
Multi-Criteria Optimization in Answer Set
Programming

Martin Gebser and Roland Kaminski and Benjamin Kaufmann
and Torsten Schaub

Institut für Informatik, Universität Potsdam

Abstract
We elaborate upon new strategies and heuristics for solving multi-criteria optimization problems via An-
swer Set Programming (ASP). In particular, we conceive a new solving algorithm, based on conflict-
driven learning, allowing for non-uniform descents during optimization. We apply these techniques to
solve realistic Linux package configuration problems. To this end, we describe the Linux package config-
uration tool aspcud and compare its performance with systems pursuing alternative approaches.

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.3 Deduction and Theorem Proving,
I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Answer Set Programming, Multi-Criteria Optimization, Linux Package Con-
figuration

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Solving multi-criteria optimization problems is of great interest in various application domains
because it allows for identifying the best solutions among all feasible ones. The quality of a solution
is often associated with costs or rewards subject to minimization and/or maximization, respectively.

As detailed in the extended version of this paper (cf. [8]), we are interested in solving Linux
package configuration problems by appeal to the multi-criteria optimization capacities of Answer Set
Programming (ASP; [3]). To this end, we develop novel general-purpose strategies and heuristics
in the context of modern (conflict-driven learning) ASP solving [10]. In particular, we conceive a
new optimization algorithm allowing for non-uniform descents during optimization. In multi-criteria
optimization, this enables us to optimize criteria in the order of significance, rather than pursuing a
rigid lexicographical descent. We illustrate the impact of our contributions by appeal to the Linux
package configuration tool aspcud and its performance in comparison with alternative approaches.

Pioneering work in this area was done by Tommi Syrjänen in [15, 16], using ASP for representing
and solving configuration problems for the Debian GNU/Linux system. In fact, ASP allows for
defining such problems through sequences of cost functions represented by (multi)sets of literals
with associated weights. For instance, in the approach taken by smodels [13], cost functions are
expressed through a sequence of #minimize (and #maximize) statements. Optimal models are
then computed via a branch-and-bound extension to smodels’ enumeration algorithm. Similarly,
dlv [11] offers so-called weak constraints, serving the same purpose.

2 Background

The semantics of a (ground extended) logic program Π is given by particular models, called answer
sets; see [13] for details. In addition to rules, Π can contain #minimize statements of the form

#minimize[`1 = w1@L1, . . . , `n = wn@Ln].
© Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub;
licensed under Creative Commons License NC-ND

International Conference of Logic Programming.
Editors: Michael Gelfond, John Gallagher; pp. 1–10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Multi-Criteria Optimization in Answer Set Programming

Besides literals `i and integer weights wi for 1 ≤ i ≤ n, a #minimize statement includes integers
Li providing priority levels [9]. The #minimize statements in Π distinguish optimal answer sets
of Π in the following way. For any set X of atoms and integer L, let ΣX

L denote the sum of weights
wi such that `i = wi@L occurs in some #minimize statement in Π and `i holds wrt X . We also call
ΣX

L the utility of X at priority level L. An answer set X of Π is dominated if there is an answer set Y
of Π such that ΣY

L < ΣX
L and ΣY

L′ = ΣX
L′ for all L′ > L, and optimal otherwise. Note that greater

priority levels are more significant than smaller ones, which allows for representing sequences of
several optimization criteria. Finally, letting `i denote the complement of a literal `i, the following can
be used as a synonym for a #minimize statement: #maximize[`1 = w1@L1, . . . , `n = wn@Ln].

3 Multi-Criteria Optimization Algorithm

As detailed in [13], #maximize statements can be turned into #minimize statements, literals with
negative weights be transformed such that weights become positive, and multiple priority levels
be collapsed into a single one by scaling the weights of literals, where all such transformations
keep the optimal answer sets intact. However, while the elimination of #maximize statements and
negative weights can be done locally, collapsing priority levels may lead to very large weights and also
disguises an original multi-criteria optimization problem. Hence, we assume here that optimization
criteria are represented in terms of a #minimize statement over literals associated with non-negative
weights and, notably, priority levels; i.e., priorities are not eliminated. The restriction to non-negative
weights has the advantages that the sum of weights is monotonically increasing the more literals are
assigned to true and that 0 is a (trivial) lower bound of the optimum at each priority level.

