
Constraint Answer Set Solving

Martin Gebser, Max Ostrowski, and Torsten Schaub?

Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam

Abstract. We present a new approach to integrating Constraint Processing (CP)
techniques into Answer Set Programming (ASP). Based on an alternative seman-
tic approach, we develop an algorithmic framework for conflict-driven ASP solv-
ing that exploits CP solving capacities. A significant technical issue concerns the
combination of conflict information from different solver types. We have imple-
mented our approach, combining ASP solver clingo with the generic CP solver
gecode, and we empirically investigate its computational impact.

1 Introduction

Answer Set Programming (ASP;[1]) is a declarative problem solving approach, com-
bining a rich yet simple modeling language with high-performance solving capacities.
This has already resulted in various applications, among them decision support systems
for NASA shuttle controllers [2, 3] and various reasoning tools in systems biology [4–
6]. However, certain aspects of such applications are more naturally modeled by addi-
tionally using non-Boolean constructs, accounting for resources, fine timings, or func-
tions over finite domains. Moreover, a dedicated treatment of large domains avoids the
grounding bottleneck inherent to all propositional solving approaches.

In Satisfiability checking (SAT;[7, 8]), this led to the subarea of Satisfiability Mod-
ulo Theories (SMT;[9]), extending SAT solvers by theory-specific solvers. This allows
SMT problems to incorporate predicates from specialized theories into propositional
formulas. Solving an SMT problem then consists of finding a (hybrid) assignment to all
Boolean and theory-specific variables satisfying a given formula along with its theory-
specific constituents. Apart from a close solver integration, the key to efficient SMT
solving lies in elaborated conflict-driven learning techniques that are capable of com-
bining conflict information from different solver types (cf. [9]).

Groundbreaking work on enhancing ASP with Constraint Processing (CP;[10, 11])
techniques was conducted in [12–14]. Based on firm semantic underpinnings, these
approaches provide a family of ASP languages parametrized by different constraint
classes. While [12] develops a high-level algorithm viewing both ASP and CP solvers
as black boxes, [14] embeds a CP solver into a traditional DPLL-style backtracking
algorithm, similar to the one underlying the ASP solver smodels [15]. Although [12–
14] resulted in two consecutive extensions of smodels with CP capacities, they do not
match the performance of state-of-the-art SMT solvers, simply because they do not
support advanced backjumping and conflict-driven learning techniques.

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

We address this problem and propose an alternative way of combining ASP and
CP solving. To begin with, we pursue an alternative semantic approach that is based
on a propositional language rather than a multi-sorted, first-order language, as used
in [12–14]. Our approach follows the so-called lazy approach of advanced SMT solvers
by abstracting from the constraints in a specialized theory [9]. The idea is as follows.
The ASP solver passes the portion of its (partial) Boolean assignment associated with
constraints to a CP solver, which then checks these constraints against its theory via
constraint propagation. As a result, it either signals unsatisfiability or, if possible, ex-
tends the Boolean assignment by further constraint atoms. For conflict-driven learning
within the ASP solver, however, each assigned constraint atom must be justified by a
set of (constraint) atoms providing a “reason” for the underlying inference. Yet, to the
best of our knowledge, this is not supported by off-the-shelf CP solvers.1 As a conse-
quence, we develop an algorithmic framework for conflict-driven ASP solving that inte-
grates CP solving capacities while overcoming the aforementioned difficulty. We have
implemented our approach in the new system clingcon [16], combining ASP solver
clingo [17] with the generic CP solver gecode [18], and provide an empirical analysis
demonstrating its computational impact.

2 Background

A (normal) logic program over an alphabet A is a finite set of rules of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an , (1)

where ai ∈ A is an atom for 0 ≤ i ≤ n.2 A literal is an atom a or its (default)
negation not a. For a rule r as in (1), let head(r) = a0 be the head of r and
body(r) = {a1, . . . , am,not am+1, . . . ,not an} be the body of r. Given a set B of
literals, let B+ = {a ∈ A | a ∈ B} and B− = {a ∈ A | not a ∈ B}. Furthermore,
given some set B of atoms, define B|B = (B+ ∩ B) ∪ {not a | a ∈ B− ∩ B}. The
set of atoms occurring in a logic program P is denoted by atom(P). A set X ⊆ A
is an answer set of a program P over A, if X is the ⊆-smallest model of the reduct
PX = {head(r)← body(r)+ | r ∈ P, body(r)− ∩X = ∅}. An answer set can also be
seen as a Boolean assignment satisfying all conditions induced by program P (cf. [19]).

A constraint satisfaction problem (CSP) is a triple (V,D,C), where V is a set of
variables with respective domainsD, andC is a set of constraints. Each variable v ∈ V
has an associated domain dom(v) ∈ D. Following [10], a constraint c is a pair (S,R)
consisting of a k-ary relation R defined on a vector S ⊆ V k of variables, called the
scope of R. That is, for S = (v1, . . . , vk), we have R ⊆ dom(v1) × · · · × dom(vk).
We use S (c) = S and R(c) = R to access the scope and the relation of c = (S,R). For
an assignment A : V →

⋃
v∈V dom(v) and a constraint (S,R) with S = (v1, . . . , vk),

define A(S) = (A(v1), . . . , A(vk)), and let satC(A) = {c ∈ C | A(S (c)) ∈ R(c)}.
1 Advanced SMT solvers, like [9], address this through handcrafted theory solvers.
2 The semantics of choice rules and integrity constraints is given through program transforma-

tions. For instance, {a} ← is a shorthand for a← not a′ plus a′ ← not a and similarly← a
for a′ ← a,not a′, for a new atom a′.

