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Abstract. We present the first comprehensive approach to integrating cardinal-
ity and weight rules into conflict-driven ASP solving. We begin with a uniform,
constraint-based characterization of answer sets in terms of nogoods. This pro-
vides the semantic underpinnings of our approach in fixing all necessary infer-
ences that must be supported by an appropriate implementation. We then provide
key algorithms detailing the salient features needed for implementing weight con-
straint rules. This involves a sophisticated unfounded set checker as well as an
extended propagation algorithm along with the underlying data structures. We
implemented our techniques within the ASP solver clasp and demonstrate their
effectiveness by an experimental evaluation.

1 Introduction

One of the most appealing features of Answer Set Programming (ASP; [1]) is its rich
declarative modeling language. Among the most popular language constructs are cardi-
nality and weight constraints [2] being particular forms of count and sum aggregates.

Existing techniques for implementing such aggregates fall into two categories. Tra-
ditional backtracking-oriented ASP solvers like smodels [2] use counter-based algo-
rithms based on [3]. On the other hand, SAT-based ASP solvers like cmodels [4] elimi-
nate such aggregates by transforming them into normal (or nested) logic programming
rules. While the former approach has proven its versatility, it does not carry over to
modern ASP solving technology based on backjumping and conflict-driven learning [5,
6]. Although this is accomplishable by the transformational approach, it fails to scale
due to a significant increase in space [7].

We address this problem and present the first comprehensive approach to integrat-
ing weight constraint rules into conflict-driven ASP solving. To this end, we begin with
a uniform, constraint-based characterization of answer sets in terms of nogoods. This
provides the semantic underpinnings of our approach in fixing all necessary inferences
that must be supported by an appropriate implementation. We then provide key algo-
rithms detailing the salient features needed for implementing weight constraint rules.
This involves a sophisticated unfounded set checker as well as an extended propagation
algorithm along with the underlying data structures. Our techniques are implemented
within the ASP solver clasp [8]. We evaluate the performance of clasp relative to the
two existing approaches and thus demonstrate its effectiveness.
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2 Background

Following [2], we consider weight constraint programs over an alphabet A, consisting
of weight rules of the form

v {a0 = 1} ← w {a1 =w1, . . . , am=wm,∼am+1 =wm+1, . . . ,∼an=wn} (1)

where v ∈ {0, 1}, w is a non-negative integer, wi are positive integers for 1≤ i≤n, and
ai are atoms in A for 0≤ i≤ n. Furthermore, we assume aj 6= ak for 0< j < k≤m
and m < j < k ≤ n, respectively. The set of atoms occurring in a weight constraint
program Π is denoted by A(Π). A weight literal is of the form a=w or ∼a=w; a and
∼a are regular literals, where ∼ stands for default negation. For a set A of atoms, we
let ∼A = {∼a | a ∈ A}; for a set L of regular literals, let L+ = {a | a ∈ L ∩ A} and
L− = {a | a ∈ L∩∼A}. We defineA(l=w) = a for the atom in a weight literal l = a
or l = ∼a, respectively, and W (l=w) = w for its weight. Accordingly, for a set L of
weight literals, A(L) = {A(`) | ` ∈ L} and Σ[L] =

∑
`∈LW (`).

For a rule r as in (1), let H(r) = v {a0 = 1} be the head of r, B(r) = w {a1 =w1,
. . . , am=wm,∼am+1 =wm+1, . . . ,∼an=wn} the body of r, and lb(B(r)) = w the
lower bound ofB(r). Such a body constitutes a weight constraint. We extend the above
projections to weight constraints as follows. GivenW = B(r) for r as in (1), we define
W+ = {a1 = w1, . . . , am = wm}, W− = {∼am+1 = wm+1, . . . ,∼an = wn}, and
A(W) = A(W+ ∪W−). A set X of atoms satisfiesW , written X |=W , if

Σ[{p ∈ W+ | A(p) ∈ X} ∪ {n ∈ W− | A(n) /∈ X}] ≥ lb(W) .

That is, a weight constraint is satisfied if the sum of the weights of its satisfied literals
does not fall below the lower bound given by w. Accordingly, rule r is satisfied by X ,
written X |= r, if X |= B(r) implies X |= H(r); and X |= Π if X |= r for all r ∈ Π .

For a rule r as in (1) and a set X of atoms, the reduct of B(r) wrt X is defined as

B(r)X = w′B(r)+ where w′ = max
{
0 , lb(B(r))−Σ[{n ∈ B(r)− | A(n) /∈ X}]

}
.

Given this, the reduct of a weight constraint program Π wrt X is

ΠX =
{

1 {a0 = 1} ← B(r)X | r ∈ Π,A(H(r)) ∩X = {a0}
}

.

Finally, X is an answer set of Π if X |= Π and Y 6|= ΠX for all Y ⊂ X .
As detailed in [2], weight constraint rules are expressive enough to (linearly) capture

normal rules, integrity constraints, cardinality rules, and general weight constraint rules
of the formW0 ←W1, . . . ,Wn, whereWi is a general weight constraint for 0≤ i≤n.

3 Inferences from Weight Constraint Programs

This section provides the logical fundament of the computational techniques detailed
in Section 4. To this end, we adapt the nogood-based characterization of answer sets
from [8] to accommodate weight constraints. As a result, we obtain a clear semantic
framework to specify (unit) propagation over weight rules.