As mentioned in the introduction, multi-criteria optimization can in principle be accomplished
by extending a standard enumeration algorithm, like the one of smodels [13], in the following way:
for every solution, memorize its vector of utilities, backtrack, and check (during propagation) that
assignments generated in the sequel induce a lexicographically smaller vector of utilities (otherwise
backtrack). This simple approach requires only the most recent utility vector to be stored, and
optimality of the last solution is proven once the residual problem turns out to be unsatisfiable. But
the simplicity comes along with the drawback that the number of intermediate solutions, encountered
before an optimal one, is completely up to “luck” of the underlying enumeration algorithm. In fact, if
no additional measures are taken, such multi-criteria optimization is logically identical to optimization
of a single priority level along with scaled weights of literals.

The observation that plenty intermediate solutions improving only at low-priority utilities can
gravely obstruct the convergence towards a global optimum gave the main impetus to our new
approach to multi-criteria optimization in ASP. As noted in [2] for Maximum Satisfiability (MaxSAT)
and Pseudo-Boolean Optimization (PBO), a better idea is to optimize priority levels stepwise in the
order of significance, rather than to optimize all priority levels at once. Thereby, we adhere to the
strategy of successively improving upper bounds given by intermediate solutions. On the one hand,
focusing on one priority level after the other settles the issue of intermediate solutions improving only
at low-priority levels. On the other hand, it leads to the situation that, before optimization proceeds to
the next priority level, optimality at the current level must be verified by proving unsatisfiability wrt
an infeasible upper bound. Beyond the fact that accomplishing such unsatisfiability proofs can be
a bottleneck (cf. [1]), they imply that too strong bounds need to be taken back before optimization
can proceed at the next level. In particular, with solvers like clasp [10], exploiting conflict-driven
learning, also the learned constraints that rely on an infeasible upper bound must be retracted. To this
end, we make use of assumptions assigned at a solver’s root level [6], i.e., unbacktrackable literals
allowing for the selective (de)activation of constraints. In fact, a speculative upper bound is imposed
via an assumption such that a corresponding constraint is not satisfied by making the assumption.

M. Gebser and R. Kaminski and B. Kaufmann and T. Schaub 3

If the upper bound turns out to be infeasible, the respective constraint and all learned information
relying on it can then easily be discarded by irrevocably assigning the complement of the former
assumption. Likewise, if the upper bound is feasible, the former assumption can be fixed, so that
constraints involving it may be simplified and apply unconditionally in the sequel. In the following,
we detail how dedicated multi-criteria optimization can be accomplished in modern (conflict-driven
learning) Boolean constraint solvers, thereby exploiting assumptions to circumvent the need of a
relaunch after an unsatisfiability proof.

Our algorithm augmenting conflict-driven learning (cf. [5, 12]) with multi-criteria optimization is
shown in Algorithm 1. The sequence 〈L1, . . . ,Llow〉 determined in the first line contains the priority
levels of the input #minimize statement in decreasing order of significance. The counters assm,
prio, and step, initialized to 1 in the second line, are used to generate new assumptions on demand,
to identify the current priority level to be optimized, and to determine the amount by which the upper
bound ought to be decreased when a solution is found. The latter is always 1, thus yielding a linear
decrease, if the input leap flag is false, while an exponential scheme (described below) is applied
otherwise. Furthermore, the lower bound lb, set to 0 in the third line, stores the greatest value such
that unsatisfiability has been proven for smaller bounds at the current priority level. In fact, the
optimization of a priority level is finished once the utility of a solution matches the lower bound. In the
loop in Line 4–45, the optimization-specific information, kept in counters and the lower bound, is used
to guide conflict-driven search. As usual, the loop starts in Line 5 with a deterministic PROPAGATE

step, assigning literals implied by the current assignment. Afterwards, one of the following is the
case: a conflict (Line 6–23), a solution (Line 24–44), or a heuristic decision (Line 45). While the
latter simply leads to reentering the loop, the first two cases deserve more attention. We describe next
the reaction to a solution and then the one to a conflict.

