate this, consider Listing 1, where a logic program is extended by constructs for
handling difference and linear constraints. While the former are binary constraints of the
form x1 − x2 ≤ k, the latter have a variable size and are of form a1x1 + · · · + anxn ◦ k,
where xi are integer variables, ai and k are integers, and ◦ ∈ {≤,≥, <,>,=} for 1 ≤ i ≤ n.2
Note that solving difference constraints is polynomial, while solving linear equations (over
integers) is NP-hard. The theory language for expressing both types of constraints is defined
in Lines 1–13 and preceded by the directive #theory. The elements of the resulting theory
language are preceded by & and used as regular atoms in the logic program in Lines 15–21.

To be more precise, a theory definition has the form
#theory T {D1;. . .;Dn}.

where T is the theory name and each Di is a definition for a theory term or a theory atom
for 1 ≤ i ≤ n. The language induced by a theory definition is the set of all theory atoms
constructible from its theory atom definitions.

A theory atom definition has form
&p/k : t,o or &p/k : t,{�1,. . .,�m},t′,o

1 https://github.com/JanWielemaker/clingo
2 For simplicity, we consider normalized difference constraints rather than general ones of form x1−x2 ◦k.

https://github.com/JanWielemaker/clingo

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:3

1 #theory difference {
2 constant { - : 0, unary };
3 diff_term { - : 0, binary, left };
4 linear_term { + : 2, unary; - : 2, unary;
5 * : 1, binary, left;
6 + : 0, binary, left; - : 0, binary, left };
7 domain_term { .. : 1, binary, left };
8 show_term { / : 1, binary, left };
9 &dom/0 : domain_term, {=}, linear_term, any;
10 &sum/0 : linear_term, {<=,=,>=,<,>,!=}, linear_term, any;
11 &diff/0 : diff_term, {<=}, constant, any;
12 &show/0 : show_term, directive
13 }.

15 #const n=2. #const m=1000.
16 task (1..n). duration(T,200*T) :- task(T).
17 &dom { 1..m } = start(T) :- task(T).
18 &dom { 1..m } = end(T) :- task(T).
19 &diff { end(T)-start(T) } <= D :- duration(T,D).
20 &sum { end(T) : task(T); -start(T) : task(T) } <= m.
21 &show { start /1; end/1 }.

Listing 1 Logic program enhanced with difference and linear constraints (diff.lp).

where p is a predicate name and k its arity, t, t′ are names of theory term definitions, each
�i is a theory operator for m ≥ 1, and o ∈ {head, body, any, directive} determines where
theory atoms may occur in a rule. Examples of theory atom definitions are given in Lines 9–12
of Listing 1. The language of a theory atom definition as above contains all theory atoms of
form

&a {C1:L1;. . .;Cn:Ln} or &a {C1:L1;. . .;Cn:Ln} � c

where a is an atom over predicate p of arity k, each Ci is a tuple of theory terms in the
language for t, c is a theory term in the language for t′, � is a theory operator among
{�1, . . . , �m}, and each Li is a regular condition (i.e., a tuple of regular literals) for 1 ≤ i ≤ n.
Whether the last part ‘ � c’ is included depends on the form of a theory atom definition. Five
occurrences of theory atoms can be found in Lines 17–21 of Listing 1.

A theory term definition has form
t {D1;. . .;Dn}

where t is a name for the defined terms and each Di is a theory operator definition for
1 ≤ i ≤ n. A respective definition specifies the language of all theory terms that can be
constructed via its operators. Examples of theory term definitions are given in Lines 2–8 of
Listing 1. Each resulting theory term is one of the following:

a constant term: c

a variable term: v

a binary theory term: t1 � t2
a unary theory term: � t1
a function theory term: f(t1, . . . , tk)
a tuple theory term: (t1, . . . , tl,)
a set theory term: {t1, . . . , tl}
a list theory term: [t1, . . . , tl]

ICLP 2016 TCs

2:4 Theory Solving Made Easy with Clingo 5

1 task (1). task (2).
2 duration (1,200). duration (2,400).

4 &dom { 1..1000 } = start (1). &dom { 1..1000 } = start (2).
5 &dom { 1..1000 } = end (1). &dom { 1..1000 } = end (2).
6 &diff { end(1)-start (1) } <= 200. &diff { end(2)- start (2) } <= 400.
7 &sum { end (1); end (2); -start (1); -start (2) } <= 1000.
8 &show { start /1; end/1 }.

Listing 2 Human-readable result of grounding Listing 1 via ‘gringo –text diff.lp’.

where each ti is a theory term, � is a theory operator defined by some Di, c and f are
symbolic constants, v is a first-order variable, k ≥ 1, and l ≥ 0. (The trailing comma in tuple
theory terms is optional if l 6= 1.) Parentheses can be used to specify operator precedence.