3 Constraint Logic Programs: Syntax and Semantics

For extending logic programs with constraint handling capacities, we consider an ex-
tended alphabet distinguishing regular and constraint atoms, denoted by A and C, re-
spectively. Then, constraint logic programs P are defined as regular logic programs
over an extended alphabet A ∪ C such that head(r) ∈ A for each r ∈ P .

We identify constraint atoms with constraints via a function γ : C → C; further-
more, γ(Y) = {γ(c) | c ∈ Y } for any Y ⊆ C. The set of constraints comprised in a
constraint logic program P is given by C[P] = γ(atom(P) ∩ C). While the associated
variables V [P] are obtained from the respective constraint scopes, we assume a default
domain D[P] for each variable (e.g., provided by a declaration within P).

For a constraint logic program P overA∪C and an assignment A : V [P]→ D[P],
we define the constraint reduct as

PA = {head(r)← body(r)|A | r ∈ P,
γ(body(r)|C+) ⊆ satC[P](A), γ(body(r)|C−) ∩ satC[P](A) = ∅} .

Then, a set X ⊆ A is a constraint answer set of P wrt A, if X is an answer set of PA.
Unlike with (standard) atoms inA, the unique names assumption cannot be applied

to constraint atoms in C, intentionally representing relations, in a meaningful way. For
instance, the same relation between integer variables x and y is described via syntacti-
cally different expressions x < y and ((−y − 1) ≤ −(x + 1)) ∧ (x 6= y). To reflect
this, the definitions of the constraint reduct and constraint answer sets treat constraint
literals over C similar to negative body literals, and truth values are determined outside
the actual logic program. Hence, we also do not directly consider constraint atoms as
heads but view a rule r with head(r) ∈ C as standing for← body(r),not head(r).

Although our semantics is propositional, the atoms in A and C are constructible
from a multi-sorted, first-order signature given by:

– a set PA ∪ PC of predicate symbols such that PA ∩ PC = ∅,
– a set FA ∪ FC of function symbols (including constant symbols),
– a set VA of regular variable symbols, and
– a set VC ⊆ T (FA) of constraint variable symbols, where T (FA) denotes the set of

all ground terms over FA.

As common in ASP, the atoms inA∪C are obtained by a grounding process, system-
atically substituting all occurrences of regular variables in VA by (ground) terms from
T (FA). Atoms in A are formed from predicate symbols in PA and terms in T (FA),
while the ones in C are formed from predicate symbols in PC and terms overFC and VC .
This definition tolerates occurrences of similar ground terms in atoms of both A and C.

Our approach follows the one taken by SMT solvers in letting the ASP solver deal
with the atomic, that is, Boolean structure of the program, while a CP solver addresses
the “sub-atomic level” by dealing with the constraints associated with constraint atoms.
Whenever a constraint atom c ∈ C is assigned to true (T) or false (F) by the ASP solver,
the CP solver enforces the satisfaction or violation of the associated constraint γ(c).

For illustration, let us consider a constraint logic program consisting of the rules
in (2)–(12). This is an authentic program, processable by our solver; its syntax ex-
tends the input language of gringo [20] and thus allows for using integral ranges, as

in (2), and cardinality rules, as in (4). For simplicity, we omit domain atoms bucket(B),
bucket(C), and time(T), respectively, in rules (5)–(10):

time(0..tmax) (2)
bucket(a) bucket(b) (3)

1 {pour(B, T) : bucket(B)} 1← time(T), T < tmax (4)
1 ≤$ amt(B, T)← pour(B, T), T < tmax (5)
amt(B, T) ≤$ 3← pour(B, T), T < tmax (6)
amt(B, T) =$ 0← not pour(B, T), T < tmax (7)

vol(B, T+1) =$ vol(B, T) + amt(B, T)← T < tmax (8)
down(B, T)← vol(C, T) <$ vol(B, T) (9)

up(B, T)← not down(B, T) (10)
vol(a, 0) =$ 0 vol(b, 0) =$ 1 (11)

← up(a, tmax) . (12)

This program describes a balance with two buckets, a and b, at each end. According
to (4), we must pour a certain amount of water into exactly one of the buckets at each
time point. The amount of added water may vary between 1 and 3. The balance is down
at one bucket’s side, if the bucket contains more water than the other; otherwise, it is
up. Initially, bucket a is empty while b contains 1 unit. The goal is to find sequences of
pour actions making the side of bucket a be down after tmax time steps (cf. (12)).

The above program has the following signature:

{B,C, T} ⊆ VA
{0, . . . , tmax ,+, a, b, amt , vol} ⊆ FA {0, 1, 3,+} ⊆ FC

{<, time, bucket , pour , up, down} ⊆ PA {=$, <$,≤$} ⊆ PC .

The contents of VC as well as of A and C becomes clear when looking at the ground
program obtained by instantiating all variables in VA with terms from T (FA). To see
this, let us look at the ground instantiation of rule (7) and (8) obtained from substitution
{B 7→ b, T 7→ 1} along with constant mapping tmax 7→ 2, and evaluating 1 < 2 as
well as 1+1 (as done by grounders like gringo):

amt(b, 1) =$ 0← not pour(b, 1)
vol(b, 2) =$ vol(b, 1) + amt(b, 1)← .