Upon encountering a solution, we start by checking whether its objective value at the current
priority level provides us with a new (non-speculative) upper bound. This is clearly the case if the
current solution is the first one, as tested via assm = 1 in Line 25, and setting recd to true informs
our algorithm that the upper bound needs to be recorded before proceeding to the next priority
level. On the other hand, if a speculative upper bound ubprio−step has already been imposed, the
current solution witnesses that this bound is feasible. Hence, a respective optimization constraint
is made unconditional by fixing the former assumption αassm in Line 27. In view of this, adding
another constraint before proceeding to the next priority level is required only if the current solution’s
objective value is smaller than ubprio−step, as tested in Line 28. The sequence 〈ub1, . . . , ublow〉
of upper bounds given by the current solution is memorized in Line 30 and printed along with an
answer set of the input program Π in Line 31. Then, the loop in Line 33–37 proceeds to the next
priority level to optimize, depending on whether the condition ubprio = lb holds in Line 33. If so, it
means that the upper bound witnessed by the solution at hand matches the lower bound at a priority
level, so that no further improvement is possible. Furthermore, if the current upper bound still needs
to be recorded, a corresponding #sum constraint, as available in ASP input languages [14, 7], is
added to the constraint database of the solver in Line 34; this makes sure that future solutions cannot
exceed the lower bound lb at a forsaken priority level. Also note that lb is set to the minimum 0 in
Line 35, so that proceeding by more than one priority level is possible only if some upper bound
given by the solution at hand is trivially optimal. After finishing the loop in Line 33–37, multi-criteria
optimization has been accomplished if the test prio > low succeeds in Line 38, meaning that the
utilities 〈ub1, . . . , ublow〉 cannot be improved. Otherwise, an amount by which the current upper
bound ought to be decreased is determined in Line 39–40. If the priority level has not been changed
and the leap flag is true, we take the minimum of the double former step size and half of the gap
between the lower and upper bound as the amount by which to decrease the upper bound. This
exponential scheme aims at balancing two objectives: try to skip non-optimal intermediate solutions

ICLP’11

4 Multi-Criteria Optimization in Answer Set Programming

Algorithm 1: CDNL-OPT
Input: A logic program Π, a statement #minimize[`1 = w1@L1, . . . , `n = wn@Ln], and a flag

leap ∈ {true, false}.

1 〈L1, . . . ,Llow〉 ← 〈max({L1, . . . , Ln} \ {L1, . . . ,Lm−1})〉1≤m≤|{L1,...,Ln}|
2 assm ← prio ← step ← 1 // assumption, priority, and step counter
3 lb ← 0 // lower bound

4 loop
5 PROPAGATE // deterministically assign implied literals

6 if conflict then
7 if at root level then // unsatisfiability modulo optimization constraint
8 if assm = 1 then exit
9 ASSIGN αassm // deactivate old optimization constraint

10 lb ← (ubprio−step) + 1
11 while prio ≤ low and ubprio = lb do
12 if recd = true then ADD #sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]lb
13 lb ← 0
14 recd ← true
15 prio ← prio + 1
16 if prio > low then exit
17 step ← 1
18 assm ← assm + 1
19 ADD

(
αassm ∨#sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]ubprio−step

)
20 ASSUME αassm // activate new optimization constraint
21 else
22 ANALYZE // analyze conflict and add (violated) conflict constraint
23 BACKJUMP // unassign literals until conflict constraint is unviolated

24 else if solution then
25 if assm = 1 then recd ← true // upper bound of witness yet unrecorded
26 else
27 ASSIGN αassm // fix old optimization constraint
28 if (Σ1≤i≤n,Li=Lprio,`iassigned to true wi) < ubprio−step then recd ← true
29 else recd ← false
30 〈ub1, . . . , ublow〉 ← 〈Σ1≤i≤n,Li=Lm,`iassigned to true wi〉1≤m≤low
31 print answer set along with 〈ub1, . . . , ublow〉
32 prio′ ← prio
33 while prio ≤ low and ubprio = lb do
34 if recd = true then ADD #sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]lb
35 lb ← 0
36 recd ← true
37 prio ← prio + 1
38 if prio > low then exit
39 if prio = prio′ and leap = true then step ← min{2 ∗ step, d(ubprio−lb)/2e}
40 else step ← 1
41 assm ← assm + 1
42 ADD