An assignment A over a domain, dom(A), is a sequence (σ1, . . . , σn) of (signed)
literals σi of the form Tvi or Fvi, where vi ∈ dom(A) for 1≤ i≤ n; Tvi expresses
that vi is true and Fvi that it is false. (We omit the attribute signed for literals whenever
clear from the context.) The complement of a literal σ is denoted by σ, that is, Tv = Fv
and Fv = Tv. We sometimes abuse notation and identify an assignment with the set
of its contained literals. Given this, we access the true and false variables in A via
AT = {v | Tv ∈ A} and AF = {v | Fv ∈ A}. For a canonical representation
of (Boolean) constraints, we make use of nogoods [9]. In our setting, a nogood is a
finite set {σ1, . . . , σm} of literals, expressing a constraint violated by any assignment A
containing σ1, . . . , σm. For a set ∆ of nogoods, an assignment A is a solution for ∆ if
AT∩AF = ∅, AT∪AF = dom(A), and δ 6⊆ A for all δ ∈ ∆. Given a weight constraint
program Π , we adopt the convention that dom(A) = A(Π) ∪ {H(r), B(r) | r ∈ Π}.

For a weight constraint W , the following pair of sets of nogoods stipulates corre-
spondence between the truth value ofW and the sum of true literals’ weights:

ω(W) =
{
{FW} ∪ {TA(p) | p ∈ P} ∪ {FA(n) | n ∈ N} | (2)

P ⊆ W+, N ⊆ W−, Σ[P ∪N ] ≥ lb(W)
}

$(W) =
{
{TW} ∪ {FA(p) | p ∈ P} ∪ {TA(n) | n ∈ N} | (3)

P ⊆ W+, N ⊆ W−, Σ[(W+ \ P ) ∪ (W− \N)] < lb(W)
}

.

Observe that the nogoods in ω(W) and $(W), respectively, capture the weakest con-
ditions under which W evaluates to true or false, respectively. In general, the number
of such weakest conditions is exponential in the number of literals in W . Hence, it is
impractical to explicitly construct ω(W) and $(W), and we below develop implemen-
tation techniques for unit propagation that work onW directly.

The correspondence between the truth of a weight constraint and its elements can
be formalized as follows.

Proposition 1. LetW be a weight constraint and A be an assignment such that AT ∩
AF = ∅ and AT ∪AF = A(W). Then, the following statements hold:

1. δ \A = {FW} for some δ ∈ ω(W) iff AT |=W;
2. δ \A = {TW} for some δ ∈ $(W) iff AT 6|=W .

Proposition 1 shows that the weight constraints in a weight constraint program are fully
determined by their literals when collecting the nogoods for all heads and bodies:

Ω(Π) =
⋃
r∈Π

(
ω(H(r)) ∪$(H(r)) ∪ ω(B(r)) ∪$(B(r))

)
.

As an answer set X of a program Π is a minimal model of ΠX , we have that a
corresponding total assignment A, viz., AT ∩ A(Π) = X , must be a model of Π ,
and each atom in X needs to be supported by a rule r such that B(r) ∈ AT. When
combined with Ω(Π), the following set of nogoods formalizes these two requirements:

∆(Π) =
{
{FH(r),TB(r)} | r ∈ Π

}
∪{

{Ta,FB(r) | r ∈ Π,A(H(r)) = {a}} | a ∈ A(Π)
}

.



Proposition 2. Let Π be a weight constraint program and X ⊆ A(Π). Then, X |= Π
such that, for every a ∈ X , there is some r ∈ Π with A(H(r)) = {a} and X |= B(r)
iff there is a (unique) solution A for Ω(Π) ∪∆(Π) such that AT ∩A(Π) = X .

The nogoods associated with weight constraint programs allow us to identify prop-
agation operations along with their reasons. We say that a nogood δ is unit-resulting
wrt an assignment A if δ \A = {σ} and σ /∈ A. In such a situation, σ is mandatory
to avoid the inclusion of δ in A; in other words, δ implies σ wrt A. The process of iter-
atively adding implied literals to A until violating some nogood or reaching a fixpoint
(without any further implied literals) is called unit propagation. The implementation
within clasp of unit propagation on nogoods in Ω(Π) is detailed in Section 4. Note that
Ω(Π) merely provides a logical specification, while clasp works on weight constraints
directly and determines nogoods in Ω(Π) only if needed as reasons.

In order to also capture minimality of an answer set X as a model of ΠX , for a
program Π and a (partial) assignment A, we define a set U ⊆ A(Π) as unfounded
for Π wrt A if, for every rule r ∈ Π , some of the following conditions holds:

1. A(H(r)) ∩ U = ∅,
2. B(r) ∈ AF, or
3. Σ[{p ∈ B(r)+ | A(p) /∈ AF ∪ U} ∪ {n ∈ B(r)− | A(n) /∈ AT}] < lb(B(r)).

If U is unfounded for Π wrt A, it means that none of its atoms belongs to any answer
set given by a total extension of A. In fact, the first condition expresses that r cannot
support U , while the second condition checks that r is not applicable under A. Finally,
the third condition detects cases where lb(B(r)) cannot be reached via (weight) literals
not false under A, thereby, disregarding positive literals that depend on U .

To describe unfounded set conditions in terms of nogoods, for a set U of atoms, we
define the external sets of literals for U in a weight rule r, extr(U), as:{
A(P ) ∪ ∼A(N) | P ⊆ B(r)+, N ⊆ B(r)−, A(P ) ∩ U = ∅, Σ[P∪N ] ≥ lb(B(r))

}
.