These two ground rules encompass three constraint variables and three atoms:

{amt(b, 1), vol(b, 1), vol(b, 2)} ⊆ VC
{pour(b, 1)} ⊆ A {amt(b, 1) =$ 0, vol(b, 2) =$ vol(b, 1) + amt(b, 1)} ⊆ C .

While the actual ASP solver assigns a Boolean value to the constraint atom
vol(b, 2) =$ vol(b, 1) + amt(b, 1), the CP solver deals with the associated constraint
γ(vol(b, 2) =$ vol(b, 1) + amt(b, 1)), eventually assigning (integral) values to con-
straint variables vol(b, 2), vol(b, 1), and amt(b, 1).

For tmax 7→ 2, the above program has eleven constraint answer sets, namely, four
different Boolean assignments associated with varying constraint assignments, summa-
rized by the following Boolean and constraint variable assignments:

up(a, 0) pour(a, 0) amt(a, 0) up(a, 1) pour(a, 1) amt(a, 1) up(a, 2)
T T 1 T T 1, 2, 3 F
T T 2, 3 F T 1, 2, 3 F
T T 3 F F 0 F
T F 0 T T 3 F

While the first two groups of answer sets “pour into bucket a” twice, the last two also
“pour into bucket b”, namely, one unit at either time point 0 or 1.

As a general remark, note that replacing 3 in rule (6) by a significantly larger num-
ber (e.g., 30000) does neither affect the size of the ground program nor the number of
different Boolean assignments. In fact, the size of the ground instantiation of a program
is completely independent of the domain size of its constraint variables. Given the sim-
plicity of the above example, larger domains do also not deteriorate the runtime of a CP
solver like gecode too much, while they would drastically increase runtime and space
required by ASP grounders and solvers.

4 Conflict-Driven Nogood Learning with Constraint Processing

We now develop an algorithm for computing constraint answer sets that extends a pre-
vious algorithm to compute standard answer sets [19] by a CP “oracle.” The basic al-
gorithm for finding standard answer sets is called Conflict-Driven Nogood Learning
(CDNL); it includes conflict-driven learning and backjumping according to the First-
UIP scheme [21, 22, 7]. That is, whenever a conflict happens, a conflict nogood con-
taining a Unique Implication Point (UIP) is identified by iteratively resolving a violated
nogood against a second nogood that is a reason for some literal in it. In view of the
fact that CP solver gecode used in our implementation does not provide any reasons
(it only reports whether a conflict has occurred), the extended algorithm works under
the assumption that its CP oracle cannot be queried for reasons. Nonetheless, conflict
resolution requires some reason when resolving out a literal, and the major difficulty
we address is to identify sufficient yet non-trivial reasons outside the CP oracle.

As mentioned before, a standard answer set can be seen as an assignment satisfying
certain conditions induced by a program P . A (Boolean) assignment A over domain
atom(P) ∪ {body(r) | r ∈ P} is a sequence (σ1, . . . , σm) of (signed) literals σi of
the form Tvi or Fvi, where vi ∈ atom(P) ∪ {body(r) | r ∈ P} for 1≤ i≤m; Tvi

expresses that vi is true and Fvi that it is false. (We omit the attribute signed for literals
whenever clear from the context.) The complement of a literal σ is denoted by σ, that
is, Tv = Fv and Fv = Tv, and we let var(σ) = v. For A = (σ1, . . . , σi−1, σi, . . .),
A[σi] = (σ1, . . . , σi−1) is the prefix of A up to σi. We sometimes abuse notation and
identify an assignment with the set of its contained literals. Given this, we access the
true and false variables in A via AT = {v | Tv ∈ A} and AF = {v | Fv ∈ A}. For
a canonical representation of (Boolean) constraints, we make use of nogoods [10, 11].

In our setting, a nogood is a finite set {σ1, . . . , σk} of literals, expressing a constraint
violated by any assignment A containing σ1, . . . , σk. The nogoods derived from the
completion of P are denoted by ∆P , and ΛP contains the ones that are implicitly given
by loop formulas (cf. [19]). An assignment A is a solution for P if AT ∩ AF = ∅,
AT ∪ AF = atom(P) ∪ {body(r) | r ∈ P}, and δ 6⊆ A for all δ ∈ ∆P ∪ ΛP . As
shown in [19], AT ∩ atom(P) is an answer set of P iff A is a solution for ∆P ∪ ΛP .
We skip further details on ∆P and ΛP , as they are not affected by adding a CP oracle.3

Switching back to constraint logic programs P over A ∪ C, by A|C = {Tc ∈ A |
c ∈ C} ∪ {Fc ∈ A | c ∈ C}, we denote the projection of a Boolean assignment A to
literals over constraint atoms. Furthermore, we associate P with the CSP

CSP [P] =
(
V [P]∪atom(P)|C , D,

{(
(S (γ(c)), c), c ≡ R(γ(c))

)
| c ∈ atom(P)|C

})
where D contains dom(v) = D[P] for every v ∈ V [P] and dom(c) = {T,F} for
every c ∈ atom(P)|C .4 A constraint relation of the form c ≡ R(γ(c)) is called reified:
it associates the truth value of c ∈ atom(P)|C with the valuation of the corresponding
constraint γ(c). We below slightly abuse notation by identifying the scope S (γ(c)) =
(v1, . . . , vk) of γ(c) with the corresponding set {v1, . . . , vk}.