(
αassm ∨#sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]ubprio−step

)
43 ASSUME αassm // activate new optimization constraint
44 BACKJUMP // unassign literals until optimization constraint is unviolated

45 else DECIDE // non-deterministically assign some literal

M. Gebser and R. Kaminski and B. Kaufmann and T. Schaub 5

while decreasing the upper bound, but do not provoke many unnecessary (and potentially hard) proofs
of unsatisfiability. Given the next step size, an optimization constraint, being the disjunction of a
fresh literal αassm and a #sum constraint enforcing the new (speculative) upper bound, is added to
the constraint database of the solver in Line 42, and αassm is assumed in Line 43, so that any further
solution must fall below the speculative upper bound ubprio−step. Finally, backjumping in Line 44
retracts literals (but not αassm assumed at the root level) in order to re-enable the search for solutions
satisfying the new optimization constraint.

In case of a conflict, we distinguish whether it is encountered at the root level or beyond it. The
latter means that the conflict is related to decisions made previously (in Line 45), so that regular
conflict analysis and backjumping (cf. [5, 12]) can in Line 22–23 be applied to identify a reason in
terms of a conflict constraint and to resume search at a point where the conflict constraint yields
an implication. On the other hand, a conflict at the root level indicates unsatisfiability. Provided
that assm = 1 does not hold in Line 8, i.e., if Π has some answer set, there is no solution meeting
the upper bound ubprio−step. This bound is imposed by the most recently added optimization
constraint, which is in Line 9 retracted by assigning αassm , thus withdrawing the former assumption
and unconditionally satisfying the optimization constraint (as well as all conflict constraints relying
on it). Furthermore, the unsatisfiability relative to the upper bound provides us with the lower bound
(ubprio−step) + 1, assigned to lb in Line 10. As in the case of a solution, the loop in Line 11–15
proceeds to the next priority level to optimize, where a gap between the lower and upper bound leaves
room for improvements. If such a level prio exists, i.e., prio > low does not hold in Line 16, the step
size is reduced to 1 in Line 17, and the next optimization constraint along with a fresh assumption are
put into effect in Line 18–20. By reducing the step size to the smallest value that would still improve
ubprio, we reset the exponential scheme applied if the input leap flag is true. This directs search to
first check whether improvements are possible at all before reattempting to decrease the upper bound
more aggressively.

Multi-criteria optimization via Algorithm 1 is implemented in clasp from version 2.0.0 on. We
do not detail the implementation here, but mention matters of interest. To begin with, note that
clasp stores a statement #minimize[`1 = w1@L1, . . . , `n = wn@Ln] in a single optimization
constraint, using as data-structure a two-dimensional array of size |{L1, . . . , Ln}| ∗ |{`1, . . . , `n}|
with w1, . . . , wn as its (non-zero) entries. Furthermore, the vector 〈ubm〉1≤m≤|{L1,...,Ln}| of upper
bounds is initialized to 〈∞m〉1≤m≤|{L1,...,Ln}| and then updated whenever a solution is found. For
one, this permits to accomplish the simple approach to multi-criteria optimization, described at the
beginning of this section, via lexicographic comparisons without scaling weights in view of priority
levels. For another, dedicated multi-criteria optimization wrt a current priority level prio merely
requires to (temporarily) ignore upper bounds at less significant priority levels, thus providing easy
means to strengthen the readily available optimization constraint by subtracting the value of step
from ubprio (cf. Line 19 and 42 of Algorithm 1). To further facilitate such steps, clasp includes
a single assumption α in its optimization constraint and, for the most significant priority level
L = max{L1, . . . , Ln}, sets the weight w@L of α to (

∑
1≤i≤n,Li=L wi) + 1. This makes sure that

α belongs to every conflict constraint relying on the optimization constraint, so that these conflict
constraints can be fixed (by discharging α) or withdrawn, respectively, immediately upon encountering
either a solution or a conflict. To this end, clasp invokes the method strengthenTagged() when
a solution is found and removeTagged() when a root-level conflict occurs, while keeping the
assumption α in place at the root level; applying either method turns α into a fresh assumption without
presuming any particular solver state, as otherwise required when performing constraint database
simplifications.