A theory operator definition has form
� : p,unary or � : p,binary ,a

where � is a unary or binary theory operator with precedence p ≥ 0 (determining implicit
parentheses). Binary theory operators are additionally characterized by an associativity
a ∈ {right, left}. As an example, consider Line 5 of Listing 1, where the binary operator *
is defined with precedence 1 and left associativity. In total, Lines 2–8 of Listing 1 include
nine theory operator definitions. Particular theory operators can be assembled (written
consecutively without spaces) from the symbols ‘!’, ‘<’, ‘=’, ‘>’, ‘+’, ‘-’, ‘*’, ‘/’, ‘\’, ‘?’, ‘&’, ‘|’,
‘.’, ‘:’, ‘;’, ‘~’, and ‘^’. For instance, in Line 7 of Listing 1, the operator ‘..’ is defined as the
concatenation of two periods. The tokens ‘.’, ‘:’, ‘;’, and ‘:-’ must be combined with other
symbols due to their dedicated usage. Instead, one may write ‘..’, ‘::’, ‘;;’, ‘::-’, etc.

While theory terms are formed similar to regular ones, theory atoms rely upon an
aggregate-like construction for forming variable-length theory expressions. In this way,
standard grounding techniques can be used for gathering theory terms. (However, the actual
atom within a theory atom comprises regular terms only.) The treatment of theory terms
still differs from their regular counterparts in that the grounder skips simplifications like,
e.g., arithmetic evaluation. This can be nicely seen on the different results in Listing 2 of
grounding terms formed with the regular and theory-specific variants of operator ‘..’. Observe
that the fact task(1..n) in Line 16 of Listing 1 results in n ground facts, viz. task(1) and
task(2) because of n=2. Unlike this, the theory expression 1..m stays structurally intact and
is only transformed into 1..1000 in view of m=1000. That is, the grounder does not evaluate
the theory term 1..1000 and leaves its interpretation to a downstream theory solver.

A similar situation is encountered when comparing the treatment of the regular term
‘200*T’ in Line 16 of Listing 1 to the theory term ‘end(T)-start(T)’ in Line 19. While each
instance of ‘200*T’ is evaluated during grounding, instances of the theory term are left in
Line 6 of Listing 2. In fact, if ‘200*T’ had been a theory term as well, it would have resulted
in the unevaluated instances ‘200*1’ and ‘200*2’.

The remainder of this section is dedicated to other language extensions of gringo 5
aiming at a disentanglement of the various uses of #show directives (and their induced symbol
table). Such directives were beforehand used for controlling the output of stable models,
delineating the scope of reasoning modes (e.g., intersection, union, projection, etc.), and
for passing special-purpose information to downstream systems. For instance, theory and
heuristic information was passed to clasp via dedicated predicates like _edge and _heuristic.
This entanglement brought about several shortcomings. In fact, passing information via a

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:5

symbol table did not only scramble the output, but also provoked overhead in grounding
and filtering “artificial” symbolic information.

Now, in gringo 5, the sole purpose of #show is to furnish an output directive. There are
three different kinds of such statements:

#show. #show p/n. #show t : l1,. . .,ln.

The first form hides all atoms, and the second all except those over predicates p/n indicated
by #show statements. The third form does not hide any atoms and can be used to output
arbitrary terms t, whenever the literals l1, . . . , ln in the condition after ‘:’ hold. This is
particularly useful in meta-programming, e.g., ‘#show A : holds(A).’ can be used to map
back reified atoms.

Atoms used in reasoning modes are indicated by #project directives, having two forms:
#project p/n. #project a : l1,. . .,ln.

Here, p is a predicate name with arity n, a is an atom, and l1, . . . , ln are literals. While the
first form declares all atoms over predicate p/n as subject to projection, the second includes
instances of a obtained via grounding, as detailed in [18] for #external directives.

The last two new directives of interest abolish the need for the special-purpose predicates
_edge and _heuristic, previously used in conjunction with the ASP solver clasp:

#edge (u,v) : l1,. . .,ln.
#heuristic a : l1,. . .,ln. [k@p,m]

As above, a is an atom, and l1, . . . , ln are literals. Moreover, u, v, k, p,m are terms, where
‘(u,v)’ stands for an edge from u to v in an acyclicity extension [8]. Integer values for k and p
along with init, factor, level, sign, true, or false for m determine a heuristic modifier [19].
Finally, note that zero is taken as default priority when the optional ‘@p’ part in ‘[k@p,m]’,
resembling the syntax of ranks for weak constraints [10], is omitted.

3 Logical Characterization

The semantics of logic programs modulo theories rests upon ground programs P over two
disjoint alphabets, A and T , consisting of regular and theory atoms. Accordingly, P is a set
of rules r of the form h← a1, . . . , am,∼am+1, . . . ,∼an, where the head h is constant ⊥, a0
or {a0} for an atom a0 ∈ A∪ T , and {a1, . . . , an} ⊆ A∪ T . If h = ⊥, r is called an integrity
constraint, a normal rule if h = a0, or a choice rule if h = {a0}; as usual, we skip ⊥ when
writing integrity constraints. We let h(r) = ∅ for an integrity constraint r, h(r) = {a0} for a
normal or choice rule r, and define h(P) =

⋃
r∈P h(r) as the head atoms of P . In analogy

to inputs atoms from #external directives [18], we partition T into defined theory atoms
T ∩ h(P) and external theory atoms T \ h(P).