Note that elements L of extr(U) are exactly the sets of literals such that the third un-
founded set condition does not apply to r as long as (L+ ∩ AF) ∪ (L− ∩ AT) = ∅,
that is, if no literal in L is falsified by A. Furthermore, for U ⊆ A(Π), we call a set
C ⊆

⋃
r∈Π,L∈extr(U) L of literals a cover set for U in Π , if C ∩ L 6= ∅ for every

r ∈ Π and L ∈ extr(U). Note that, for any r ∈ Π , a cover set C for U in Π satisfies
Σ[{p ∈ B(r)+ | A(p) /∈ C ∪ U} ∪ {n ∈ B(r)− | ∼A(n) /∈ C}] < lb(B(r)); other-
wise, we would have L = {l | (l = w) ∈ B(r), l /∈ C ∪U} ∈ extr(U) and C ∩L = ∅,
so that C would not be a cover set for U in Π . Letting covΠ(U) denote the set of all
cover sets for U in Π , for some u ∈ U , the loop nogoods, λ(u, U), are:⋃
Λ⊆{r∈Π|A(H(r))∩U 6=∅,extr(U)6=∅,A(B(r)+)∩U 6=∅}

{
{Fa | a ∈ C+} ∪ {Tb | b ∈ C−} ∪

{Tu} ∪ {FB(r) | r ∈ Π \ Λ,A(H(r)) ∩ U 6= ∅, extr(U) 6= ∅} | C ∈ covΛ(U)
}

.

Note that, for all rules r ∈ Π such that A(H(r)) ∩ U 6= ∅ and extr(U) 6= ∅, nogoods
in λ(u, U) reflect the second (B(r) ∈ AF) and the third (via Λ) unfounded set con-
dition. Given the correspondence of the truth value of B(r) and those of its (weight)



literals stipulated via Ω(Π), the third condition needs to be checked separately only if
A(B(r)+) ∩ U 6= ∅, which explains the choice of Λ. As with ω(W) and $(W) in (2)
and (3), the size of λ(u, U) is exponential in the number of literals in rule bodies, and on
the implementation side, selected loop nogoods are determined on demand (see below).

For illustration, consider a program containing the following weight rules:

0 {a=1} ← 2 {c=1, e=1,∼b=1} (4)
1 {a=1} ← 3 {b=2,∼c=1,∼d=1} (5)
1{b=1} ← 4 {a=3, c=2,∼d=1,∼e=3} . (6)

Taking U = {a, b}, we observe that the body of the rule in (4) does not positively
depend on U , while the external sets for U in (5) are empty. For the rule r in (6), we
get extr(U) =

{
{c,∼e}, {∼d,∼e}, {c,∼d,∼e}

}
and cov{r}(U) =

{
{∼e}, {c,∼d},

{c,∼e}, {∼d,∼e}, {c,∼d,∼e}
}

. Observe that {∼e} and {c,∼d} are the minimal
cover sets for U in {r}, while the other three are subsumed by {∼e}. We thus obtain
the following non-redundant loop nogoods in λ(u, U), where u = a or u = b:{

Tu,F 2 {c=1, e=1,∼b=1},F 4 {a=3, c=2,∼d=1,∼e=3}
}{

Tu,F 2 {c=1, e=1,∼b=1},Te
}{

Tu,F 2 {c=1, e=1,∼b=1},Fc,Td
}

.

For a weight constraint program Π , we can now simply collect all loop nogoods:

Λ(Π) =
⋃
∅⊂U⊆A(Π),u∈U λ(u, U) .

These nogoods ultimately establish a one-to-one correspondence between answer sets
and solutions.

Theorem 1. Let Π be a weight constraint program and X ⊆ A(Π). Then, X is an
answer set of Π iff there is a (unique) solution A for Ω(Π) ∪∆(Π) ∪Λ(Π) such that
AT ∩A(Π) = X .

The basic clasp algorithm, relying on conflict-driven learning [5, 6], has been de-
scribed in [8], and its global structure remains unaffected if the nogoods to work with
are exchanged. However, the identification of unfounded sets, described in [10] for dis-
junctive offspring claspD, needs to be adapted to weight constraint programs. We thus
provide the logics of a dedicated unfounded set checking algorithm in Algorithm 1;
its implementation in clasp will be described in Section 4. Given a program Π and an
assignment A, we assume that there is a predefined set Do ⊆ A(Π) of atoms to inves-
tigate. Furthermore, each atom a ∈

⋃
r∈Π A(H(r)) has a source pointer [2], denoted

by sp(a), to a weight constraint B(r) such that A(H(r)) = {a} for some r ∈ Π;
a source pointer sp(a) has an associated set sp(a)# of atoms considered as not be-
longing to any unfounded set U ⊆ A(Π) \AF. Finally, for every a ∈ A(Π), number
c(a) denotes a strongly connected component C of the positive atom dependency graph
of Π , defined by (A(Π), {(a, b) | r ∈ Π,A(H(r)) = {a}, b ∈ A(B(r)+)}); atoms a
of trivial strongly connected components (without edges) are identified by c(a) = 0.
As pointed out in [2], unfounded set checking can be localized to non-trivial strongly



Algorithm 1: UNFOUNDEDSET

Input : A weight constraint program Π and an assignment A.
Output : An unfounded set for Π wrt A.