The command-line parameters --opt-hierarch and --opt-heuristic allow for con-
figuring (multi-criteria) optimization in clasp. If the value 0 is provided for the former, simple

ICLP’11

6 Multi-Criteria Optimization in Answer Set Programming

lexicographic optimization (without assumptions) is applied, while 1 and 2 switch to Algorithm 1
with the leap flag set to false and true, respectively. Furthermore, --opt-heuristic determines
how #minimize statements are taken into account in clasp’s decision heuristics (Line 45 of Algo-
rithm 1). While 0 falls back to the default heuristic, a static sign heuristic, preferably falsifying literals
that occur in a #minimize statement, is applied for 1. Value 2 switches to a dynamic heuristic
that, after a solution has been found, falsifies its literals in a #minimize statement until a conflict
is encountered. Finally, 3 combines 1 and 2, thus falsifying literals subject to minimization if a
respective variable is selected, while also picking such variables after a solution has been found
(until hitting a conflict). The additional parameter --restart-on-model is a prerequisite for the
values 2 and 3 to be effective; without it, they drop down to 0 and 1, respectively.

4 Experiments

We developed the tool aspcud1 applying our approach to multi-criteria optimization in ASP to
Linux package configuration. At the start, aspcud translates a package configuration problem in
Common Upgradability Description Format (CUDF; [17]) into ASP facts, described in the extended
version of this paper [8]. The translation involves mapping CUDF package formulas to sets of
packages (clauses) and tracing virtual packages that cannot directly be installed back to packages
that implement them. Such flattening makes the problem encoding (cf. [8]) in ASP more convenient.
Beyond syntactic simplifications, the translation by aspcud also exploits optimization criteria and
package interdependencies to reduce the resulting ASP instance.

As ASP tools, aspcud (version 1.3.0) exploits gringo (version 3.0.3) for grounding and clasp
(version 2.0.0-RC2) for solving. To illustrate the impact of the strategies and heuristics supported
by clasp, our experiments consider several variants of it. Three settings are obtained by configuring
--opt-hierarch with the values described above, indicated by a subscript:

clasp0: optimizing whole utility vectors (as described at the beginning of Section 3 and imple-
mented also in smodels as well as clasp versions below 2.0.0),
clasp1: applying Algorithm 1 with the leap flag set to false, and
clasp2: applying Algorithm 1 with the leap flag set to true.

We further combine each claspi (i ∈ {0, 1, 2}) with optimization-oriented heuristics, activated by
setting --opt-heuristic to the value indicated by a superscript:

clasp0
i : applying no optimization-specific decision heuristic,

clasp1
i : applying the static sign heuristic to falsify literals of a #minimize statement,

clasp2
i : after a solution has been found, falsifying literals of a #minimize statement until a

conflict is encountered, and
clasp3

i : combining the sign heuristic of clasp1
i with the dynamic approach of clasp2

i .
We thus obtain twelve variants of clasp, each invoked with the (additional) command-line param-
eters --sat-prepro, --heuristic=vsids, --restarts=128, --local-restarts,
and --solution-recording, which turned out to be helpful on large underconstrained opti-
mization problems confronted in Linux package configuration. As mentioned above, clasp2

i and
clasp3

i further require --restart-on-model to be effective, and we indicate the use of this
parameter by writing claspj

i -r, where “-r” is mandatory for j ∈ {2, 3} and optional for j ∈ {0, 1}.
The reasonable combinations of the variable options amount to 18 variants of clasp to perform the
optimization within aspcud.