Given a collection T of theories, we associate each T ∈ T with a scope T T of atoms
relevant to T , and let T =

⋃
T∈T T T be the corresponding set of theory atoms. Reconsidering

the input language in Section 2, a natural choice for T T consists of all (ground) atoms
declared within a #theory directive for T . However, as we see in Section 5, a scope may in
general include atoms written in regular as well as extended syntax (the latter preceded by
‘&’) in the input language.

In order to reflect different forms of theory propagation, we further consider a partition
of the scope T T of a theory T into strict theory atoms T T

e and non-strict theory atoms
T T

i such that T T
e ∩ T T

i = ∅ and T T
e ∪ T T

i = T T . The strict theory atoms in T T
e resemble

equivalences as expressed by the constraint atoms of clingcon [25], which must be assigned
to true iff their associated constraints hold. This is complemented by viewing the non-strict

ICLP 2016 TCs

2:6 Theory Solving Made Easy with Clingo 5

theory atoms in T T
i as implications similar to the constraint statements of ezcsp [2], where

only statements assigned to true impose requirements, while constraints associated with false
ones are free to hold or not. Given the distinction of respective kinds of theory atoms, a
combined theory T may integrate constraints according to the semantics of clingcon and
ezcsp, e.g., indicated by dedicated predicates or arguments thereof in T ’s theory language.

We now turn to mapping the semantics of logic programs modulo theories back to regular
stable models. In the abstract sense, we call any ST ⊆ T T a T -solution if T is consistent
with the conditions expressed by elements of ST as well as the complements of conditions
associated with the false strict theory atoms in T T

e \ ST .3 Generalizing this concept to a
collection T of theories, we say that S ⊆ T is a T-solution if S ∩ T T is a T -solution for each
T ∈ T. Then, we define a set X ⊆ A ∪ T of (regular and theory) atoms as a T-stable model
of a ground program P if there is some T-solution S such that X is a (regular) stable model
of the program

P ∪ {a← | T ∈ T, a ∈ (T T
e \ h(P)) ∩ S} ∪ {← ∼a | T ∈ T, a ∈ (T T

e ∩ h(P)) ∩ S} (1)
∪ {{a} ← | T ∈ T, a ∈ (T T

i \ h(P)) ∩ S} ∪ {← a | T ∈ T, a ∈ (T T ∩ h(P)) \ S}. (2)

That is, the rules added to P in (1) and (2) express conditions aligning X ∩ T with an
underlying T-solution S. First, the facts in (1) make sure that external theory atoms that are
strict, i.e., included in T T

e \ h(P) for some T ∈ T, and hold in S belong to X as well. Unlike
this, the corresponding set of choice rules in (2) merely says that non-strict external theory
atoms from S may be included in X, thus not insisting on a perfect match between non-strict
theory atoms and elements of S. Moreover, the integrity constraints in (1) and (2) take care
of defined theory atoms belonging to h(P). The respective set in (1) again focuses on strict
theory atoms and stipulates the ones from S to be included in X as well. In addition, for
both strict and non-strict defined theory atoms, the integrity constraints in (2) assert the
falsity of atoms that do not hold in S.

For example, consider a program P = {a ← b,∼c} subject to some theory T with the
strict and non-strict theory atoms T T

e = {a, b} and T T
i = {c}, and let S = {a, b, c} be a

T -solution. Then, the extended program for S is P ∪ {b← ; {c} ← ;← ∼a}, whose (only)
regular stable model X = {a, b} is a {T}-stable model of P . Note that S assigns the non-strict
theory atom c to true, while X excludes it to keep a ← b,∼c applicable for the (strict)
defined theory atom a.

To summarize the main principles of the T-stable model concept, strict theory atoms (for
some T ∈ T) must exactly match their interpretation in a T-solution S, while non-strict ones
(not strict for any T ∈ T) in X are only required not to exceed S. Second, external theory
atoms that hold in S are mapped to facts or choice rules, while conditions on defined ones
are enforced by means of integrity constraints. As a result, T-stable models are understood
as regular stable models, yet relative to extensions of a given program P determined by
underlying T-solutions. Notably, the concept of T-stable models also carries on to logic
programs allowing for further constructs, such as weight constraints and disjunction, which
have not been discussed here for brevity (cf. [26]).

3 Although we omit formal details, atoms in Satisfiability Modulo Theories (SMT; [4]) belong to first-order
predicates interpreted in a theory T , and the ones that hold in some model of T provide a T -solution
ST ⊆ T T .