4.1 Main Algorithm

Our main algorithm for computing a constraint answer set of P is shown in Algorithm 1.
It shares with the one in [19] the assignment A, recorded nogoods ∇, and decision
level dl but adds a flag event (cf. Line 4 in Algorithm 1), whose admissible values are
assertion and decision . The purpose of this flag is to enable propagation, invoked in
Line 6, to mark derived literals such that blocks can be distinguished: all literals in the
same block are derived either by unit propagation on ∆P ∪ ΛP ∪ ∇ or by constraint
propagation on CSP [P]. In order to retrieve such blocks in conflict analysis, invoked
in Line 9 and 23, each literal σ ∈ A is associated with a reason flag res(σ). A block
of literals derived by unit propagation starts with a literal σdc where res(σdc) = dc,
followed by arbitrarily many literals σup for which res(σup) = up. In turn, a block of
literals derived by constraint propagation is given by consecutive literals σcp such that
res(σcp) = cp.

After propagation in Line 6, we distinguish the cases of a conflict (Line 7–12), a
total assignment (Line 13–27), or a partial assignment (Line 29–33). In the latter case,
a heuristic decision needs to be made, and an undecided literal σd, whose reason is
by decision, is selected (Line 29–30). Furthermore, the decision level is incremented,
and σd is appended to A (Line 31–32). Finally, setting event to decision in Line 33
signals to the following propagation step that the last literal in A is a decision literal.
The case of a conflict is signaled via a status flag returned by propagation, if its value is
either cUP (conflict in unit propagation) or cCP (conflict in constraint propagation). A
conflict above decision level 0, i.e., at least one decision literal is involved in the conflict,

3 The only difference is that atoms of C are not subject to completion in ∆P and loop nogoods
in ΛP . That is, they can be assigned to T without requiring any justification from P .

4 We assume that {T,F}∩D[P] = ∅. Moreover, we write literal Tc or Fc for c ∈ atom(P)|C
assigned to either T or F, respectively.

Algorithm 1: CDNL-ASPMCSP
Input : A constraint logic program P .
Output : A constraint answer set of P .

A← ∅ // (Boolean) assignment1
∇ ← ∅ // set of (dynamic) nogoods2
dl ← 0 // decision level3
event ← assertion // propagation mode4
loop5

(A,∇, status)← PROPAGATION(P,∇,A, event)6
if status ∈ {cUP , cCP} then7

if dl = 0 then exit8
(δ, dl)← CONFLICTANALYSIS(P,∇,A, status)9
∇ ← ∇∪ {δ}10
A← A \ {σ ∈ A | dl(σ) > dl}11
event ← assertion12

else if AT ∪AF = atom(P) ∪ {body(r) | r ∈ P} then13
(A, status)← LABELING(CSP [P],A|C)14
if status = conflict then15

dl ← dl + 116
repeat17

dl ← max{dl(σ) | σ ∈ A|C, dl(σ) < dl}18
if dl = 0 then exit19
(A, status)← LABELING(CSP [P], {σ ∈ A|C | dl(σ) < dl})20

until status 6= conflict21
A← A \ {σ ∈ A | dl(σ) > dl}22
(δ, dl)← CONFLICTANALYSIS(P,∇,A, cAS)23
∇ ← ∇∪ {δ}24
A← A \ {σ ∈ A | dl(σ) > dl}25
event ← assertion26

else return (AT ∩ A, {v 7→ A(v) | v ∈ V [P]})27

else28
σd ← SELECT(P,∇,A)29
res(σd)← dc30
dl ← dl + 131
A← A ◦ σd32
event ← decision33

is analyzed in Line 9. It results in a new nogood δ, recorded in Line 10, that implies
the complement of a UIP by unit propagation at a decision level to which backjumping
returns to in Line 11. (Note that dl(σ) provides the decision level at which σ has been
assigned.) Finally, by setting event to assertion in Line 12, we signal the following
propagation step that δ will be asserting.

The treatment of a total assignment is the main difference to the algorithm in [19].
Before also solving CSP [P], we cannot be sure whether Boolean assignment A be-
longs to a constraint answer set of P . Thus, the CP oracle is queried whether there is a
solution A for CSP [P] (Line 14), given the truth values assigned to atoms of C in A.
If such a solution A exists, we have found a constraint answer set that is returned in

Line 27. Note that the additional check is necessary because the CP oracle is not per-
mitted to make choices during constraint propagation, which in general will not be able
to assign all variables in V [P] or to detect unsatisfiability, given only the truth values
of Boolean variables shared with atom(P). This is also the reason why, in case of un-
satisfiability detected now, we do not know from which decision level on CSP [P] had
actually been unsatisfiable wrt the literals over C in A. Hence, the loop in Line 17–21
successively backtracks through A until hitting a decision level dl such that CSP [P]
can be satisfied, given only the literals over C in A from decision levels smaller than dl .
Then, conflict analysis is invoked in Line 23 with cAS signaling a conflict on a pu-
tative constraint answer set. Conflict-driven learning, backjumping, and the following
assertion (Line 24–26) are similar to a conflict encountered by propagation.

4.2 Propagation Algorithm

The main idea of our propagation procedure, shown in Algorithm 2, is to iterate unit
propagation on∆P ∪∇, unfounded set detection accompanied by selective recording of
nogoods from ΛP , and finally constraint propagation on CSP [P]. Before this process
starts, we set a flag cp to true if constraint propagation should be performed initially
(Line 1) or in reaction to a decision literal over C (Line 2). Otherwise, cp is made false
(Line 3), given that A has not been extended by literals over constraint atoms since the
last constraint propagation step.