1 http://www.cs.uni-potsdam.de/wv/aspcud

http://www.cs.uni-potsdam.de/wv/aspcud

M. Gebser and R. Kaminski and B. Kaufmann and T. Schaub 7

For comparison, we also consider the package configuration tools cudf2msu2 (version 1.0),
cudf2pbo3 (version 1.0), and p2cudf 4 (version 1.11). The PBO-based approaches of cudf2pbo and
p2cudf are closely related to multi-criteria optimization in ASP via Algorithm 1, while the MaxSAT
approach of cudf2msu utilizes unsatisfiable cores to iteratively refine lower bounds. The tools included
for comparison belong to the leaders in a recent trial-run5, called MISC-live, of the competition
organized by mancoosi.

Table 1 reports experimental results on package configuration problems used in the recent MISC-
live run, divided by the tracks paranoid, trendy, and user1–3,6 each applying a different combination
of optimization criteria. Note that the number of lexicographically ordered utilities is two in the
paranoid track, three in the user1 track, and four in the trendy and user2–3 tracks. We ran the five
criteria combinations on 117 instances considered in the paranoid and trendy tracks of the MISC-live
run (all instances except for the ones in the “debian-dudf” category, which were not available for
download). For each track, the column headed by S provides the sums of solvers’ scores according
to the MISC-live ranking: a solver that returns a solution earns b+ 1 points, where b is the number
of solvers that returned strictly better solutions; a solver that returns no solution earns 2 ∗ s points,
where s is the total number of participating solvers (s = 21 in our case); finally, a solver that crashes
or returns a wrong solution (i.e., an invalid installation profile) is awarded 3 ∗ s points (for s as
before). Note that a smaller score is better than a greater one, and solvers are ranked by their scores
in ascending order. The columns headed by T/O report total runtimes per solver in seconds followed
by the number of instances on which the solver was aborted, either before finding the optimum
or while still attempting to prove it (or unsatisfiability, respectively). These statistics are used for
tie-breaking wrt scores in MISC-live ranking, and they also yield valuable information regarding
solvers’ capabilities to prove optima: after 280 seconds of running, closeness of runtime exhaustion
(300 seconds) is signaled to a solver, so that the remaining time can be used to output the best solution
found so far. Accordingly, we count solutions returned after more than 280 seconds as aborts, which
are not reflected in scores (columns S) if output solutions happen to be optimal without the proof being
completed. We ran our experiments under MISC-live conditions on an Intel Quad-Core Xeon E5520
machine, possessing 2.27GHz processors and 48GB main memory, under Linux. The best scores
and runtimes obtained among the variants of clasp as well as the best ones among its competitors are
highlighted in bold face in Table 1.

Recall that two optimization criteria are applied in the paranoid track, three in the user1 track, and
four in the remaining tracks. One may expect solvers optimizing criteria in the order of significance
(all but the variants of clasp0) to have greater advantages the longer the sequence of criteria is. In
fact, we observe that clasp0, optimizing criteria in parallel, is competitive in the paranoid track; in
particular, the static sign heuristic applied by the variants of clasp1

0 helps them to achieve the smallest
score. However, the gap to other solvers is not large, neither in terms of scores nor runtimes. Unlike
this, the disadvantages of clasp0

0 and clasp1
0 variants are remarkable in the other four tracks; they

are compensated to some extent by the optimization-oriented dynamic variable selection applied
by clasp2

0-r and clasp3
0-r. Comparing the variants of clasp1 and clasp2, applying Algorithm 1, we

note that they are less sensitive to heuristic aspects. Nonetheless, their relative performance varies
over tracks, thus not suggesting any universal strategy to multi-criteria optimization. For instance,

2 http://sat.inesc-id.pt/~mikolas/cudf2msu.html
3 http://sat.inesc-id.pt/~mikolas/cudf2pbo.html
4 http://wiki.eclipse.org/Equinox/p2/CUDFResolver
5 http://www.mancoosi.org/misc-live/20101126
6 The results of (a preliminary version of) aspcud, running clasp1

1 in all five tracks, were scrambled in this trial-run
due to scripting problems, which led to complete failure rather than a sub-optimal solution if an optimum could not
be proven in time.