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:7

4 Algorithmic Characterization

As detailed in [20], a ground program P induces completion and loop nogoods, given by
∆P = ∆B(P) ∪ ∆A∪(T ∩h(P)) or ΛP =

⋃
∅⊂U⊆A∪(T ∩h(P)){λ(a, U) | a ∈ U}, respectively,

where B(P) is the set of rule bodies occurring in P . Note that both sets of nogoods are
restricted by regular atoms and defined theory atoms, while external theory atoms can a
priori be assigned freely, although any occurrences in rule bodies are subject to evaluation via
respective nogoods in ∆B(P). A (partial) assignment A is a consistent set of (signed) literals
of the form Tv or Fv for v ∈ (A∪T)∪B(P), i.e., {Tv,Fv} * A for all v ∈ (A∪T)∪B(P);
A is total if {Tv,Fv} ∩A 6= ∅ for all v ∈ (A ∪ T) ∪ B(P). We say that some nogood δ is
violated by A if δ ⊆ A. When T = ∅, so that T = ∅ as well, each total assignment A that
does not violate any nogood δ ∈ ∆P ∪ ΛP yields a regular stable model of P , and such an
assignment A is called a solution (for ∆P ∪ ΛP).

We now extend the concept of a solution to T-stable models. To this end, we follow
the idea of external propagators in [12] and identify a theory T ∈ T with a set ∆T ⊆
2{Ta|a∈T T }∪{Fa|a∈T T

e } of theory nogoods such that, given a total assignment A, we have that
δ ⊆ A for some δ ∈ ∆T iff there is no T -solution ST such that {a ∈ T T | Ta ∈ A} ⊆ ST and
{a ∈ T T

e | Fa ∈ A} ∩ ST = ∅. That is, the nogoods in ∆T must reject A iff no T -solution
(i) includes all theory atoms in T T that are assigned to true by A and (ii) excludes all strict
theory atoms in T T

e assigned to false by A. This semantic condition establishes a (one-to-one)
correspondence between T-stable models of P and solutions for (∆P ∪ ΛP) ∪

⋃
T∈T ∆T . A

formal elaboration can be found in [17].
The nogoods in (∆P ∪ ΛP) ∪

⋃
T∈T ∆T provide the logical fundament for the Conflict-

Driven Constraint Learning (CDCL) procedure (cf. [24, 20]) outlined in Figure 1. While the
completion nogoods in ∆P are usually made explicit and subject to unit propagation, the loop
nogoods in ΛP as well as theory nogoods in ∆T are typically handled by dedicated propagators
and particular members are selectively recorded, i.e., when a respective propagator identifies
some nogood δ such that |δ \A| ≤ 1 (and ({Tv | Fv ∈ δ} ∪ {Fv | Tv ∈ δ}) ∩A = ∅), and
we say that such a nogood is unit. In fact, a unit nogood δ yields either a conflict, if δ is
violated by A, or otherwise a literal to be assigned by unit propagation.

While the dedicated propagator for loop nogoods is built-in in systems like clingo 5, those
for theories are provided via the interface detailed in Section 5. To utilize custom propagators,
Figure 1 includes an initialization step in Line (I). In addition to the “registration” of a
propagator for a theory T as an extension of the basic CDCL procedure, common tasks
performed in this step include setting up internal data structures and so-called watches for
(a subset of) the theory atoms in T T , so that the propagator will be invoked (only) when
some watched literal gets assigned.

The main CDCL loop starts with unit propagation on completion and loop nogoods, the
latter handled by the respective built-in propagator, as well as any nogoods already recorded.
If this results in a non-total assignment without conflict, theory propagators for which some
of their watched literals have been assigned are invoked in Line (P). A propagator for a
theory T can then inspect the current assignment, update its data structures accordingly,
and most importantly, perform theory propagation determining theory nogoods δ ∈ ∆T to
record. Usually, any such nogood δ is unit in order to trigger a conflict or unit propagation,
although this is not a necessary condition. The interplay of unit and theory propagation
continues until a conflict or total assignment arises, or no (further) watched literals of theory
propagators get assigned by unit propagation. In the latter case, some non-deterministic
decision is made to extend the partial assignment at hand and then to proceed with unit
and theory propagation.

ICLP 2016 TCs

2:8 Theory Solving Made Easy with Clingo 5

(I) initialize // register theory propagators and initialize watches
loop

propagate completion, loop, and recorded nogoods // deterministically assign
if no conflict then

if all variables assigned then
(C) if some δ ∈ ∆T is violated for T ∈ T then record δ // check ∆T

else return variable assignment // T-stable model found
else

(P) propagate theories T ∈ T // possibly record theory nogoods from ∆T

if no nogood recorded then decide // non-deterministically assign
else

if top-level conflict then return unsatisfiable
else

analyze // resolve conflict and record a conflict constraint
(U) backjump // undo assignments until conflict constraint is unit

Figure 1 Basic algorithm for Conflict-Driven Constraint Learning (CDCL) modulo theories.