Conflicts during unit propagation are in Line 6 detected via some nogood from
∆P ∪ ∇ violated by A, and they are signaled via return value cUP . If there is no con-
flict, we in Line 7 check whether there are nogoods δ that contain a single unassigned
literal, while all other literals belong to A. Then, unit propagation infers the comple-
ment σ of such a last unassigned literal σ in order to avoid the inclusion of δ in A. As
mentioned above, we use a flag res(σ) to later on identify a block of literals derived
by unit propagation. The value of event now determines whether a new block begins
(Line 10–11), which is marked by setting res(σ) to dc, or an existing one is extended
(Line 12). Finally, flag cp is set in Line 13 if σ is over an atom of C. After reaching a
fixpoint of unit propagation without any conflict, unfounded set handling (cf. [19]) is
performed for non-tight [23] programs in Line 17–19. Note that an already identified
nonempty unfounded set needs first to be falsified completely before a new (nonempty)
unfounded set U ⊆ atom(P)|A \ AF is determined in Line 18 (if no such U exists,
UNFOUNDEDSET returns ∅). Finally, atoms in a nonempty unfounded set U will be
falsified by unit propagation after adding a loop nogood from ΛP to∇ in Line 19.

Finally, constraint propagation (Line 21–32) takes place only if unit propagation
cannot infer any further literal, checked via U = ∅ in Line 20. Furthermore, we are sure
that no new literals over atom(P)|C will be derived if none was recently added to A
(if cp = false), in which case the whole propagation terminates in Line 21. Otherwise,
constraint propagation in Line 22 may result either in a conflict (Line 23), signaled via
return value cCP , or in an assignment A over V [P] ∪ atom(P)|C , whose possible ad-
ditions to A on the common constraint atoms are provided by B (Line 24). If additions
to A are possible (B = ∅ does not hold in Line 25), we do them in Line 26–30, and the
reason flags of the derived literals are set to cp (Line 28). Afterwards, flag cp is reset
to false in Line 31, so that another constraint propagation step will be performed only

Algorithm 2: PROPAGATION

Input : A constraint logic program P , a set∇ of nogoods, a (Boolean) assignment A,
and an event ∈ {decision, assertion}.

Output : A (Boolean) assignment, set of nogoods, and a status ∈ {cUP , cCP ,fix}.
if A = ∅ then cp ← true // do initial constraint propagation1
else if event = decision and var(σ) ∈ C where A = A′ ◦ σ then cp ← true2
else cp ← false3
U ← ∅ // unfounded set4
loop5

if δ ⊆ A for some δ ∈ ∆P ∪∇ then return (A,∇, cUP)6
Σ ← {δ ∈ ∆P ∪∇ | δ \A = {σ}, σ /∈ A}7
if Σ 6= ∅ then let δ \A = {σ} for some δ ∈ Σ in8

if event = assertion then9
res(σ)← dc10
event ← decision11

else res(σ)← up12
if var(σ) ∈ C then cp ← true // redo constraint propagation13
A← A ◦ σ14

else15
if P is non-tight then16

U ← U \AF17
if U = ∅ then U ← UNFOUNDEDSET(P,A)18
if U 6= ∅ then let a ∈ U in∇ ← ∇∪ {λ(a, U)}19

if U = ∅ then20
if cp = false then return (A,∇,fix)21
(A, status)← CONSTRAINTPROPAGATION(CSP [P],A|C)22
if status = conflict then return (A,∇, cCP)23
B ← {Tc ∈ A | Tc /∈ A} ∪ {Fc ∈ A | Fc /∈ A}24
if B = ∅ then return (A,∇,fix)25
repeat26

B ← B \ {σ} for some σ ∈ B27
res(σ)← cp28
A← A ◦ σ29

until B = ∅30
cp ← false31
event ← assertion32

after inferring further literals over atom(P)|C by unit propagation. Finally, flag event
is set to assertion , which has the effect that the next literal σ inferred by unit propaga-
tion (if any is inferred) will be marked as the first one of a new block via dc for res(σ).
In view of the fact that constraint propagation may extend A with further literals, we
note that our propagation technique matches “theory propagation” [9] in SMT solvers.

Algorithm 3: CONFLICTANALYSIS

Input : A constraint logic program P , a set∇ of nogoods, a (Boolean) assignment A,
and a status ∈ {cUP , cCP , cAS}.

Output : A derived nogood and a decision level.

if status = cAS then1
δ ← {σ ∈ A|C | dl(σ) = max{dl(σ′) | σ′ ∈ A}}2
repeat3

touched ← δ4
δ ← {σ ∈ A|C | S(γ(var(σ))) ∩

S
σ′∈δ S(γ(var(σ′))) 6= ∅}5

until δ = touched6

else if status = cCP then7
let σ ∈ A such that res(σ) = dc and ∀σ′ ∈ A \ (A[σ] ∪ {σ}) : res(σ′) = up in8