ICLP’11

http://sat.inesc-id.pt/~mikolas/cudf2msu.html
http://sat.inesc-id.pt/~mikolas/cudf2pbo.html
http://wiki.eclipse.org/Equinox/p2/CUDFResolver
http://www.mancoosi.org/misc-live/20101126

8 Multi-Criteria Optimization in Answer Set Programming

paranoid trendy user1 user2 user3
Solver S T/O S T/O S T/O S T/O S T/O

clasp0
0-r 431 2,287/6 1730 23,829/ 80 935 14,349/35 525 5,097/12 1031 14,184/37

clasp0
0 416 2,294/6 2375 29,781/105 1727 21,897/73 1224 14,697/45 671 11,178/21

clasp1
0-r 410 2,210/6 1560 22,660/ 73 898 13,466/30 502 4,654/ 9 980 13,682/35

clasp1
0 410 2,326/6 2079 26,471/ 92 1723 21,525/72 922 10,767/31 658 10,675/23

clasp2
0-r 427 2,135/6 712 16,867/ 51 527 5,891/11 426 2,981/ 5 587 7,628/20

clasp3
0-r 429 2,134/6 740 17,079/ 52 507 5,863/12 425 3,044/ 6 576 7,769/21

clasp0
1-r 425 2,428/6 579 16,713/ 50 550 5,819/14 434 3,000/ 6 710 8,958/25

clasp0
1 417 2,418/6 549 16,544/ 50 475 5,318/12 411 2,538/ 5 502 6,279/16

clasp1
1-r 429 2,405/6 622 17,304/ 50 518 5,908/13 438 2,976/ 6 676 8,938/23

clasp1
1 427 2,372/6 613 16,946/ 49 490 5,478/12 416 2,562/ 5 496 6,144/16

clasp2
1-r 427 2,352/6 571 16,646/ 50 518 5,358/13 418 2,582/ 5 471 6,356/16

clasp3
1-r 429 2,346/6 547 16,386/ 50 499 5,306/12 413 2,498/ 5 497 6,255/16

clasp0
2-r 425 2,392/6 806 16,598/ 50 523 5,583/13 421 2,677/ 6 479 5,548/12

clasp0
2 417 2,364/7 748 17,132/ 50 487 5,823/14 422 2,583/ 5 482 5,592/15

clasp1
2-r 416 2,378/6 752 17,269/ 52 492 5,663/12 414 2,409/ 5 451 5,349/11

clasp1
2 425 2,365/6 864 17,128/ 51 517 6,151/15 412 2,681/ 5 463 5,972/14

clasp2
2-r 445 2,402/6 706 16,551/ 50 528 5,788/13 419 2,700/ 5 436 5,519/13

clasp3
2-r 434 2,345/6 748 16,982/ 51 518 5,850/14 415 2,559/ 5 457 5,360/13

cudf2msu 610 3,051/8 669 5,318/ 8 1270 8,709/18 548 3,238/ 7 504 4,750/ 9
cudf2pbo 465 2,727/7 1082 21,302/ 68 520 6,168/13 462 3,575/ 7 537 3,487/ 8
p2cudf 463 2,920/8 696 19,105/ 60 516 3,947/ 7 573 6,927/16 577 8,063/21

Table 1 Results on package configuration problems used in a recent MISC-live run.

the variants of clasp1, decreasing upper bounds linearly, are more successful than clasp2 variants in
the trendy track, where the large total runtimes and numbers of aborts indicate that many instances
were hard to complete (proving optima failed in many cases). On the other hand, the exponential
decrease scheme of clasp2 enables some of its variants to achieve the smallest score and runtime
in the user3 track. Finally, comparing the variants of clasp with its three competitors, we observe
that the ASP-based approach to Linux package configuration is highly competitive. In particular, its
consistent performance is confirmed by scores, while each of the other tools achieved an impressive
runtime (mainly by succeeding to prove optima) in some track: cudf2msu in trendy, cudf2pbo in
user3, and p2cudf in user1. Unfortunately, cudf2msu produced non-optimal solutions and crashes in
two tracks, trendy and user1, so that its ranking in these two tracks is not very conclusive.