If no conflict arises and an assignment A is total, in Line (C), theory propagators are called,
one by one, for a final check of A. The idea is that, e.g., a “lazy” propagator for a theory T
that does not exhaustively test violations of its theory nogoods by partial assignments can
make sure that A is indeed a solution for ∆T , or record some violated nogood(s) from ∆T

otherwise. Even in case theory propagation on partial assignments is exhaustive and a final
check is not needed to detect conflicts, the information that search led to a total assignment
can be useful in practice, e.g., to store values for integer variables like start(1), start(2),
end(1), and end(2) in Listing 2 that witness the existence of a T -solution.

Finally, in case of a conflict, i.e., some completion or recorded nogood is violated by the
current assignment, provided that some non-deterministic decision is involved in the conflict,
a new conflict constraint is recorded and utilized to guide backjumping in Line (U), as usual
with CDCL. In a similar fashion as the assignment of watched literals serves as trigger for
theory propagation, theory propagators are informed when they become unassigned upon
backjumping. This allows them to undo earlier operations, e.g., internal data structures can
be reset to return to a state taken prior to the assignment of watches.

In summary, the basic CDCL procedure is extended in four places to account for cus-
tom propagators: initialization, propagation of (partial) assignments, final check of total
assignments, and undo steps upon backjumping.

5 Propagator Interface

We now turn to the implementation of theory propagation in clingo 5 and detail the structure
of its interface depicted in Figure 2.

The interface Propagator has to be implemented by each custom propagator. After
registering such a propagator with clingo, its functions are called during initialization and
search as indicated in Figure 1. Function Propagator.init4 is called once before solving
(Line (I) in Figure 1) to allow for initializing data structures used during theory propagation.

4 For brevity, we below drop the qualification Propagator and use its function names unqualified.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:9

clingo

SymbolicAtom
+ symbol
+ literal

TheoryAtom
+ name
+ elements
+ guard
+ literal

PropagateInit
+ num threads
+ symbolic atoms
+ theory atoms
+ add watch(lit)
+ solver literal(lit)

�interface�
Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl
+ thread id
+ assignment
+ add nogood(nogood, tag, lock)
+ propagate()

Assignment
+ decision level
+ has conflict
+ value(lit)
+ level(lit)
+ ...

Figure 2 Class diagram of clingo’s (theory) propagator interface.

It is invoked with a PropagateInit object providing access to symbolic (SymbolicAtom)
as well as theory (TheoryAtom) atoms. Both kinds of atoms are associated with program
literals,5 which are in turn associated with solver literals.6 Program as well as solver literals
are identified by non-zero integers, where positive and negative numbers represent positive or
negative literals, respectively. In order to get notified about assignment changes, a propagator
can set up watches on solver literals during initialization.

During search, function propagate is called with a PropagateControl object and a
(non-empty) list of watched literals that got assigned in the recent round of unit propagation
(Line (P) in Figure 1). The PropagateControl object can be used to inspect the current
assignment, record nogoods, and trigger unit propagation. Furthermore, to support multi-
threaded solving, its thread_id property identifies the currently active thread, each of which
can be viewed as an independent instance of the CDCL algorithm in Figure 1.7 Function
undo is the counterpart of propagate and called whenever the solver retracts assignments to
watched literals (Line (U) in Figure 1). In addition to the list of watched literals that have
been retracted (in chronological order), it receives the identifier and the assignment of the
active thread. Finally, function check is similar to propagate, yet invoked without a list of
changes. Instead, it is (only) called on total assignments (Line (C) in Figure 1), independently
of watches. Overriding the empty default implementations of propagator methods is optional.
For brevity, we below focus on implementations of the methods in Python, while Lua or C
could be used as well.

For illustration, consider Listing 3 giving a propagator for (half of) the pigeon-hole
problem.

5 Program literals are also used in the aspif format (see [17]).
6 Note that clasp’s preprocessor might associate a positive or even negative solver literal with multiple
atoms.

7 Depending on the configuration of clasp, threads can communicate with each other. For example, some
of the recorded nogoods can be shared. This is transparent from the perspective of theory propagators.

ICLP 2016 TCs

2:10 Theory Solving Made Easy with Clingo 5

1 #script (python)

3 class Pigeonator:
4 def __init__(self):
5 self.place = {} # shared state
6 self.state = [] # per thread state

8 def init(self, init):
9 for atom in init.symbolic_atoms.by_signature (" place", 2):

10 lit = init.solver_literal(atom.literal)
11 self.place[lit] = atom.symbol.args [1]
12 init.add_watch(lit)
13 self.state = [{} for _ in range(init.num_threads)]

15 def propagate(self, control, changes):
16 holes = self.state[control.thread_id]
17 for lit in changes:
18 hole = self.place[lit]
19 prev = holes.setdefault(hole, lit)
20 if prev != lit and not control.add_nogood ([lit, prev]):
21 return

23 def undo(self, thread_id, assignment, changes):
24 holes = self.state[thread_id]
25 for lit in changes:
26 hole = self.place[lit]
27 if holes.get(hole) == lit:
28 del holes[hole]

30 def main(prg):
31 prg.register_propagator(Pigeonator ())
32 prg.ground ([(" base", [])])
33 prg.solve()

35 #end.