Do ← Do \AF1

Add ←
˘
a ∈ A(Π) \ (AF ∪Do) | c(a) 6= 0, sp(a) ∈ AF

¯
2

repeat3
Do ← Do ∪Add4

foreach a ∈ A(Π) such that sp(a)# ∩Add 6= ∅ do sp(a)# ← sp(a)# \Add5

Add ←
˘
a ∈ A(Π) \ (AF ∪Do) | c(a) 6= 0, Σ[{n ∈ sp(a)− | A(n) /∈ AT} ∪6

{p ∈ sp(a)+ | A(p) /∈ AF, c(A(p)) 6= c(a) or A(p) ∈ sp(a)#}] < lb(sp(a))
¯

until Add = ∅7

while Do 6= ∅ do let a ∈ Do in8
U ← {a}9
repeat10

B ←
˘
B(r) | r ∈ Π,A(H(r)) ∩ U 6= ∅, Σ[{n ∈ B(r)− | A(n) /∈ AT} ∪11

{p ∈ B(r)+ | A(p) /∈ AF ∪ U}] ≥ lb(B(r)), B(r) /∈ AF
¯

if B = ∅ then return U12
else letW ∈ B in13

S ← {s ∈ A(W+) ∩Do | c(s) = c(a)}14

if Σ[{n ∈ W− | A(n) /∈ AT} ∪ {p ∈ W+ | A(p) /∈ AF ∪ S}] ≥ lb(W)15
then

if {s ∈ A(W+) | c(s) = c(a)} 6= ∅ then16
W# ← {s ∈ A(W+) | c(s) = c(a), s /∈ AF ∪ S}17

foreach u∈U such that {r∈Π | A(H(r))={u}, B(r)=W} 6= ∅ do18
sp(u)←W19
U ← U \ {u}20
Do ← Do \ {u}21

else U ← U ∪ S22

until U = ∅23

return ∅24

connected components (SCCs) without sacrificing soundness. In turn, we require as an
invariant that (A(Π), {(a, b) | a ∈ A(Π), c(a) 6= 0, b ∈ sp(a)#}) is an acyclic graph
(viz., all of its SCCs must be trivial). We then skip unfounded set checks for a as long
as sp(a) /∈ AF and Σ[{n ∈ sp(a)− | A(n) /∈ AT} ∪ {p ∈ sp(a)+ | A(p) /∈ AF,
c(A(p)) 6= c(a) or A(p) ∈ sp(a)#}] ≥ lb(sp(a)), which means that some acyclic
justification exists for a so that it cannot be unfounded.

The main clasp algorithm [8] triggers propagation, which includes unfounded set
checks, after every heuristic decision. We assume that Do is empty when a heuristic
decision is made, and repeated calls to UNFOUNDEDSET may successively fill it with
atoms to check for unfoundedness. As a matter of fact, atoms falsified by unit propaga-
tion can be excluded and are thus eliminated in Line 1 of Algorithm 1. Non-false atoms
whose source pointers have been falsified are scheduled for an unfounded set check in



Line 2 and 4; note that such atoms a must belong to non-trivial SCCs of the positive
atom dependency graph ofΠ (c(a) 6= 0). The purpose of Line 6 is to iteratively identify
atoms a such that sp(a) /∈ AF, while the existence of an acyclic justification is still not
guaranteed. Iteration is needed because, in Line 5, possible occurrences of atoms that
got into the scope of unfounded checks are removed from sp(a)#, so that a previously
known acyclic justification for a may be put into question.

Having collected all non-false atoms that possibly are unfounded, the loop in
Line 8–23 tries to re-establish acyclic justifications for the atoms in Do, starting from
one atom a at a time and filling a potential unfounded set U . In Line 11, we determine
all non-false weight constraints whose lower bounds can be reached via non-false lit-
erals outside U and that thus may be usable to justify an atom in U . Conversely, if no
such weight constraint exists, we have identified a nonempty unfounded set U and re-
turn it in Line 12. The propagation routine [8] of clasp will then take care of falsifying
all atoms in U before the next call to UNFOUNDEDSET. If U is not (yet) unfounded, in
Line 13, we pick an arbitrary weight constraintW whose bound can be reached with-
out using U ; and in Line 14, we determine all possibly unfounded atoms in W from
the same (non-trivial) SCC as the initial atom a. The fact that only such atoms may
be used to extend U in Line 22 exhibits the localization of unfounded set checks to
SCCs. However, we only extend U if the addition makes the sum of non-false literals’
weights from outside U drop below the lower bound of W , as checked in Line 15. If
the latter is not the case, we are sure that some atoms in U have an acyclic justification
viaW , and such atoms cannot belong to an unfounded set. Furthermore, the atoms in
A(W+) from the SCC of a that are already acyclicly justified can be memorized inW#

(Line 16–17). As long as the justifications or the source pointers, respectively, of these
atoms do not change, this helps to avoid further (unsuccessful) unfounded set checks
(cf. the condition in Line 6) for the atoms in U justified viaW in Line 19. Finally, the
acyclicly justified atoms are removed from the unfounded set U to be computed as well
as from the scope Do of unfounded set checks (Line 20–21).

Notably, source pointers enable lazy unfounded set checking, performed only in
reaction to changes in assignment A. Beyond that, a second major benefit is backtrack-
freeness. In fact, source pointers are still valid after backtracking, even though they
might be set differently than in the state when A has previously been extended. How-
ever, only the existence of some acyclic justification for every non-false atom is impor-
tant, while it is unnecessary to pick or reconstruct a specific one. The implementation
of source pointers in clasp, described in the next section, follows this principle and does
not reset source pointers upon backtracking (or backjumping, respectively).

4 Implementation of Weight Constraints in clasp

This section is dedicated to the implementation of weight constraints within the conflict-
driven ASP solver clasp. Note that in clasp normal rules are not handled as described
above. Instead, unit propagation on normal rules is applied by means of the more ef-
ficient, backtrack-free Two-Watched-Literals algorithm [11]. However, the dedicated
treatment of weight constraints enables clasp to handle them natively, without relying
on any transformation (cf. the comparison in Section 5).