5 Discussion

We presented an approach to dedicated multi-criteria optimization in ASP. In particular, we detailed
the use of assumptions in modern (conflict-driven learning) Boolean constraint solvers, so that
speculative upper bounds can be imposed temporarily and withdrawn after unsatisfiability proofs
without relaunching the solver. In fact, our approach is readily applicable in related areas like PBO
and MaxSAT. Albeit Linux package configuration tools based on these formalisms may already
exploit similar techniques, we are unaware of precise specifications of them. In the future, regular
comparisons in competitions by mancoosi could provide a fruitful platform for improving and sharing
methods of optimization.

The interested reader is referred to the extended version of this paper [8] for a detailed descrip-

M. Gebser and R. Kaminski and B. Kaufmann and T. Schaub 9

tion of solving Linux package configuration problems by appeal to the multi-criteria optimization
capacities introduced in the previous sections.

Acknowledgments

This work was partly funded by DFG grant SCHA 550/8-2. We are grateful to Daniel Le Berre
for useful discussions on the subject of this work and to the mancoosi project team for organizing
MISC(-live).

References

1 J. Argelich, D. Le Berre, I. Lynce, J. Marques-Silva, and P. Rapicault. Solving Linux upgradeability
problems using Boolean optimization. In I. Lynce and R. Treinen, editors, Proceedings of the First
International Workshop on Logics for Component Configuration (LoCoCo’10), pages 11–22. 2010.

2 J. Argelich, I. Lynce, and J. Marques-Silva. On solving Boolean multilevel optimization problems.
In C. Boutilier, editor, Proceedings of the Twenty-first International Joint Conference on Artificial
Intelligence (IJCAI’09), pages 393–398. AAAI Press/The MIT Press, 2009.

3 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press, 2003.

4 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS Press,
2009.

5 A. Darwiche and K. Pipatsrisawat. Complete algorithms. In Biere et al. [4], pages 99–130.
6 N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella, edi-

tors, Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), pages 502–518. Springer-Verlag, 2004.

7 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. A user’s guide to
gringo, clasp, clingo, and iclingo. Available at http://potassco.sourceforge.
net.

8 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-criteria optimization in ASP and
its application to Linux package configuration. Available at http://www.cs.uni-potsdam.
de/wv/pdfformat/gekakasc11b.pdf.

9 M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3. In J. Delgrande and
W. Faber, editors, Proceedings of the Eleventh International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’11), pages 345–351. Springer-Verlag, 2011.

10 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving. In
M. Veloso, editor, Proceedings of the Twentieth International Joint Conference on Artificial Intelli-
gence (IJCAI’07), pages 386–392. AAAI Press/The MIT Press, 2007.

11 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV system for
knowledge representation and reasoning. ACM Transactions on Computational Logic, 7(3):499–
562, 2006.

12 J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In Biere
et al. [4], pages 131–153.

13 P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

14 T. Syrjänen. Lparse 1.0 user’s manual. Available at http://www.tcs.hut.fi/Software/
smodels/lparse.ps.gz.

15 T. Syrjänen. A rule-based formal model for software configuration. Technical Report A55, Helsinki
University of Technology, 1999.

16 T. Syrjänen. Including diagnostic information in configuration models. In J. Lloyd, V. Dahl, U. Fur-
bach, M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagiv, and P. Stuckey, editors, Proceedings

ICLP’11

http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://www.cs.uni-potsdam.de/wv/pdfformat/gekakasc11b.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/gekakasc11b.pdf
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

10 Multi-Criteria Optimization in Answer Set Programming

of the First International Conference on Computational Logic (CL’00), pages 837–851. Springer-
Verlag, 2000.

17 R. Treinen and S. Zacchiroli. Common upgradability description format (CUDF) 2.0. Technical
Report 003, mancoosi — managing software complexity, 2009.

	Introduction
	Background
	Multi-Criteria Optimization Algorithm
	Experiments
	Discussion