37 1 { place(P,H) : H = 1..h } 1 :- P = 1..p.
38 % { place(P,H) : P = 1..p } 1 :- H = 1..h.

Listing 3 Propagator for the pigeon-hole problem.

Although this setting is constructed, it showcases central aspects that are also relevant
when implementing more complex propagators, e.g., the Pigeonator is both stateful and
can be used with multiple threads. The underlying ASP encoding is given in Line 37: A
(choice) rule generates solution candidates by placing each of the p pigeons in exactly one
among h holes. While the rule commented out in Line 38 would ensure that there is at most
one pigeon per hole, this constraint is handled by the Pigeonator class implementing the
Propagator interface (except for check) in Lines 8–28. Whenever two pigeons are placed in
the same hole, it adds a binary nogood forbidding the placement. To this end, it maintains
data structures for, given a newly placed pigeon, detecting whether there is a conflict. More
precisely, the propagator has two data members: The self.place dictionary in Line 5 maps
solver literals for place/2 atoms to their corresponding holes, and the self.state list in

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:11

Line 6 stores for each solver thread its current placement of pigeons as a mapping from holes
to true solver literals for place/2 atoms.

Function init in Lines 8–13 sets up watches as well as the dictionaries in self.place
and self.state. To this end, it traverses (symbolic) atoms over place/2 in Lines 9–12. Each
such atom is associated with a solver literal, obtained in Line 10. The mapping from the
solver literal to its corresponding hole is then stored in the self.place dictionary in Line 11.
In the last line of the loop, a watch is added for each solver literal at hand, so that the solver
calls propagate whenever a pigeon is placed. Finally, in Line 13, the self.state list of
placements per thread, subject to change upon propagation and backjumping, is initialized
with empty dictionaries.

Function propagate, given in Lines 15–21, accesses control.thread_id in Line 16 to
obtain the holes dictionary storing the active thread’s current placement of pigeons. The
loop in Lines 17–21 then iterates over the list of changes, i.e., solver literals representing
newly placed pigeons. After in Line 18 determining the hole associated with a recently
assigned literal, Python’s setdefault function is used to update the state: Depending on
whether hole already appears as a key in the holes dictionary, the function either retrieves
its associated literal or inserts the new literal under key hole. While the latter case amounts
to updating the placement of pigeons, the former signals a conflict, triggered by recording a
binary nogood in Line 20. Given that the solver has to resolve the conflict and backjump,
the call to add_nogood always yields false, so that propagation stops without processing
remaining changes any further.8

Function undo in Lines 23–28 resets a thread’s placement of pigeons upon backjumping.
Similar to propagate, the active thread’s current placement is obtained in Line 24, and
changes are traversed in Lines 25–28. The latter correspond to retracted solver literals, for
which the condition in Line 27 makes sure that exactly those stored in Line 19 before are
cleared, thus reflecting that the hole determined in Line 26 is free again. Finally, function
main in Lines 30–33 first registers the Pigeonator propagator in Line 31, and then initiates
grounding and solving with clingo.

6 Experiments

Our approach aims at a simple yet general framework for incorporating theory reasoning
into ASP solving. Hence, it leaves room for various ways of encoding a problem and of
implementing theory propagation. To reflect this from a practical perspective, we empirically
explore several options for solving problems with difference logic (DL) constraints. To be
more precise, we contrast an encoding relying on defined theory atoms with one leaving them
external (cf. Section 3), and a stateless with a stateful propagator implementation. As a
non-strict interpretation of DL constraints is sufficient for the problems given below, we stick
to this option and do not vary it.

The consistency of a set C of DL constraints can be checked by mapping them to a
weighted directed graph G(C). The nodes of G(C) are the (integer) variables occurring in
C, and for each x1 − x2 ≤ k in C, G(C) includes an edge from x1 to x2 with weight k.
Then, C is DL-consistent iff G(C) contains no cycle whose sum of edge weights is negative.
The difference between a stateless and stateful DL-propagator amounts to whether the

8 The optional arguments tag and lock of add_nogood can be used to control the scope and lifetime of
recorded nogoods. Furthermore, in a propagator that does not add violated nogoods only, function
control.propagate can be invoked to trigger unit propagation.

ICLP 2016 TCs

2:12 Theory Solving Made Easy with Clingo 5

Table 1 Comparison between different encodings and DL-propagators for scheduling problems.

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0
Total 260 525 230 366 140 398 170 72 30 109 50

corresponding graph is built from scratch upon each invocation or only once and updated
subsequently. In our experiments, we use the Bellman-Ford algorithm [6, 16] as basis for a
stateless propagator, and the one in [11] for update operations in the stateful case. Both
propagator implementations detect negative cycles and record (solver) literals corresponding
to their weighted edges as nogoods.