δ ← A|C \A[σ]9

repeat10
touched ← δ11
δ ← {σ ∈ A|C | S(γ(var(σ))) ∩

S
σ′∈δ S(γ(var(σ′))) 6= ∅}12

until δ = touched13

else14
δ ← ε for some ε ∈ ∆P ∪∇ such that ε ⊆ A15
touched ← ∅16

loop17
let σ ∈ δ such that δ \A[σ] = {σ} in18

k ← max{dl(σ′) | σ′ ∈ δ \ {σ}}19
if k = dl(σ) then20

if res(σ) = cp then21
A← A \ {σ′ ∈ A \A[σ] |

∃σ′′ ∈ (A[σ′] \A[σ]) ∪ {σ′} : res(σ′′) 6= cp}22
ε← {σ′ ∈ δ ∩A | ∀σ′′ ∈ A[σ] \A[σ′] : res(σ′′) = cp} \ touched23
while ε 6⊆ touched do24

touched ← touched ∪ ε25
ε← {σ′′ ∈ A|C | S(γ(var(σ′′))) ∩

S
σ′∈ε S(γ(var(σ′))) 6= ∅}26

A← A \ {σ′ ∈ A | ∀σ′′ ∈ A \A[σ′] : res(σ′′) = cp}27
δ ← (δ ∪ ε) ∩A28

else let ε ∈ ∆P ∪∇ such that ε \A[σ] = {σ} in δ ← (δ \ {σ}) ∪ (ε \ {σ})29

else return (δ, k)30

4.3 Conflict Analysis Algorithm

On every conflict beyond decision level 0, our conflict analysis procedure in Algo-
rithm 3 identifies a new nogood according to the First-UIP scheme. While a literal
derived by unit propagation has at least one reason in∆P ∪∇, no such reasons exist for
literals derived by constraint propagation. Since we assume that the CP oracle does also
not provide us with reasons, we can merely try to reconstruct a non-trivial reason (one
that does not include all previously assigned literals over C) from structural properties of
CSP [P]. Our approach for this is inspired by graph-based backjumping/learning [10]
where, for a variable in question, other variables it shares constraints with are con-

sidered as potential reasons. In fact, we identify a sufficient reason by considering all
literals over atom(P)|C assigned prior to a constraint atom c and connected to c via
their scopes, starting from literals σ with S (γ(var(σ))) ∩ S (γ(c)) 6= ∅.

The sketched strategy is applied when a conflict is due to a putative answer set (Line
1–6), where CSP [P] is unsatisfiable under the current assignment A. Furthermore,
since the backtracking scheme in Algorithm 1 guarantees satisfiability when taking only
the literals in A at smaller decision levels than the current one, we also know that literals
over C at the maximum decision level are involved in the conflict. Hence, we take them
as initial reason δ for the conflict (Line 2), and iteratively add all literals in A over C
connected to some literal in δ via non-disjoint scopes (Line 3–6). The so obtained δ
provides a sufficient reason for the unsatisfiability of CSP [P]; it is processed further
using the standard First-UIP scheme (described below). If the conflict at hand has been
encountered during constraint propagation (Line 7–13), we know that the literals over C
in the last block derived by unit propagation (determined in Line 8–9) are involved. In
Line 10–13, we then use the same technique as above to identify a sufficient reason δ for
the conflict. Finally, if the conflict has been detected during unit propagation (Line 15–
16), we can simply determine some violated nogood δ in ∆P ∪∇.

The loop in Line 17–30 eventually exploits the First-UIP scheme, eliminating liter-
als from δ until it contains exactly one literal σ from the current decision level. If this
is not yet the case (tested in Line 20), some σ in δ needs to be replaced with a reason
why it was included in A. Here, we distinguish the cases that σ has been derived by
constraint propagation (Line 21–28) or by unit propagation (Line 29). In the latter case,
we can simply resolve δ against a known nogood ε in ∆P ∪ ∇, as done in [19]. Other-
wise, determining an appropriate reason is more sophisticated. In fact, in Line 22, we
eliminate all successors of σ in A that do not belong to the same block as σ of literals
derived by constraint propagation. This reflects that the removed literals cannot have
contributed to the CP oracle deriving σ. In Line 23, we then determine in ε all literals
(over C) of δ that belong to the same block as σ in order to explore their constraint inter-
dependencies, where an optimization consists of ignoring literals in touched , given that
they have been explored already. In Line 24–26, we further extend ε with connected
literals over C, like in Line 3–6 and Line 10–13. Finally, we remove the whole block
of σ from A and δ (Line 27–28), as possible contributions to the conflict have been
explored exhaustively, while the remaining literals of ε are added to δ.

In comparison to [19], it is apparent that the accommodation of a CP oracle makes
the required computations more sophisticated, as extra information is needed to distin-
guish literals derived by constraint propagation from those inferred by unit propaga-
tion. The identification of appropriate reasons is a major bottleneck in a conflict-driven
learning ASP solver, in particular, if the CP oracle does not support it. In such a case,
workarounds are needed to approximate sufficient reasons. Their impact regarding com-
putational cost is empirically investigated in the next section.

5 Experiments

We implemented our approach to constraint answer set solving within the new solver
clingcon (0.1.0;[16]), extending ASP system clingo (2.0.2;[17]) with the generic CP

clingo adsolver clingcon
Benchmark 5 5 7 11 13 5 7 11 13 20

3-0/025 162.84 14.74 51.42 460.57 365.37 1.19 1.97 4.21 5.99 17.84
3-0/050 173.28 31.39 108.21 471.41 — 1.26 2.32 6.80 11.85 27.36
3-0/100 175.94 448.90 188.33 — — 1.32 2.35 10.11 12.04 38.78
3-0/125 165.64 19.78 60.07 224.60 — 1.18 1.94 4.05 10.00 133.99
5-0/025 174.12 28.78 107.41 — — 1.28 2.90 5.87 14.27 66.55
5-0/050 163.25 13.57 42.00 204.34 497.64 1.18 1.97 4.71 10.04 241.59
5-0/100 168.16 21.50 66.10 282.36 514.08 1.20 1.98 4.13 6.45 25.32
5-0/125 174.38 32.02 104.32 429.72 — 1.34 2.95 6.39 9.70 81.17
8-0/025 177.82 41.57 140.93 — — 1.30 2.73 11.00 12.69 222.49
8-0/050 167.72 18.83 54.76 215.43 — 1.18 1.93 4.02 7.76 457.86
8-0/100 165.55 13.72 41.03 208.74 — 1.21 2.00 5.05 6.10 26.17
8-0/125 162.29 16.81 53.40 246.64 519.59 1.20 1.99 4.15 6.69 17.82