Unit Propagation. The number of nogoods for a weight constraint W is in general
exponential in the size of A(W). Hence, it is impractical to explicitly construct ω(W)
and $(W). Rather, our idea is to take advantage of Proposition 1 and to capture ω(W)
and$(W) by two corresponding linear Pseudo-Boolean (PB) constraints (cf. [12]) that
must be satisfied by any solution. In terms of weight constraint notation, we have

(PBω) w′ {W = w′, ∼A(p) = W (p), A(n) = W (n) | p ∈ W+, n ∈ W−}
(PB$) lb(W) {∼W = lb(W), ` | ` ∈ W+ ∪W−}

where w′ = (Σ[W+ ∪W−]− lb(W)) + 1. The first PB constraint (PBω) is obtained
from Proposition 1.1; it is satisfied by an assignment iff all nogoods in ω(W) are satis-
fied. The same holds for (PB$), obtained from Proposition 1.2, and nogoods in$(W).
Note thatW can be assigned to false, while (PBω) and (PB$) must always be satisfied.

For a PB constraintW (a true weight constraint) and an assignment A, let T ,U ,F
denote the literals ofW+∪W− being true, unassigned, and false in A. Then,W is unit
when Σ[W+ ∪W−]−Σ[F ] < lb(W)+W (`) for W (`) = max{W (`′) | `′ ∈ U} and
` ∈ U . In this case,W implies `, and the implying assignment is F . Unit propagation
for PB constraints can be implemented using the following procedure:

1. Initialize a counter SW to Σ[W+ ∪W−].
2. Whenever a literal ` inW+ ∪W− becomes false, set SW to SW −W (`).
3. If SW < lb(W) + max{W (`′) | `′ ∈ U}, set each literal ` ∈ U to true whose

weight W (`) satisfies the condition W (`) > SW − lb(W).

The clasp implementation allows for arbitrary Boolean constraints through an ab-
straction similar to the one in [13]. Each concrete constraint type must implement func-
tions for propagation and calculation of reasons. Also, functions for simplifying the
constraint and for updating the constraint on backtracking can be specified but are not
mandatory. Another important abstraction used in clasp is that of a watch list. For each
literal l, a list is maintained storing constraints that need to be updated when l becomes
true. Each individual entry in a watch list stores (a reference to) a constraint and an in-
teger. A constraint can use the integer, passed as an argument to its propagate function,
to associate data with the watched literal, e.g., the literal’s position in the constraint.

Based on these abstractions, we implemented a constraint type WC, combining unit
propagation on (PBω) and (PB$) for a weight constraintW . Observe that one of the
two PB constraints is obsolete once W is assigned. Also, the literals of (PBω) and
(PB$) differ only in their signs. Their weights are identical, as one can simply set the
weight ofW to max{w′, lb(W)} in both constraints without affecting satisfiability.

In the following algorithms, we use symbols true and false to refer to assigned truth
values. In addition to primitive types like int, we use the following abstract data types:

Lit The type of (signed Boolean) literals. A literal instance has three fields: a variable
index, a sign flag, and a watched flag. The variable index stores the underlying
variable of a literal. The sign flag indicates whether the variable is negated. The
operator ¬() returns the complement of a literal l and, given an integer i, the
expression l*i returns ¬l if i < 0 and l otherwise.

Vec<T> A dynamic array of type T. Given a Vec<T> v of size n, the element at
position 1 ≤ i ≤ n is accessed via v[i].



Algorithm 2: WC::propagate(Lit p, int wd, Solver s)
Input : A watched literal that became true, the data

associated with the watch, and a solver object.
int ac = sign(wd) /* get affected constraint and */1
Lit W = lits[1]*ac /* associated constraint literal */2
if s.isTrue(W) || active+ac == 0 then3

return NO CONFLICT /* constraint is satisfied or other is active */4

int idx = abs(wd) /* index of ¬p */5
C(ac) = C(ac)-weight(idx)6
lits[idx].watched = false /* mark as processed */7
trail.push(wd) /* remember for backtracking */8
while umax ≤ lits.size() && weight(umax) > C(ac) do9

if lits[umax].watched then10
active = ac /* mark constraint as active */11
trail.push(umax*ac)12
Lit x = lits[umax]*ac13
if not s.force(x,this) then14

return CONFLICT15

++umax16

return NO CONFLICT17

The type WC has the following fields:

lits Stores the literals of (PB$) ordered by decreasing weight. The weight of ¬W
is set to max{w′, lb(W)}, and hence lits[1] stores ¬W .1 The literals of (PBω)
are accessed by multiplying the literals in lits with -1.

active An integer denoting whether both (PBω) and (PB$) are relevant (0), only
(PBω) is relevant (-1), or only (PB$) is relevant (1) under the current assignment.

Cω A counter initialized to Σ[lits]− lb(PBω).
C$ A counter initialized to Σ[lits]− lb(PB$).
umax The index of the literal with the greatest weight not yet (known to be) assigned.
trail A queue of assigned literals used for backtracking and computing reasons.

Initially, active is 0, umax is 1, and the trail is empty. Also, we add watches
(¬li, i) and (li,−i) for all literals li in lits and set the watched flags of the literal
instances to true. For example, considerW = 4 {a=3, c=2,∼d=1,∼e=3}. In this
case, lits is [¬W=6, a=3,¬e=3, c=2,¬d=1]. Moreover, C$ is 11, Cω is 9, and
we add watches (W, 1), (¬a, 2), . . . , (d, 5) and (¬W,−1), (a,−2), . . . , (¬d,−5).