Theory atoms corresponding to DL constraints are formed as described in Section 2. The
difference between using defined and external theory atoms boils down to their occurrence in
the head of a rule, as in Line 19 of Listing 1, viz.

&diff { end(T)-start(T) } <= D :- duration(T,D).

or in the body, as in
:- duration(T,D), not &diff { end(T)-start(T) } <= D.

Note that the defining usage constrains DL-atoms firmer than the external one: A defined
DL-atom is true iff at least one of its bodies holds, while an external one may vary whenever its
truth is DL-consistent yet not imposed by integrity constraints (with further problem-specific
literals).

To evaluate the different options, we expressed (decision versions of) several scheduling
problems [27], typically aiming at the minimization of schedules’ makespan, by logic programs
in the language of Section 2. Flow shop: A schedule corresponds to a permutation of n jobs,
each including m sequential subtasks allocating machines 1, . . . ,m for specific amounts of
time. Job shop: Again considering n jobs with m sequential subtasks each, where the order
in which subtasks allocate machines 1, . . . ,m for given amounts of time is job-specific, a
schedule arranges the subtasks of different jobs in one sequence per machine. Open shop:
Given the same setting as in the job shop problem, the sequential order of the subtasks
of a job is not fixed, but augments a schedule arranging the subtasks of different jobs per
machine. For reasons of scalability, we refrain from optimizing the makespan of schedules,
but are only interested in some feasible schedule per instance along with the corresponding
earliest start times of subtasks.

The results of our experiments, run sequentially under Linux on an Intel Xeon E5520
2.27 GHz machine equipped with 24 GB main memory, are summarized in Table 1. Each
clingo 5 run was restricted to 600 seconds wall-clock time, while memory was never exceeded.
Subcolumns headed by ‘T’ report average runtimes, taking timeouts as 600 seconds, and those
with ‘TO’ numbers of timeouts over ‘#’ instances of each scheduling problem and in total.
Respective results in the column headed by ‘ASP’ reflect the bottom-line performance obtained
with plain ASP encodings, which is obviously not competitive due to the ineffectiveness of
grounding problems over large numeric domains. The remaining columns consider the four
combinations of encoding and DL-propagator features of interest. First, we observe that
the stateful propagator (on the right) has a clear edge over its stateless counterpart (in the

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:13

middle). Second, with both propagator implementations, the firm encoding using defined
DL-atoms outperforms the one leaving them external on instances of the flow shop problem.
While this experiment is not meant to be universal, it demonstrates that different features
have an impact on the resulting performance. In how far the tuning of theory propagators
matters also depends on the use case at hand, e.g., solving a challenging application problem
versus rapid prototyping of dedicated reasoning procedures.

7 Discussion

The clingo 5 system provides a comprehensive infrastructure for enhancing ASP with theory
reasoning. This ranges from generic means for expressing theories along with their support
by gringo, over a theory-aware intermediate format, to simple yet powerful interfaces in C,
Lua, and Python. In each case, a propagator can specify (up to) four basic functions to
customize its integration into clasp’s propagation, where an arbitrary number of (independent)
theory propagators can be incorporated. Logically, ASP encodings may build upon defined
or external theory atoms, and their associated conditions may be strict or non-strict. In
practice, clingo 5 supports stateless and stateful theory propagators, which can be controlled
in a fine-grained way. For instance, propagators are thread-sensitive, watches can be set to
symbolic as well as theory literals, and the scope and lifetime of nogoods stemming from
theory propagation can be configured.

A first step toward a more flexible ASP infrastructure was done with clingo 4 [18] by
introducing Lua and Python APIs for multi-shot solving. Although this allows for fine-grained
control of complex ASP reasoning processes, the functionality provided no access to clasp’s
propagation and was restricted to inspecting (total) stable models. The extended framework
for theory propagation relative to partial assignments (cf. Figure 1) follows the canonical
approach of SMT [4]. While dlvhex implicitly provides access to clasp’s propagation, this
is done on the more abstract level of higher-order logic programs. Also, dlvhex as well as
many other systems, such as clingcon or inca, implement specialized propagation via clasp’s
internal interfaces, whose usage is more involved and subject to change with each release.
Although the new high-level interfaces may not yet fully cover all desired features, they
provide a first step toward easing the development of such dedicated systems and putting
them on a more stable basis. Currently, clingo 5’s infrastructure is already used as a basis for
clingcon 3 [3], lc2casp [9], and its integration with SWI-Prolog. Finally, we believe that the
extended grounding capacities along with the intermediate format supplemented in [17] will
also be beneficial for non-native approaches and ease the overall development of ASP-oriented
solvers. This applies to systems like dingo, mingo, and aspmt [5], the latter implementing
ASP with theory reasoning by translation to SMT, which so far had to resort to specific
input formats and meta-programming to bypass the grounder.