∅ 169.25 58.47 84.83 378.65 558.06 1.24 2.25 5.87 9.47 113.08
Table 1. Comparing clingo, adsolver, and clingcon.

solver gecode (2.2.0;[18]). Our experiments consider clingcon using four different ap-
proaches to incorporate constraint propagation: (a) lazy reason calculation during con-
flict analysis exploiting constraint interdependencies, as shown in Algorithm 3; (b) im-
mediate reason recording for literals derived by constraint propagation (discussed in
the context of SMT in [9, Section 5.1]) exploiting constraint interdependencies; (c)
lazy reason calculation during conflict analysis without using constraint interdependen-
cies, rather, taking all assigned literals over C as trivial reason; (d) immediate reason
recording for literals derived by constraint propagation without using constraint interde-
pendencies. We also include adsolver (1.55;[14]), combining an (extended) ASP solver
with a CP solver for difference constraints. Our experiments consider a benchmark suite
stemming from decision support systems for NASA shuttle controllers [2, 3]5, which in-
volve mapping logical time steps on real-time. All experiments were run on a 3.4GHz
PC under Linux. We report results in seconds, taking the average of three runs, each
restricted to 600s time and 3GB RAM.6

Table 1 compares clingo, adsolver, and variant (c) of clingcon, which turned out to
be the best choice on the considered benchmarks (see below), on 12 randomly picked
sample instances and varying number of logical time steps. The instances stem from
the instances-monica folder, “3-0/025” means subfolder ins-3-0 instance instance 025.
Average runtimes over all instances are provided in the last row of Table 1, taking
timeouts as maximum time, viz., 600s. Using clingo (on direct ASP encodings), we can
solve the instances for 5 time steps, where the major effort is made in grounding; in fact,
we observed memory exhaustion on all instances for 7 time steps. With adsolver, such
space problems do not occur, but it runs into timeouts (indicated by —) for 11 and 13
time steps. Up to these time steps, clingcon still scales well and is an order of magnitude
faster than adsolver. The last column shows results for the greatest step number, 20, for
which clingcon solved all instances within 600s.

5 http://www.krlab.cs.ttu.edu/Software/Download/rcs
6 Much main memory is needed solely for grounding in clingo.

11 13 20
Benchmark (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

3-0/025 12.83 4.90 4.21 4.21 36.71 8.09 5.99 5.90 — 64.89 17.84 18.78
3-0/050 49.21 13.25 6.80 8.42 219.01 35.38 11.85 12.41 — 370.71 27.36 30.46
3-0/100 36.44 9.54 10.11 5.30 34.82 53.96 12.04 7.16 — — 38.78 33.67
3-0/125 6.31 4.25 4.05 4.07 163.47 21.09 10.00 8.52 — 377.06 133.99 31.46
5-0/025 69.36 15.38 5.87 10.52 176.81 23.39 14.27 15.06 — — 66.55 118.65
5-0/050 24.40 6.58 4.71 4.67 311.11 22.93 10.04 7.19 — 542.27 241.59 —
5-0/100 6.39 4.30 4.13 4.11 72.95 6.36 6.45 5.70 — 83.85 25.32 49.03
5-0/125 61.72 17.66 6.39 6.96 111.92 41.84 9.70 10.87 — — 81.17 73.68
8-0/025 76.73 7.69 11.00 9.25 248.29 37.33 12.69 7.81 — — 222.49 —
8-0/050 6.33 4.19 4.02 4.05 189.04 15.75 7.76 8.05 — 52.14 457.86 32.29
8-0/100 7.71 4.49 5.05 4.16 220.12 11.71 6.10 5.94 — 159.37 26.17 23.72
8-0/125 5.11 4.31 4.15 4.14 38.91 15.31 6.69 7.06 — 69.64 17.82 18.80

∅ 30.21 8.05 5.87 5.82 151.93 24.43 9.47 8.47 — 343.33 113.08 135.88
Table 2. Comparing different strategies within clingcon.

Table 2 compares the four different settings of clingcon with each other. We ob-
served that exploiting constraint interdependencies in variants (a) and (b) may decrease
the number of heuristic decisions made by clingcon. As regards runtime, it however
turns out that the additional effort does not pay off. For one, this is because the cal-
culation of constraint interdependencies is not yet fully optimized in clingcon, and
the overhead could possibly be reduced. This also explains why variant (b), more ea-
gerly recording reasons than (a), is faster: storing more reasons permits more inferences
by unit propagation, and thus, it reduces calculations of constraint interdependencies.
However, variants (c) and (d) using simple-to-compute trivial reasons still seem to be
superior. Interestingly, the lazy approach of (c) to calculate reasons during conflict anal-
ysis performs better than (d) recording reasons during propagation, which is converse
to the relationship between (a) and (b). This shift of behaviors can be explained by the
overhead of reason calculation: while it is expensive with (a) so that recording more
reasons with (b) helps, it is cheap with (c), and exhaustive reason recording in (d) slows
down unit propagation more than additional inferences pay off.