Algorithm 2 shows the procedure for propagating a weight constraint, triggered
when one of the watched literals becomes true. Staying with the example, assume that
a is set to true. Then, Algorithm 2 is called with p = a and wd = −2. From the
sign of wd, we determine the affected PB constraint, i.e., (PB$) if wd > 0 and (PBω)
if wd < 0. Since W is not yet assigned and active is 0, (PBω) is relevant under

1 We assume that for all literals ` in a weight constraintW , we have W (`) ≤ lb(W). Weights
greater than the lower bound are replaced with the bound in a preprocessing step.



Algorithm 3: WC::reason(Lit p, Vec<Lit> out)
Input : A literal propagated by this constraint.
Output: A set of true literals implying p.

foreach int d ∈ trail do1
if sign(d) == active then2

int idx = abs(d)3
Lit x = lits[idx]*active4
if not lits[idx].watched then out.push(¬x)5
else if x == p then break6

the current assignment, and so we decrease Cω by 3 (the weight of a) in Line 6. We
then set the watched flag of the literal instance to false to indicate that the respective
counter was updated. Also, we push wd to the trail so that we can suitably increase
Cω again on backtracking and to compute reasons for assignments. Finally, given that
lits[umax]=¬W and weight(umax)= 6=Cω , the while loop in Line 9–16 is
skipped. Next, assume that c becomes false. Hence, wd = 4, and the affected constraint
is (PB$). Since (PB$) is also not yet unit, no new assignments are derived. Finally,
assume that d is assigned to false. From wd = −5, we again extract (PBω) as the
affected PB constraint, and after decreasing Cω to 5, we have weight(umax)>Cω .
That is, the constraint is now unit so that the while loop is entered in Line 9. The loop
considers only literal instances whose watched flags are true, while other literals were
already processed. Since lits[1] has its watched flag set, the condition in Line 10 is
satisfied, (PBω) is marked as active, and W is forced to true. Note that lits[1] is
¬W , but after multiplying with -1 (the active constraint), we correctly getW . As men-
tioned before, lits is ordered by decreasing weight. Thus, after umax is increased, it
points to a (the literal with the next greatest weight to consider), and as 3 ≤ 5 = Cω ,
propagation stops. When Algorithm 2 is then called forW and wd = 1, the condition
in Line 3 is true (active is -1 and ac is 1), i.e., nothing needs to be done.

Conflict-Driven Nogood Learning. The CDNL algorithm [8] of clasp applies the com-
mon First-UIP scheme [5, 6] for resolving conflicts. The procedure starts with a violated
nogood δ and resolves literals out of δ until only one literal assigned at the current de-
cision level remains. For this to work, each concrete constraint type must implement a
procedure, which, given a literal p implied by a constraint of that type, returns a set of
(true) literals implying p. Algorithm 3 shows this procedure for weight constraints.

The idea is to dynamically extract a nogood from either ω(W) or$(W), depending
on the currently active PB constraint. Reconsider the previous example and assume
that Algorithm 3 is called with p = W . The constraint’s trail is [−2, 4,−5,−1],
and the active constraint (-1) is (PBω). Then, element 4 is skipped because it was
not added by the active PB constraint (cf. Line 2). For the other elements, we check
whether the corresponding literal instances still have their watched flags set. If not, the
element corresponds to a literal that is false in the active constraint and thus belongs
to the implying assignment. Otherwise, the literal is true and was forced by the active
constraint. We also push such implied literals to the trail (cf. Line 12 in Algorithm 2)



because a weight constraint can become unit multiple times, and in that case only the
false literals assigned earlier are part of the implying assignment. For the example, we
add a and ¬d to out, but not W , because the watched flag of lits[1] is still set.
Furthermore, since p =W , the condition in Line 6 is true, and the extracted nogood is
{FW,Ta,Fd} ∈ ω(W). Accordingly, the fact that a is true and d is false provides a
reason forW being true.

When a conflict is resolved and one or more decision levels are removed, constraint
types implementing an undo function are notified. The corresponding procedure for
weight constraints pops entries corresponding to unassigned literals from the trail,
again using the sign of a stored integer to determine the affected PB constraint and
the watched flag to distinguish a processed from an implied literal. Counters are only
increased for the former, and the watched flag is then set back to true to indicate that
the corresponding literal contributes again to the respective counter value. If the literal
with the greatest weight, viz., ¬W , is unassigned, the constraint can no longer be unit,
and hence active is set back to 0. Otherwise, active is left unchanged, meaning
that the previously active PB constraint stays in effect. Finally, umax is set back to the
index of the unassigned literal with the greatest weight.

Unfounded Set Checking. A second set of data structures is used for representing
the atoms and rule bodies that need to be considered during unfounded set checking
(and extraction of loop nogoods). This is motivated by the fact that only the non-
trivial SCCs of a program’s positive atom dependency graph are relevant during un-
founded set checks. For a program Π , clasp’s unfounded set checker stores the set
{a ∈ A(Π) | c(a) 6= 0} as Atom instances. For an atom a in that set, the correspond-
ing Atom instance contains:

scc the atom’s component number c(a),
ps its set of possible sources {B(r) | r ∈ Π,A(H(r)) = {a}},
pos the set of rule bodies {B(r) | r∈Π, a∈B(r)+, A(H(r)) = {a′}, c(a′) = c(a)},
source (a pointer to) its current source sp(a) ∈ ps, and
vs a flag indicating whether source is currently valid. Initially, vs is set to false and

a is added to Do (cf. Algorithm 1).