References

1 M. Abseher, B. Bliem, G. Charwat, F. Dusberger, M. Hecher, and S. Woltran. The D-FLAT
system for dynamic programming on tree decompositions. In Fermé and Leite [15], pages
558–572.

2 M. Balduccini. Representing constraint satisfaction problems in answer set programming.
In Proceedings of the Second Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP’09), pages 16–30, 2009.

3 M. Banbara, B. Kaufmann, M. Ostrowski, and T. Schaub. Clingcon: The next generation.
Submitted for publication, 2016.

ICLP 2016 TCs

2:14 Theory Solving Made Easy with Clingo 5

4 C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In Biere
et al. [7], pages 825–885.

5 M. Bartholomew and J. Lee. System aspmt2smt: Computing ASPMT theories by SMT
solvers. In Fermé and Leite [15], pages 529–542.

6 R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1958.
7 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS

Press, 2009.
8 J. Bomanson, M. Gebser, T. Janhunen, B. Kaufmann, and T. Schaub. Answer set pro-

gramming modulo acyclicity. In Proceedings of the Thirteenth International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’15), pages 143–150. Springer,
2015.

9 P. Cabalar, R. Kaminski, M. Ostrowski, and T. Schaub. An ASP semantics for default rea-
soning with constraints. In Proceedings of the Twenty-fifth International Joint Conference
on Artificial Intelligence (IJCAI’16), pages 1015–1021. IJCAI/AAAI Press, 2016.

10 F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
F. Ricca, and T. Schaub. ASP-Core-2: Input language format. Available at https://www.
mat.unical.it/aspcomp2013/ASPStandardization/, 2012.

11 S. Cotton and O. Maler. Fast and flexible difference constraint propagation for DPLL(T).
In Proceedings of the Ninth International Conference on Theory and Applications of Satis-
fiability Testing (SAT’06), pages 170–183. Springer, 2006.

12 C. Drescher and T. Walsh. Answer set solving with lazy nogood generation. In Techni-
cal Communications of the Twenty-eighth International Conference on Logic Programming
(ICLP’12), pages 188–200. Leibniz International Proceedings in Informatics, 2012.

13 T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer
set programming. Theory and Practice of Logic Programming, 13(3):303–359, 2013.

14 T. Eiter, M. Fink, T. Krennwallner, and C. Redl. Conflict-driven ASP solving with external
sources. Theory and Practice of Logic Programming, 12(4-5):659–679, 2012.

15 E. Fermé and J. Leite, editors. Proceedings of the Fourteenth European Conference on Logics
in Artificial Intelligence (JELIA’14), volume 8761 of Lecture Notes in Artificial Intelligence.
Springer, 2014.

16 L. Ford and D. Fulkerson. Flows in networks. Princeton University Press, 1962.
17 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko. The-

ory solving made easy with clingo 5 (extended version). Available at http://www.cs.
uni-potsdam.de/wv/publications/, 2016.

18 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control: Prelim-
inary report. In Technical Communications of the Thirtieth International Conference on
Logic Programming (ICLP’14), 2014. Available at http://arxiv.org/abs/1405.3694.

19 M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, and P. Wanko. Domain-specific
heuristics in answer set programming. In Proceedings of the Twenty-Seventh National
Conference on Artificial Intelligence (AAAI’13), pages 350–356. AAAI Press, 2013.

20 M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From theory
to practice. Artificial Intelligence, 187-188:52–89, 2012.

21 T. Janhunen, G. Liu, and I. Niemelä. Tight integration of non-ground answer set program-
ming and satisfiability modulo theories. In Proceedings of the First Workshop on Grounding
and Transformation for Theories with Variables (GTTV’11), pages 1–13, 2011.

22 V. Lifschitz. What is answer set programming? In Proceedings of the Twenty-third National
Conference on Artificial Intelligence (AAAI’08), pages 1594–1597. AAAI Press, 2008.

23 G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed integer program-
ming. In Proceedings of the Thirteenth International Conference on Principles of Knowledge
Representation and Reasoning (KR’12), pages 32–42. AAAI Press, 2012.

https://www.mat.unical.it/aspcomp2013/ASPStandardization/
https://www.mat.unical.it/aspcomp2013/ASPStandardization/
http://www.cs.uni-potsdam.de/wv/publications/
http://www.cs.uni-potsdam.de/wv/publications/
http://arxiv.org/abs/1405.3694

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko 2:15

24 J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In
Biere et al. [7], pages 131–153.

25 M. Ostrowski and T. Schaub. ASP modulo CSP: The clingcon system. Theory and Practice
of Logic Programming, 12(4-5):485–503, 2012.

26 P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

27 E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285, 1993.

ICLP 2016 TCs

	Introduction
	Input Language
	Logical Characterization
	Algorithmic Characterization
	Propagator Interface
	Experiments
	Discussion