6 Discussion

We introduced a novel approach to integrating CP capacities into modern ASP solvers
based on conflict-driven learning and backjumping. Our semantic approach relies on a
propositional language rather than a multi-sorted, first-order language, as used in [12–
14]. Also, we follow the lazy approach of advanced SMT solvers by abstracting from
the constraints in a specialized theory [9]. A major difficulty in this endeavor was the
current lack of CP solvers providing an interface supporting conflict-driven learning.
We addressed this problem by developing a new algorithmic framework for incorporat-
ing a CP “oracle” into the approach to conflict-driven ASP solving introduced in [19].
Apart from extending unit propagation through constraint propagation, the major ex-
tension dealt with conflict analysis and the elaboration of reasons for atoms derived by
constraint propagation.

Our approach differs in several ways from the ones developed in [12–14]. As men-
tioned above, our semantic approach is propositional and abstracts from the constraints
in a specialized theory. Unlike this, [12–14] start with a multi-sorted, first-order lan-
guage leading to a propositional program through grounding. As well, they rely upon
so-called mixed predicates for linking constants with constraint variables. Also, [12–
14] use traditional ASP solving algorithms, based on DPLL-style backtracking. In fact,
adsolver’s implementation relies on lparse and smodels. The implementation described
in [13] allows the usage of difference constraints of the form X−Y > k for variables
X,Y and constant k; at most one such constraint is allowed within an integrity con-
straint. The underlying CP solver is handcrafted and thus supports incremental solving
and backtracking. Unlike this, we use with gecode an off-the-shelf CP system. Although
it is incremental, backtracking and reason generation must be dealt with externally.
In [24], “functional oracles” allow for computing instantiations of so-called external
predicates during grounding. Constraint atoms in our sense can also be viewed as be-
ing external to some extent, given that the associated constraints are evaluated by a CP
engine. Importantly, the non-Boolean domains of variables in such constraint are still
present in the solving phase, while a functional oracle would have to make the domains
explicit for constructing a propositional program under standard answer set semantics.

We have empirically evaluated adsolver and clingcon on the benchmark suite used
to appraise adsolver’s performance in [13, 14]. First of all, we note that both systems
escape the grounding bottleneck faced by traditional ASP systems like clingo. All in
all, however, we observed that clingcon outperforms adsolver by up to two orders of
magnitude. Also, we investigated the effect of different variants of reason generation
on the performance of clingcon. As regards the current prototype, it turned out that
additional efforts into the elaboration of constraint interdependencies do not pay off.
However, this issue deserves further attention and is subject to future research.

Acknowledgments. We are grateful to Michael Gelfond and Yuanlin Zhang for useful
discussions on the subject of this paper. This work was partially funded by DFG under
Grant SCHA 550/8-1 and by the GoFORSYS7 project under Grant 0313924.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog decision
support system for the space shuttle. In Ramakrishnan, I., ed.: Proceedings of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01). Springer
(2001) 169–183

3. Balduccini, M., Gelfond, M., Nogueira, M.: Answer set based design of knowledge systems.
Annals of Mathematics and Artificial Intelligence 47(1-2) (2006) 183–219

4. Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based ap-
proach for representing and reasoning about signaling networks. In: Proceedings of the
Twelfth International Conference on Intelligent Systems for Molecular Biology/Third Euro-
pean Conference on Computational Biology (ISMB’04/ECCB’04). (2004) 15–22

7 http://www.goforsys.org

5. Dworschak, S., Grote, T., König, A., Schaub, T., Veber, P.: Tools for representing and rea-
soning about biological models in action language C. In Pagnucco, M., Thielscher, M., eds.:
Proceedings of the Twelfth International Workshop on Nonmonotonic Reasoning (NMR’08).
The University of New South Wales, Technical Report Series (2008) 94–102

6. Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting inconsistencies in large
biological networks with answer set programming. In Garcia de la Banda, M., Pontelli,
E., eds.: Proceedings of the Twenty-fourth International Conference on Logic Programming
(ICLP’08). Springer (2008) 130–144

7. Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical
Computer Science 85 (2005) 112–133

8. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. IOS Press
(2009)

9. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM
53(6) (2006) 937–977

10. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
11. Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming. Elsevier

(2006)
12. Baselice, S., Bonatti, P., Gelfond, M.: Towards an integration of answer set and constraint

solving. In Gabbrielli, M., Gupta, G., eds.: Proceedings of the Twenty-first International
Conference on Logic Programming (ICLP’05). Springer (2005) 52–66

13. Mellarkod, V., Gelfond, M.: Integrating answer set reasoning with constraint solving tech-
niques. In Garrigue, J., Hermenegildo, M., eds.: Proceedings of the Ninth International Sym-
posium on Functional and Logic Programming (FLOPS’08). Springer (2008) 15–31

14. Mellarkod, V., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint
logic programming. Annals of Mathematics and Artificial Intelligence (2008) To appear

15. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

16. http://www.cs.uni-potsdam.de/clingcon
17. http://potassco.sourceforge.net
18. http://www.gecode.org
19. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.

In Veloso, M., ed.: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07). AAAI Press/MIT Press (2007) 386–392

20. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo. [17]

21. Marques-Silva, J., Sakallah, K.: GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers 48(5) (1999) 506–521

22. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a
Boolean satisfiability solver. In: Proceedings of the International Conference on Computer-
Aided Design (ICCAD’01). (2001) 279–285

23. Fages, F.: Consistency of Clark’s completion and the existence of stable models. Journal of
Methods of Logic in Computer Science 1 (1994) 51–60

24. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic
programming. Annals of Mathematics and Artificial Intelligence 50(3-4) (2007) 333–361