The set of (distinct) weight constraints {B(r) | r ∈ Π,A(H(r)) = {a}, c(a) 6= 0}
is represented by instances of type Body. For a weight constraint W in that set, the
corresponding Body instance stores:

scc the body’s component number, c(W), that is set to c(a) if there is some r ∈ Π
such that A(H(r)) = {a}, B(r) =W , and {b ∈ A(W+) | c(b) = c(a) 6= 0} 6= ∅,
or to 0 otherwise.2

extern its “external” literals {p ∈ W+, n ∈ W− | c(A(p))=0 or c(A(p)) 6=c(W)},
intern its “internal” literals {p ∈ W+ | c(A(p)) = c(W) 6= 0},
heads its “heads” {a | r ∈ Π,A(H(r)) = {a}, B(r) =W, c(a) 6= 0}, and
C a counter initialized to lb(W)−Σ[extern].

2 Note that c(W) is unique. If r1, r2 ∈ Π with B(r1) = B(r2) = W , A(H(r1)) = {a1},
A(H(r2))={a2}, c(a1)=c(b1) 6=0, c(a2)=c(b2) 6=0 for b1, b2 ∈ W+, then c(a1)=c(a2).



Algorithm 4: findSource(Atom a)

Set<Atom> T = {a}, U = ∅1
while T\U != ∅ do let Atom a ∈ T\U in2

U = U ∪ {a}3
foreach Body B ∈ a.ps do4

if B ∈ AF then continue5
else if B.scc != a.scc || B.C ≤ 0 || B.update() then6

a.source = B7
Set<Atom> S = {a}8
while S != ∅ do let Atom a ∈ S in9

S = S\{a},T = T\{a},U = U\{a},Do = Do\{a}10
foreach Body B ∈ a.pos do B.atomSourced(a,S)11

break12

else B.addUnsourced(T)13

return U14

Again, we use the watched flags of the literal instances in B.extern and B.intern,
for an instance B of Body, to distinguish the literals that currently contribute to the
value of B.C from the rest. That is, initially all literals in B.extern have their watched
flags set to true, while those in B.intern have them set to false. Logically, the literals
in B.intern whose watched flags are true correspond to the atoms in B#. Further-
more, B is a valid source for an atom a in B.heads if B is not false and B.C ≤ 0 or
B.scc 6= a.scc. In order to efficiently detect when one of the first two conditions is
violated, we use watches for B as well as literals in B.extern and B.intern. Dur-
ing unit propagation, if a literal l in B.extern or B.intern whose watched flag is
set becomes false, B.C is increased by weight(l), and l’s watched flag is set to false.
In addition, invalidated sources are accumulated. Note that B.C is not updated during
backtracking, but only during unfounded set propagation (see below).

Once unfounded set propagation begins, invalidated sources are used to initialize
Add (cf. Algorithm 1). That is, we add all (non-false) atoms to Add whose sources are
invalid. If a.vs is true for an atom a included in Add , we set it to false and propagate
the removal of the source pointer by notifying all bodies in a.pos. Each affected body
B then checks whether a currently belongs to B#, i.e., whether a in B.intern has
its watched flag set. In this case, the watched flag is set to false, and B.C is increased
accordingly. Since this may invalidate B, the whole process is repeated until no more
atoms are added to Add (and Do).

Following the idea of Algorithm 1, we then try to re-establish acyclic justifications
for the atoms in Do, where Line 9–23 of Algorithm 1 are implemented as in Algo-
rithm 4. The abstract data type Set<Atom> refers to the mathematical concept of a set
(of Atom instances) along with operations on them. The atoms in T are considered in
turn. That is, in each iteration of the loop starting in Line 2, one atom a is selected and
added to a set U. Then, all non-false bodies B in a.ps are inspected. At this point, B is
updated only if it is currently not a valid source for a. That is, if B.scc = a.scc and
B.C > 0, B.update() checks for literals in B.extern and B.intern that are



neither false nor have their watched flags set. If such a literal is found in B.extern,
its watch flag is set and B.C is decreased by the literal’s weight. For such a literal
in B.intern, the same is done only if the corresponding atom currently has a valid
source pointer. If even after updating B is not a valid source, T is extended with non-
false atoms in B.intern lacking a valid source (Line 13). This is similar to Line 22
of Algorithm 1. In particular, since at this point B.scc is always equal to a.scc,
the same localization to SCCs is achieved. On the other hand, if B is a valid source,
it is used as new source for a, and the new source pointer is propagated by notifying
all bodies in a.pos. Each affected body B that is currently not a valid source checks
whether adding a to B# turns it into a valid source. If so, non-false atoms in B.heads
currently lacking a source are added to S. Thus, source pointer propagation is iterated
until S is finally empty. Furthermore, atoms for which a new source pointer has been set
are removed from T, U, and Do. Note that both during updates and source pointer prop-
agation, B# is extended only if B is not (yet) a valid source. This way, it is guaranteed
that atoms added to B# are acyclicly justified independently of B. Finally, once T \U is
empty, all potential sources were inspected. Any remaining atoms in U are unfounded
wrt the current assignment and are returned in Line 14.

Note that, for bodies of normal rules and weight constraintsW with c(W)=0, the
set of “external” literals is not relevant during unfounded set checking, and only the
truth values of such bodies or weight constraints, respectively, are considered. Also, for
bodies of normal rules, no (additional) watches are needed for body literals because unit
propagation already falsifies such a body whenever one of its literals becomes false.

5 Experiments

We implemented our approach within the ASP solver clasp (1.2.0). Our experiments
consider clasp (in its default configuration) using three different ways of treating weight
constraints: (a) standard setting, using the described approach; (b) with (quadratic)
transformation of weight constraints (cf. [7]); (c) with selective transformation of
weight constraints. Variant (c) applies strategy (b) to weight constraints with lower
bound 1 and whenever the number of resulting nogoods is smaller than 16, otherwise
it applies strategy (a). We also consider smodels (2.33 with option -restart3) and
cmodels (3.78) because of their distinct treatment of weight constraints. The full ex-
periments, additionally including pbmodels, smodelscc, as well as smodels without
lookahead, are given at [14] (see also below). We conducted experiments on a vari-
ety of benchmarks taken from the SLparse category of the first ASP system competi-
tion.4 Among them, BlockedNQueens, BoundedSpanningTree, and SocialGolfer com-
prise choice and cardinality rules, while TravelingSalesperson, WeightedLatinSquare,
and WeightedSpanningTree contain also weight rules. In addition, we consider a hand-
crafted benchmark, ExtHamPath, possessing non-trivial unfounded sets due to recursive
cardinality constraints. Each of the benchmark sets consists of five instances.5

3 This variant of smodels performed best on our benchmarks.
4 http://asparagus.cs.uni-potsdam.de/contest
5 All benchmarks are available at [14].



Benchmark clasp (a) clasp (b) clasp (c) cmodels smodels
BlockedNQueens 34.01(0) 70.11(0) 49.70(0) 570.20(0) 363.42(1)
BoundedSpanningTree 8.12(0) 9.94(0) 8.16(0) 19.53(0) 1381.98(4)
SocialGolfer 601.79(3) 606.13(3) 604.23(3) 1035.77(5) 1802.65(9)
TravelingSalesperson 2.17(0) 140.02(0) 1.40(0) 2195.75(6) 21.63(0)
WeightedLatinSquare 0.06(0) 0.59(0) 0.10(0) 1.19(0) 1700.90(2)
WeightedSpanningTree 5.08(0) 5.93(0) 5.67(0) 11.40(0) 953.97(2)
ExtHamPath 10.64(0) 84.72(0) 18.25(0) 28.67(0) 2223.28(6)
Σ(Σ) 661.87(3) 917.44(3) 687.51(3) 3862.51(11) 8649.47(24)

Table 1. Benchmark results on a 3.4GHz PC under Linux, each run restricted to 600s and 1GB.

Table 1 summarizes our results by giving the sum of runtimes obtained on the five
instances in each benchmark set; each instance is measured by taking the average over
three shuffles obtained with ASP tools from TU Helsinki.6 A timeout is accounted for
by the maximum time of 600s, and timeouts are also indicated in parentheses. We men-
tion that pbmodels with minisat+ and satzoo yields 6925.55(32) and 9954.02(36) in
total, respectively; smodels without lookahead takes 13141.25(61).

Looking at BlockedNQueens and TravelingSalesperson, we observe a drastic effect
through a dedicated treatment of cardinality and weight constraints. While instances of
the former contain many relatively large cardinality constraints, instances of the latter
contain a single weight constraint with 600 literals. In clasp (b), this leads to an exten-
sion of programs by over 600000 normal rules and more than 300000 auxiliary atoms.
As a consequence, both transformation-based approaches, clasp (b) and cmodels, are
outperformed by orders of magnitude by clasp (a/c) and smodels. Unlike this, Bound-
edSpanningTree and SocialGolfer include only a few small to midsize cardinality rules
and so produce almost no overhead on transformation-based approaches. The same ap-
plies to WeightedLatinSquare and WeightedSpanningTree as regards the transformation
of weight constraints. In contrast to the benchmarks from the SLparse category, Ext-
HamPath contains many small yet recursive cardinality rules inducing a large positive
dependency graph and many non-trivial unfounded sets. We attribute smodels’ poor per-
formance on this benchmark to exhaustive lookahead operations. Given that the small
size of cardinality constraints puts the remaining approaches on equal footing, the cus-
tomized unfounded set algorithm in clasp (a) shows a decent performance.

Our experiments demonstrate that the combination of conflict-driven learning with a
dedicated treatment of weight constraints has an edge over either singular approach. Al-
though the overhead of a dedicated treatment seems disadvantageous on small weight
constraints, the hybrid approach of clasp (c) does not improve on the overall perfor-
mance of the fully dedicated one, viz., clasp (a).

6 Discussion

We presented a comprehensive approach to integrating weight (and cardinality) rules
into conflict-driven ASP solving, utilizing a nogood-based characterization of answer

6 http://www.tcs.hut.fi/Software/asptools



sets to specify (unit) propagation over weight rules. To be precise, we established a
one-to-one correspondence between the answer sets of a weight constraint program
and the solutions for the nogoods induced by the program. In view of the exponential
number of loop nogoods, we developed a dedicated, source-pointer-based unfounded
set checking algorithm that computes loop nogoods only on demand, while aiming at
lazy unfounded set checking and backtrack-freeness. Similarly, we are faced with an
exponential number of nogoods stemming from weight constraints, although language-
extending, quadratic representations exist. Unlike this, we advocate a dedicated treat-
ment of weight constraints, akin to the one used in smodels yet extended to conflict-
driven learning and backjumping. We developed our computational approach from the
semantic foundations laid in Section 3. Our design is guided by two Pseudo-Boolean
constraints that must be satisfied by any solution. In view of this, Section 4 provided a
rather detailed account of the key features of the weight constraint implementation in
clasp. Our experiments show that our dedicated approach to handling weight constraints
is competitive and does not seem to produce significant overhead on benchmarks with
only small constraints, putatively favoring transformation techniques.
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